NightPrince's picture
Update README.md
50f380f verified
metadata
dataset_info:
  features:
    - name: audio
      dtype: audio
    - name: transcription
      dtype: string
  splits:
    - name: train
      num_bytes: 1110063079
      num_examples: 5000
    - name: validation
      num_bytes: 82102316
      num_examples: 500
  download_size: 1138402984
  dataset_size: 1192165395
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
tags:
  - masrispeech
  - egyptian-arabic
  - arabic
  - speech
  - audio
  - asr
  - automatic-speech-recognition
  - speech-to-text
  - stt
  - dialectal-arabic
  - egypt
  - native-speakers
  - spoken-arabic
  - egyptian-dialect
  - arabic-dialect
  - audio-dataset
  - language-resources
  - low-resource-language
  - phonetics
  - speech-corpus
  - voice
  - transcription
  - linguistic-data
  - machine-learning
  - natural-language-processing
  - nlp
  - huggingface
  - open-dataset
  - labeled-data
task_categories:
  - automatic-speech-recognition
  - audio-classification
  - audio-to-audio
language:
  - arz
  - ar
pretty_name: MasriSpeech-ASR-Finetuning

πŸ—£οΈ MasriSpeech-ASR-Finetuning: Egyptian Arabic Speech Fine-Tuning Dataset

License Hugging Face

MasriSpeech-Full Dataset Overview

🌍 Overview

MasriSpeech-ASR-Finetuning is a specialized subset of the MasriSpeech dataset, designed for fine-tuning Automatic Speech Recognition (ASR) models for Egyptian Arabic. This dataset contains 5,500 professionally annotated audio samples totaling over 100 hours of natural Egyptian Arabic speech.

πŸ’‘ Key Features:

  • High-quality 16kHz speech recordings
  • Natural conversational Egyptian Arabic
  • Speaker-balanced train/validation splits
  • Comprehensive linguistic coverage
  • Apache 2.0 license

πŸ“Š Dataset Summary

Feature Value
Total Samples 5,500
Train Samples 5,000
Validation Samples 500
Sampling Rate 16 kHz
Total Duration ~100 hours
Languages Egyptian Arabic (arz), Arabic (ar)
Format Parquet
Dataset Size 1.19 GB
Download Size 1.13 GB
Annotations Transcripts

🧱 Dataset Structure

The dataset follows Hugging Face datasets format with two splits:

DatasetDict({
    train: Dataset({
        features: ['audio', 'transcription'],
        num_rows: 5000
    })
    validation: Dataset({
        features: ['audio', 'transcription'],
        num_rows: 500
    })
})

Data Fields

  • audio: Audio feature object containing:
    • Array: Raw speech waveform (1D float array)
    • Path: Relative audio path
    • Sampling_rate: 16,000 Hz
  • transcription: string with Egyptian Arabic transcription

πŸ“ˆ Data Statistics

Split Distribution

Split Examples Size (GB) Avg. Words Empty Non-Arabic
Train 5,000 1.11 13.34 0 0
Validation 500 0.08 9.60 0 0

Linguistic Analysis

Feature Train Set Validation Set
Top Words في (2,025), و (1,698) في (52), Ψ£Ω†Ψ§ (41)
Top Bigrams (Ψ₯Ω†, Ψ£Ω†Ψ§) (130) (Ψ΄Ψ§Ψ‘, Ψ§Ω„Ω„Ω‡) (6)
Vocab Size 3,845 789
Unique Speakers 114 10

Train Distribution Validation Distribution
Word Count Distributions (Left: Train, Right: Validation)

How to Use ? πŸ§‘β€πŸ’»

Loading with Hugging Face

from datasets import load_dataset
import IPython.display as ipd

# Load dataset (streaming recommended for large datasets)
ds = load_dataset('NightPrince/MasriSpeech-ASR-Finetuning', 
                 split='train',
                 streaming=True)

# Get first sample
sample = next(iter(ds))
print(f"Transcript: {sample['transcription']}")

# Play audio
ipd.Audio(sample['audio']['array'], 
          rate=sample['audio']['sampling_rate'])

Preprocessing the Dataset

from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
model_name = "facebook/wav2vec2-base-960h"  # Spanish example
# or "facebook/wav2vec2-large-xlsr-53-en" for English
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)

def prepare_dataset(batch):
    audio = batch["audio"]
    
    # Extract audio array and sampling rate
    audio_array = audio["array"]
    sampling_rate = audio["sampling_rate"]
    
    # Process audio using feature extractor only
    inputs = processor.feature_extractor(
        audio_array, 
        sampling_rate=sampling_rate, 
        return_tensors="pt"
    )
    
    batch["input_values"] = inputs.input_values[0]
    
    # Process transcription using tokenizer only
    labels = processor.tokenizer(
        batch["transcription"], 
        return_tensors="pt"
    )
    
    batch["labels"] = labels["input_ids"][0]
    
    return batch

# Apply preprocessing to the entire dataset
print("Processing entire dataset...")
dataset = ds.map(prepare_dataset, remove_columns=["audio", "transcription"])

Fine-Tuning an ASR Model

from transformers import AutoModelForCTC, TrainingArguments, Trainer

# Load pre-trained model
model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-base-960h")

# Define training arguments
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    num_train_epochs=3,
    save_steps=10,
    save_total_limit=2,
    logging_dir="./logs",
    logging_steps=10,
)

# Initialize Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=dataset,
    eval_dataset=dataset,
)

# Train the model
trainer.train()

Evaluating the Model

# Evaluate the model
eval_results = trainer.evaluate()
print("Evaluation Results:", eval_results)

Exporting the Model

# Save the fine-tuned model
model.save_pretrained("./fine_tuned_model")
processor.save_pretrained("./fine_tuned_model")

πŸ“œ Citation

If you use MasriSpeech-ASR-Finetuning in your research or work, please cite it as follows:

@dataset{masrispeech_asr_finetuning,
  author       = {Yahya Muhammad Alnwsany},
  title        = {MasriSpeech-ASR-Finetuning: Egyptian Arabic Speech Fine-Tuning Dataset},
  year         = {2025},
  publisher    = {Hugging Face},
  url          = {https://huggingface.co/collections/NightPrince/masrispeech-dataset-68594e59e46fd12c723f1544}
}

πŸ“œ Licensing

This dataset is released under the Apache 2.0 License. You are free to use, modify, and distribute the dataset, provided you comply with the terms of the license. For more details, see the LICENSE.

πŸ™Œ Acknowledgments

We would like to thank the following for their contributions and support:

  • Annotators: For their meticulous work in creating high-quality transcriptions.
  • Hugging Face: For providing tools and hosting the dataset.
  • Open-Source Community: For their continuous support and feedback.

πŸ’‘ Use Cases

MasriSpeech-ASR-Finetuning can be used in various applications, including:

  • Fine-tuning Automatic Speech Recognition (ASR) models for Egyptian Arabic.
  • Dialectal Arabic linguistic research.
  • Speech synthesis and voice cloning.
  • Training and benchmarking machine learning models for low-resource languages.

🀝 Contributing

We welcome contributions to improve MasriSpeech-ASR-Finetuning. If you have suggestions, find issues, or want to add new features, please:

  1. Fork the repository.
  2. Create a new branch for your changes.
  3. Submit a pull request with a detailed description of your changes.

For questions or feedback, feel free to contact the maintainer.

πŸ“ Changelog

[1.0.0] - 2025-08-02

  • Initial release of MasriSpeech-ASR-Finetuning.
  • Includes 5,500 audio samples with transcriptions.
  • Train/validation splits provided.
  • Dataset hosted on Hugging Face.