|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
|
import time |
|
|
from contextlib import nullcontext |
|
|
from pprint import pformat |
|
|
from typing import Any |
|
|
|
|
|
import torch |
|
|
from termcolor import colored |
|
|
from torch.amp import GradScaler |
|
|
from torch.optim import Optimizer |
|
|
|
|
|
from lerobot.common.datasets.factory import make_dataset |
|
|
from lerobot.common.datasets.sampler import EpisodeAwareSampler |
|
|
from lerobot.common.datasets.utils import cycle |
|
|
from lerobot.common.envs.factory import make_env |
|
|
from lerobot.common.optim.factory import make_optimizer_and_scheduler |
|
|
from lerobot.common.policies.factory import make_policy |
|
|
from lerobot.common.policies.pretrained import PreTrainedPolicy |
|
|
from lerobot.common.policies.utils import get_device_from_parameters |
|
|
from lerobot.common.utils.logging_utils import AverageMeter, MetricsTracker |
|
|
from lerobot.common.utils.random_utils import set_seed |
|
|
from lerobot.common.utils.train_utils import ( |
|
|
get_step_checkpoint_dir, |
|
|
get_step_identifier, |
|
|
load_training_state, |
|
|
save_checkpoint, |
|
|
update_last_checkpoint, |
|
|
) |
|
|
from lerobot.common.utils.utils import ( |
|
|
format_big_number, |
|
|
get_safe_torch_device, |
|
|
has_method, |
|
|
init_logging, |
|
|
) |
|
|
from lerobot.common.utils.wandb_utils import WandBLogger |
|
|
from lerobot.configs import parser |
|
|
from lerobot.configs.train import TrainPipelineConfig |
|
|
from lerobot.scripts.eval import eval_policy |
|
|
|
|
|
|
|
|
def update_policy( |
|
|
train_metrics: MetricsTracker, |
|
|
policy: PreTrainedPolicy, |
|
|
batch: Any, |
|
|
optimizer: Optimizer, |
|
|
grad_clip_norm: float, |
|
|
grad_scaler: GradScaler, |
|
|
lr_scheduler=None, |
|
|
use_amp: bool = False, |
|
|
lock=None, |
|
|
) -> tuple[MetricsTracker, dict]: |
|
|
start_time = time.perf_counter() |
|
|
device = get_device_from_parameters(policy) |
|
|
policy.train() |
|
|
with torch.autocast(device_type=device.type) if use_amp else nullcontext(): |
|
|
loss, output_dict = policy.forward(batch) |
|
|
|
|
|
grad_scaler.scale(loss).backward() |
|
|
|
|
|
|
|
|
grad_scaler.unscale_(optimizer) |
|
|
|
|
|
grad_norm = torch.nn.utils.clip_grad_norm_( |
|
|
policy.parameters(), |
|
|
grad_clip_norm, |
|
|
error_if_nonfinite=False, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
with lock if lock is not None else nullcontext(): |
|
|
grad_scaler.step(optimizer) |
|
|
|
|
|
grad_scaler.update() |
|
|
|
|
|
optimizer.zero_grad() |
|
|
|
|
|
|
|
|
if lr_scheduler is not None: |
|
|
lr_scheduler.step() |
|
|
|
|
|
if has_method(policy, "update"): |
|
|
|
|
|
policy.update() |
|
|
|
|
|
train_metrics.loss = loss.item() |
|
|
train_metrics.grad_norm = grad_norm.item() |
|
|
train_metrics.lr = optimizer.param_groups[0]["lr"] |
|
|
train_metrics.update_s = time.perf_counter() - start_time |
|
|
return train_metrics, output_dict |
|
|
|
|
|
|
|
|
@parser.wrap() |
|
|
def train(cfg: TrainPipelineConfig): |
|
|
cfg.validate() |
|
|
logging.info(pformat(cfg.to_dict())) |
|
|
|
|
|
if cfg.wandb.enable and cfg.wandb.project: |
|
|
wandb_logger = WandBLogger(cfg) |
|
|
else: |
|
|
wandb_logger = None |
|
|
logging.info(colored("Logs will be saved locally.", "yellow", attrs=["bold"])) |
|
|
|
|
|
if cfg.seed is not None: |
|
|
set_seed(cfg.seed) |
|
|
|
|
|
|
|
|
device = get_safe_torch_device(cfg.policy.device, log=True) |
|
|
torch.backends.cudnn.benchmark = True |
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
|
|
logging.info("Creating dataset") |
|
|
dataset = make_dataset(cfg) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eval_env = None |
|
|
if cfg.eval_freq > 0 and cfg.env is not None: |
|
|
logging.info("Creating env") |
|
|
eval_env = make_env(cfg.env, n_envs=cfg.eval.batch_size, use_async_envs=cfg.eval.use_async_envs) |
|
|
|
|
|
logging.info("Creating policy") |
|
|
policy = make_policy( |
|
|
cfg=cfg.policy, |
|
|
ds_meta=dataset.meta, |
|
|
) |
|
|
|
|
|
logging.info("Creating optimizer and scheduler") |
|
|
optimizer, lr_scheduler = make_optimizer_and_scheduler(cfg, policy) |
|
|
grad_scaler = GradScaler(device.type, enabled=cfg.policy.use_amp) |
|
|
|
|
|
step = 0 |
|
|
|
|
|
if cfg.resume: |
|
|
step, optimizer, lr_scheduler = load_training_state(cfg.checkpoint_path, optimizer, lr_scheduler) |
|
|
|
|
|
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad) |
|
|
num_total_params = sum(p.numel() for p in policy.parameters()) |
|
|
|
|
|
logging.info(colored("Output dir:", "yellow", attrs=["bold"]) + f" {cfg.output_dir}") |
|
|
if cfg.env is not None: |
|
|
logging.info(f"{cfg.env.task=}") |
|
|
logging.info(f"{cfg.steps=} ({format_big_number(cfg.steps)})") |
|
|
logging.info(f"{dataset.num_frames=} ({format_big_number(dataset.num_frames)})") |
|
|
logging.info(f"{dataset.num_episodes=}") |
|
|
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})") |
|
|
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})") |
|
|
|
|
|
|
|
|
if hasattr(cfg.policy, "drop_n_last_frames"): |
|
|
shuffle = False |
|
|
sampler = EpisodeAwareSampler( |
|
|
dataset.episode_data_index, |
|
|
drop_n_last_frames=cfg.policy.drop_n_last_frames, |
|
|
shuffle=True, |
|
|
) |
|
|
else: |
|
|
shuffle = True |
|
|
sampler = None |
|
|
|
|
|
dataloader = torch.utils.data.DataLoader( |
|
|
dataset, |
|
|
num_workers=cfg.num_workers, |
|
|
batch_size=cfg.batch_size, |
|
|
shuffle=shuffle, |
|
|
sampler=sampler, |
|
|
pin_memory=device.type != "cpu", |
|
|
drop_last=False, |
|
|
) |
|
|
dl_iter = cycle(dataloader) |
|
|
|
|
|
policy.train() |
|
|
|
|
|
train_metrics = { |
|
|
"loss": AverageMeter("loss", ":.3f"), |
|
|
"grad_norm": AverageMeter("grdn", ":.3f"), |
|
|
"lr": AverageMeter("lr", ":0.1e"), |
|
|
"update_s": AverageMeter("updt_s", ":.3f"), |
|
|
"dataloading_s": AverageMeter("data_s", ":.3f"), |
|
|
} |
|
|
|
|
|
train_tracker = MetricsTracker( |
|
|
cfg.batch_size, dataset.num_frames, dataset.num_episodes, train_metrics, initial_step=step |
|
|
) |
|
|
|
|
|
logging.info("Start offline training on a fixed dataset") |
|
|
for _ in range(step, cfg.steps): |
|
|
start_time = time.perf_counter() |
|
|
batch = next(dl_iter) |
|
|
train_tracker.dataloading_s = time.perf_counter() - start_time |
|
|
|
|
|
for key in batch: |
|
|
if isinstance(batch[key], torch.Tensor): |
|
|
batch[key] = batch[key].to(device, non_blocking=True) |
|
|
|
|
|
train_tracker, output_dict = update_policy( |
|
|
train_tracker, |
|
|
policy, |
|
|
batch, |
|
|
optimizer, |
|
|
cfg.optimizer.grad_clip_norm, |
|
|
grad_scaler=grad_scaler, |
|
|
lr_scheduler=lr_scheduler, |
|
|
use_amp=cfg.policy.use_amp, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
step += 1 |
|
|
train_tracker.step() |
|
|
is_log_step = cfg.log_freq > 0 and step % cfg.log_freq == 0 |
|
|
is_saving_step = step % cfg.save_freq == 0 or step == cfg.steps |
|
|
is_eval_step = cfg.eval_freq > 0 and step % cfg.eval_freq == 0 |
|
|
|
|
|
if is_log_step: |
|
|
logging.info(train_tracker) |
|
|
if wandb_logger: |
|
|
wandb_log_dict = train_tracker.to_dict() |
|
|
if output_dict: |
|
|
wandb_log_dict.update(output_dict) |
|
|
wandb_logger.log_dict(wandb_log_dict, step) |
|
|
train_tracker.reset_averages() |
|
|
|
|
|
if cfg.save_checkpoint and is_saving_step: |
|
|
logging.info(f"Checkpoint policy after step {step}") |
|
|
checkpoint_dir = get_step_checkpoint_dir(cfg.output_dir, cfg.steps, step) |
|
|
save_checkpoint(checkpoint_dir, step, cfg, policy, optimizer, lr_scheduler) |
|
|
update_last_checkpoint(checkpoint_dir) |
|
|
if wandb_logger: |
|
|
wandb_logger.log_policy(checkpoint_dir) |
|
|
|
|
|
if cfg.env and is_eval_step: |
|
|
step_id = get_step_identifier(step, cfg.steps) |
|
|
logging.info(f"Eval policy at step {step}") |
|
|
with ( |
|
|
torch.no_grad(), |
|
|
torch.autocast(device_type=device.type) if cfg.policy.use_amp else nullcontext(), |
|
|
): |
|
|
eval_info = eval_policy( |
|
|
eval_env, |
|
|
policy, |
|
|
cfg.eval.n_episodes, |
|
|
videos_dir=cfg.output_dir / "eval" / f"videos_step_{step_id}", |
|
|
max_episodes_rendered=4, |
|
|
start_seed=cfg.seed, |
|
|
) |
|
|
|
|
|
eval_metrics = { |
|
|
"avg_sum_reward": AverageMeter("∑rwrd", ":.3f"), |
|
|
"pc_success": AverageMeter("success", ":.1f"), |
|
|
"eval_s": AverageMeter("eval_s", ":.3f"), |
|
|
} |
|
|
eval_tracker = MetricsTracker( |
|
|
cfg.batch_size, dataset.num_frames, dataset.num_episodes, eval_metrics, initial_step=step |
|
|
) |
|
|
eval_tracker.eval_s = eval_info["aggregated"].pop("eval_s") |
|
|
eval_tracker.avg_sum_reward = eval_info["aggregated"].pop("avg_sum_reward") |
|
|
eval_tracker.pc_success = eval_info["aggregated"].pop("pc_success") |
|
|
logging.info(eval_tracker) |
|
|
if wandb_logger: |
|
|
wandb_log_dict = {**eval_tracker.to_dict(), **eval_info} |
|
|
wandb_logger.log_dict(wandb_log_dict, step, mode="eval") |
|
|
wandb_logger.log_video(eval_info["video_paths"][0], step, mode="eval") |
|
|
|
|
|
if eval_env: |
|
|
eval_env.close() |
|
|
logging.info("End of training") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
init_logging() |
|
|
train() |
|
|
|