Datasets:
ArXiv:
DOI:
License:
Yiran Wang
commited on
Commit
·
ba37a6c
1
Parent(s):
f5ec8a8
polish numpy buggy and fixed versions
Browse files- .gitattributes +1 -0
- .gitignore +2 -0
- benchmark/numpy_1/numpy_1_fixed.ipynb +0 -0
- benchmark/numpy_1/numpy_1_reproduced.ipynb +0 -0
- benchmark/numpy_10/checkpoint.pth +1 -1
- benchmark/numpy_10/numpy_10_fixed.ipynb +0 -0
- benchmark/numpy_10/numpy_10_reproduced.ipynb +18 -16
- benchmark/numpy_11/data/training_data_64_64.npy +0 -3
- benchmark/numpy_11/numpy_11_fixed.ipynb +12 -5
- benchmark/numpy_11/numpy_11_reproduced.ipynb +4 -4
- benchmark/numpy_12/numpy_12_fixed.ipynb +14 -14
- benchmark/numpy_12/numpy_12_reproduced.ipynb +14 -14
- benchmark/numpy_13/numpy_13_fixed.ipynb +4 -354
- benchmark/numpy_14/numpy_14_fixed.ipynb +27 -48
- benchmark/numpy_14/numpy_14_reproduced.ipynb +28 -28
- benchmark/numpy_15/numpy_15_fixed.ipynb +10 -19
- benchmark/numpy_15/numpy_15_reproduced.ipynb +23 -32
- benchmark/numpy_2/numpy_2_fixed.ipynb +8 -269
- benchmark/numpy_2/numpy_2_reproduced.ipynb +7 -15
- benchmark/numpy_3/numpy_3_fixed.ipynb +0 -0
- benchmark/numpy_3/numpy_3_reproduced.ipynb +5 -5
- benchmark/numpy_4/data_small/best_weights.keras +1 -1
- benchmark/numpy_4/numpy_4_fixed.ipynb +30 -60
- benchmark/numpy_4/numpy_4_reproduced.ipynb +26 -56
- benchmark/numpy_5/all_images.npy +1 -1
- benchmark/numpy_5/checkpoints/ckpt_discriminator_epoch_0.weights.h5 +0 -3
- benchmark/numpy_5/checkpoints/ckpt_generator_epoch_0.weights.h5 +0 -3
- benchmark/numpy_5/images.npy +1 -1
- benchmark/numpy_5/images.txt +0 -0
- benchmark/numpy_5/numpy_5_fixed.ipynb +0 -0
- benchmark/numpy_5/numpy_5_reproduced.ipynb +0 -0
- benchmark/numpy_6/numpy_6_fixed.ipynb +16 -95
- benchmark/numpy_6/numpy_6_reproduced.ipynb +10 -96
- benchmark/numpy_7/learning_curve.png +2 -2
- benchmark/numpy_7/model.h5 +0 -3
- benchmark/numpy_7/numpy_7_fixed.ipynb +0 -0
- benchmark/numpy_7/numpy_7_reproduced.ipynb +0 -0
- benchmark/numpy_7/training_accuracy.png +2 -2
- benchmark/numpy_8/numpy_8_fixed.ipynb +87 -113
- benchmark/numpy_8/numpy_8_reproduced.ipynb +98 -112
- benchmark/numpy_9/numpy_9_fixed.ipynb +2 -2
- benchmark/numpy_9/numpy_9_reproduced.ipynb +3 -3
.gitattributes
CHANGED
|
@@ -61,6 +61,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 61 |
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
| 62 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 63 |
*.npy filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 64 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 65 |
**/data/** filter=lfs diff=lfs merge=lfs -text
|
| 66 |
**/data_small/** filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 61 |
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
| 62 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 63 |
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 64 |
+
*.txt filter=lfs diff=lfs merge=lfs -text
|
| 65 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 66 |
**/data/** filter=lfs diff=lfs merge=lfs -text
|
| 67 |
**/data_small/** filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
|
@@ -2,4 +2,6 @@
|
|
| 2 |
**/.ipynb_checkpoints
|
| 3 |
**/.venv
|
| 4 |
**/.vscode
|
|
|
|
|
|
|
| 5 |
test.py
|
|
|
|
| 2 |
**/.ipynb_checkpoints
|
| 3 |
**/.venv
|
| 4 |
**/.vscode
|
| 5 |
+
**/logs
|
| 6 |
+
**/checkpoints
|
| 7 |
test.py
|
benchmark/numpy_1/numpy_1_fixed.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
benchmark/numpy_1/numpy_1_reproduced.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
benchmark/numpy_10/checkpoint.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 374099298
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c4e6f3d068bc30a6e1787923a1b7f39d8b78d1da60ef1b2a1d95cd3745af6c9c
|
| 3 |
size 374099298
|
benchmark/numpy_10/numpy_10_fixed.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
benchmark/numpy_10/numpy_10_reproduced.ipynb
CHANGED
|
@@ -221,7 +221,7 @@
|
|
| 221 |
},
|
| 222 |
{
|
| 223 |
"cell_type": "code",
|
| 224 |
-
"execution_count":
|
| 225 |
"metadata": {
|
| 226 |
"_cell_guid": "f4013f5e-5c3f-4a75-bd6a-6211e7a0cb61",
|
| 227 |
"_uuid": "0a583a63-ddc6-4355-bb5a-a8de36e88d13",
|
|
@@ -246,7 +246,7 @@
|
|
| 246 |
},
|
| 247 |
{
|
| 248 |
"cell_type": "code",
|
| 249 |
-
"execution_count":
|
| 250 |
"metadata": {
|
| 251 |
"_cell_guid": "e4186edb-09f5-4886-861b-720d933bca67",
|
| 252 |
"_uuid": "5356a5e6-a838-42b9-8eda-4f03f0b7b12c",
|
|
@@ -308,7 +308,7 @@
|
|
| 308 |
},
|
| 309 |
{
|
| 310 |
"cell_type": "code",
|
| 311 |
-
"execution_count":
|
| 312 |
"metadata": {
|
| 313 |
"_cell_guid": "8a70867d-ab72-4f06-ae03-d21cb3179072",
|
| 314 |
"_uuid": "3a7f792a-4ace-41ce-99b0-ce047357a9dd",
|
|
@@ -360,7 +360,7 @@
|
|
| 360 |
},
|
| 361 |
{
|
| 362 |
"cell_type": "code",
|
| 363 |
-
"execution_count":
|
| 364 |
"metadata": {
|
| 365 |
"_cell_guid": "38580579-2091-4577-8deb-677c6622c46b",
|
| 366 |
"_uuid": "f3986cbc-151e-44fd-9bab-27a1c5e95e25",
|
|
@@ -404,7 +404,7 @@
|
|
| 404 |
"optimizer = optim.Adam(model.classifier.parameters(), lr=0.001)\n",
|
| 405 |
"\n",
|
| 406 |
"# Train the model\n",
|
| 407 |
-
"epochs =
|
| 408 |
"print_every = 100\n",
|
| 409 |
"steps = 0\n",
|
| 410 |
"\n",
|
|
@@ -466,7 +466,7 @@
|
|
| 466 |
},
|
| 467 |
{
|
| 468 |
"cell_type": "code",
|
| 469 |
-
"execution_count":
|
| 470 |
"metadata": {
|
| 471 |
"_cell_guid": "8fc1e356-fa0e-43f1-923d-c4df3fb4d156",
|
| 472 |
"_uuid": "eb317077-974c-4f54-90b3-2d2135ca6f3c",
|
|
@@ -486,8 +486,8 @@
|
|
| 486 |
"name": "stdout",
|
| 487 |
"output_type": "stream",
|
| 488 |
"text": [
|
| 489 |
-
"Test Loss:
|
| 490 |
-
"Test Accuracy: 0.
|
| 491 |
]
|
| 492 |
}
|
| 493 |
],
|
|
@@ -541,7 +541,7 @@
|
|
| 541 |
},
|
| 542 |
{
|
| 543 |
"cell_type": "code",
|
| 544 |
-
"execution_count":
|
| 545 |
"metadata": {
|
| 546 |
"_cell_guid": "8e53e796-1480-48d4-b8e9-fe57a9c5d500",
|
| 547 |
"_uuid": "82245aa8-364d-42a0-b3fd-7f06fa02637d",
|
|
@@ -591,7 +591,7 @@
|
|
| 591 |
},
|
| 592 |
{
|
| 593 |
"cell_type": "code",
|
| 594 |
-
"execution_count":
|
| 595 |
"metadata": {
|
| 596 |
"_cell_guid": "03d8a298-a457-4878-a02a-5e975abc9755",
|
| 597 |
"_uuid": "f250779b-7a81-4357-94cc-089ea5697d0d",
|
|
@@ -663,7 +663,7 @@
|
|
| 663 |
},
|
| 664 |
{
|
| 665 |
"cell_type": "code",
|
| 666 |
-
"execution_count":
|
| 667 |
"metadata": {
|
| 668 |
"_cell_guid": "c42d85a1-4a48-4f86-9373-31cdf23f1146",
|
| 669 |
"_uuid": "67d37625-affe-46d0-a428-c9210392ac5c",
|
|
@@ -710,7 +710,7 @@
|
|
| 710 |
},
|
| 711 |
{
|
| 712 |
"cell_type": "code",
|
| 713 |
-
"execution_count":
|
| 714 |
"metadata": {
|
| 715 |
"_cell_guid": "50265c17-dd80-407c-8319-a98c5a1fab52",
|
| 716 |
"_uuid": "5d504883-dddc-4af6-8e7e-52a167b84849",
|
|
@@ -775,7 +775,7 @@
|
|
| 775 |
},
|
| 776 |
{
|
| 777 |
"cell_type": "code",
|
| 778 |
-
"execution_count":
|
| 779 |
"metadata": {
|
| 780 |
"_cell_guid": "6f242a20-4f33-4b66-929c-a1818f4d60d3",
|
| 781 |
"_uuid": "b58df97a-2b89-41a5-bae8-84da27529843",
|
|
@@ -916,7 +916,7 @@
|
|
| 916 |
},
|
| 917 |
{
|
| 918 |
"cell_type": "code",
|
| 919 |
-
"execution_count":
|
| 920 |
"metadata": {
|
| 921 |
"_cell_guid": "1c10fa92-aa4d-4f2f-9a01-8ef8f030e9fd",
|
| 922 |
"_uuid": "bd6e5379-bfa6-40c3-9ffd-bd6739cd9f0a",
|
|
@@ -966,7 +966,7 @@
|
|
| 966 |
},
|
| 967 |
{
|
| 968 |
"cell_type": "code",
|
| 969 |
-
"execution_count":
|
| 970 |
"metadata": {
|
| 971 |
"_cell_guid": "82896b53-8291-47ce-8bcb-17e6ecd02e19",
|
| 972 |
"_uuid": "0fa599e9-adda-4420-a447-2193f78d8813",
|
|
@@ -989,13 +989,15 @@
|
|
| 989 |
"traceback": [
|
| 990 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 991 |
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
| 992 |
-
"\u001b[0;32m<ipython-input-
|
| 993 |
"\u001b[0;32mnumpy/random/mtrand.pyx\u001b[0m in \u001b[0;36mnumpy.random.mtrand.RandomState.choice\u001b[0;34m()\u001b[0m\n",
|
| 994 |
"\u001b[0;31mValueError\u001b[0m: a must be 1-dimensional"
|
| 995 |
]
|
| 996 |
}
|
| 997 |
],
|
| 998 |
"source": [
|
|
|
|
|
|
|
| 999 |
"# Display an image along with the top 5 classes\n",
|
| 1000 |
"def display_image(image_path):\n",
|
| 1001 |
" img = process_image(image_path)\n",
|
|
|
|
| 221 |
},
|
| 222 |
{
|
| 223 |
"cell_type": "code",
|
| 224 |
+
"execution_count": 2,
|
| 225 |
"metadata": {
|
| 226 |
"_cell_guid": "f4013f5e-5c3f-4a75-bd6a-6211e7a0cb61",
|
| 227 |
"_uuid": "0a583a63-ddc6-4355-bb5a-a8de36e88d13",
|
|
|
|
| 246 |
},
|
| 247 |
{
|
| 248 |
"cell_type": "code",
|
| 249 |
+
"execution_count": 3,
|
| 250 |
"metadata": {
|
| 251 |
"_cell_guid": "e4186edb-09f5-4886-861b-720d933bca67",
|
| 252 |
"_uuid": "5356a5e6-a838-42b9-8eda-4f03f0b7b12c",
|
|
|
|
| 308 |
},
|
| 309 |
{
|
| 310 |
"cell_type": "code",
|
| 311 |
+
"execution_count": 4,
|
| 312 |
"metadata": {
|
| 313 |
"_cell_guid": "8a70867d-ab72-4f06-ae03-d21cb3179072",
|
| 314 |
"_uuid": "3a7f792a-4ace-41ce-99b0-ce047357a9dd",
|
|
|
|
| 360 |
},
|
| 361 |
{
|
| 362 |
"cell_type": "code",
|
| 363 |
+
"execution_count": 5,
|
| 364 |
"metadata": {
|
| 365 |
"_cell_guid": "38580579-2091-4577-8deb-677c6622c46b",
|
| 366 |
"_uuid": "f3986cbc-151e-44fd-9bab-27a1c5e95e25",
|
|
|
|
| 404 |
"optimizer = optim.Adam(model.classifier.parameters(), lr=0.001)\n",
|
| 405 |
"\n",
|
| 406 |
"# Train the model\n",
|
| 407 |
+
"epochs = 1 #10\n",
|
| 408 |
"print_every = 100\n",
|
| 409 |
"steps = 0\n",
|
| 410 |
"\n",
|
|
|
|
| 466 |
},
|
| 467 |
{
|
| 468 |
"cell_type": "code",
|
| 469 |
+
"execution_count": 6,
|
| 470 |
"metadata": {
|
| 471 |
"_cell_guid": "8fc1e356-fa0e-43f1-923d-c4df3fb4d156",
|
| 472 |
"_uuid": "eb317077-974c-4f54-90b3-2d2135ca6f3c",
|
|
|
|
| 486 |
"name": "stdout",
|
| 487 |
"output_type": "stream",
|
| 488 |
"text": [
|
| 489 |
+
"Test Loss: 4.927.. \n",
|
| 490 |
+
"Test Accuracy: 0.000\n"
|
| 491 |
]
|
| 492 |
}
|
| 493 |
],
|
|
|
|
| 541 |
},
|
| 542 |
{
|
| 543 |
"cell_type": "code",
|
| 544 |
+
"execution_count": 7,
|
| 545 |
"metadata": {
|
| 546 |
"_cell_guid": "8e53e796-1480-48d4-b8e9-fe57a9c5d500",
|
| 547 |
"_uuid": "82245aa8-364d-42a0-b3fd-7f06fa02637d",
|
|
|
|
| 591 |
},
|
| 592 |
{
|
| 593 |
"cell_type": "code",
|
| 594 |
+
"execution_count": 8,
|
| 595 |
"metadata": {
|
| 596 |
"_cell_guid": "03d8a298-a457-4878-a02a-5e975abc9755",
|
| 597 |
"_uuid": "f250779b-7a81-4357-94cc-089ea5697d0d",
|
|
|
|
| 663 |
},
|
| 664 |
{
|
| 665 |
"cell_type": "code",
|
| 666 |
+
"execution_count": 9,
|
| 667 |
"metadata": {
|
| 668 |
"_cell_guid": "c42d85a1-4a48-4f86-9373-31cdf23f1146",
|
| 669 |
"_uuid": "67d37625-affe-46d0-a428-c9210392ac5c",
|
|
|
|
| 710 |
},
|
| 711 |
{
|
| 712 |
"cell_type": "code",
|
| 713 |
+
"execution_count": 10,
|
| 714 |
"metadata": {
|
| 715 |
"_cell_guid": "50265c17-dd80-407c-8319-a98c5a1fab52",
|
| 716 |
"_uuid": "5d504883-dddc-4af6-8e7e-52a167b84849",
|
|
|
|
| 775 |
},
|
| 776 |
{
|
| 777 |
"cell_type": "code",
|
| 778 |
+
"execution_count": 11,
|
| 779 |
"metadata": {
|
| 780 |
"_cell_guid": "6f242a20-4f33-4b66-929c-a1818f4d60d3",
|
| 781 |
"_uuid": "b58df97a-2b89-41a5-bae8-84da27529843",
|
|
|
|
| 916 |
},
|
| 917 |
{
|
| 918 |
"cell_type": "code",
|
| 919 |
+
"execution_count": null,
|
| 920 |
"metadata": {
|
| 921 |
"_cell_guid": "1c10fa92-aa4d-4f2f-9a01-8ef8f030e9fd",
|
| 922 |
"_uuid": "bd6e5379-bfa6-40c3-9ffd-bd6739cd9f0a",
|
|
|
|
| 966 |
},
|
| 967 |
{
|
| 968 |
"cell_type": "code",
|
| 969 |
+
"execution_count": 12,
|
| 970 |
"metadata": {
|
| 971 |
"_cell_guid": "82896b53-8291-47ce-8bcb-17e6ecd02e19",
|
| 972 |
"_uuid": "0fa599e9-adda-4420-a447-2193f78d8813",
|
|
|
|
| 989 |
"traceback": [
|
| 990 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 991 |
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
| 992 |
+
"\u001b[0;32m<ipython-input-12-c10d9ac8d8ed>\u001b[0m in \u001b[0;36m<cell line: 9>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;31m# Testing with a random image from the test set\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0mtest_image_path\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchoice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_ds\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimgs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0mdisplay_image\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_image_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 993 |
"\u001b[0;32mnumpy/random/mtrand.pyx\u001b[0m in \u001b[0;36mnumpy.random.mtrand.RandomState.choice\u001b[0;34m()\u001b[0m\n",
|
| 994 |
"\u001b[0;31mValueError\u001b[0m: a must be 1-dimensional"
|
| 995 |
]
|
| 996 |
}
|
| 997 |
],
|
| 998 |
"source": [
|
| 999 |
+
"import matplotlib.pyplot as plt\n",
|
| 1000 |
+
"\n",
|
| 1001 |
"# Display an image along with the top 5 classes\n",
|
| 1002 |
"def display_image(image_path):\n",
|
| 1003 |
" img = process_image(image_path)\n",
|
benchmark/numpy_11/data/training_data_64_64.npy
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:e5e66e42e6c55ec5238323d54d56fd56f0d9c25049939dddbb50ecdbddd6b151
|
| 3 |
-
size 5603456
|
|
|
|
|
|
|
|
|
|
|
|
benchmark/numpy_11/numpy_11_fixed.ipynb
CHANGED
|
@@ -262,7 +262,7 @@
|
|
| 262 |
},
|
| 263 |
{
|
| 264 |
"cell_type": "code",
|
| 265 |
-
"execution_count":
|
| 266 |
"metadata": {
|
| 267 |
"execution": {
|
| 268 |
"iopub.execute_input": "2023-03-06T08:36:33.489978Z",
|
|
@@ -285,7 +285,7 @@
|
|
| 285 |
"name": "stderr",
|
| 286 |
"output_type": "stream",
|
| 287 |
"text": [
|
| 288 |
-
"
|
| 289 |
]
|
| 290 |
},
|
| 291 |
{
|
|
@@ -299,7 +299,7 @@
|
|
| 299 |
"name": "stderr",
|
| 300 |
"output_type": "stream",
|
| 301 |
"text": [
|
| 302 |
-
"
|
| 303 |
]
|
| 304 |
},
|
| 305 |
{
|
|
@@ -313,7 +313,7 @@
|
|
| 313 |
"name": "stderr",
|
| 314 |
"output_type": "stream",
|
| 315 |
"text": [
|
| 316 |
-
"100%|██████████| 116/116 [00:
|
| 317 |
]
|
| 318 |
},
|
| 319 |
{
|
|
@@ -322,6 +322,13 @@
|
|
| 322 |
"text": [
|
| 323 |
"Saving training image binary...\n"
|
| 324 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
}
|
| 326 |
],
|
| 327 |
"source": [
|
|
@@ -354,7 +361,7 @@
|
|
| 354 |
"\n",
|
| 355 |
"\n",
|
| 356 |
" print(\"Saving training image binary...\")\n",
|
| 357 |
-
"
|
| 358 |
" elapsed = time.time()-start\n",
|
| 359 |
" \n",
|
| 360 |
"else:\n",
|
|
|
|
| 262 |
},
|
| 263 |
{
|
| 264 |
"cell_type": "code",
|
| 265 |
+
"execution_count": 3,
|
| 266 |
"metadata": {
|
| 267 |
"execution": {
|
| 268 |
"iopub.execute_input": "2023-03-06T08:36:33.489978Z",
|
|
|
|
| 285 |
"name": "stderr",
|
| 286 |
"output_type": "stream",
|
| 287 |
"text": [
|
| 288 |
+
" 23%|██▎ | 27/116 [00:00<00:01, 65.54it/s]"
|
| 289 |
]
|
| 290 |
},
|
| 291 |
{
|
|
|
|
| 299 |
"name": "stderr",
|
| 300 |
"output_type": "stream",
|
| 301 |
"text": [
|
| 302 |
+
" 69%|██████▉ | 80/116 [00:01<00:00, 51.75it/s]"
|
| 303 |
]
|
| 304 |
},
|
| 305 |
{
|
|
|
|
| 313 |
"name": "stderr",
|
| 314 |
"output_type": "stream",
|
| 315 |
"text": [
|
| 316 |
+
"100%|██████████| 116/116 [00:02<00:00, 50.18it/s]"
|
| 317 |
]
|
| 318 |
},
|
| 319 |
{
|
|
|
|
| 322 |
"text": [
|
| 323 |
"Saving training image binary...\n"
|
| 324 |
]
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"name": "stderr",
|
| 328 |
+
"output_type": "stream",
|
| 329 |
+
"text": [
|
| 330 |
+
"\n"
|
| 331 |
+
]
|
| 332 |
}
|
| 333 |
],
|
| 334 |
"source": [
|
|
|
|
| 361 |
"\n",
|
| 362 |
"\n",
|
| 363 |
" print(\"Saving training image binary...\")\n",
|
| 364 |
+
"# np.save(training_binary_path,training_data)\n",
|
| 365 |
" elapsed = time.time()-start\n",
|
| 366 |
" \n",
|
| 367 |
"else:\n",
|
benchmark/numpy_11/numpy_11_reproduced.ipynb
CHANGED
|
@@ -262,7 +262,7 @@
|
|
| 262 |
},
|
| 263 |
{
|
| 264 |
"cell_type": "code",
|
| 265 |
-
"execution_count":
|
| 266 |
"metadata": {
|
| 267 |
"execution": {
|
| 268 |
"iopub.execute_input": "2023-03-06T08:36:33.489978Z",
|
|
@@ -285,7 +285,7 @@
|
|
| 285 |
"name": "stderr",
|
| 286 |
"output_type": "stream",
|
| 287 |
"text": [
|
| 288 |
-
"100%|██████████| 116/116 [00:
|
| 289 |
]
|
| 290 |
},
|
| 291 |
{
|
|
@@ -295,7 +295,7 @@
|
|
| 295 |
"traceback": [
|
| 296 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 297 |
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
| 298 |
-
"\u001b[0;32m<ipython-input-
|
| 299 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/fromnumeric.py\u001b[0m in \u001b[0;36mreshape\u001b[0;34m(a, newshape, order)\u001b[0m\n\u001b[1;32m 283\u001b[0m [5, 6]])\n\u001b[1;32m 284\u001b[0m \"\"\"\n\u001b[0;32m--> 285\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_wrapfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'reshape'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnewshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morder\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 286\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 287\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 300 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/fromnumeric.py\u001b[0m in \u001b[0;36m_wrapfunc\u001b[0;34m(obj, method, *args, **kwds)\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0mbound\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mbound\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 56\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_wrapit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 57\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 301 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/fromnumeric.py\u001b[0m in \u001b[0;36m_wrapit\u001b[0;34m(obj, method, *args, **kwds)\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mwrap\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 45\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 46\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mwrap\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmu\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
|
@@ -327,7 +327,7 @@
|
|
| 327 |
"\n",
|
| 328 |
"\n",
|
| 329 |
" print(\"Saving training image binary...\")\n",
|
| 330 |
-
"
|
| 331 |
" elapsed = time.time()-start\n",
|
| 332 |
" \n",
|
| 333 |
"else:\n",
|
|
|
|
| 262 |
},
|
| 263 |
{
|
| 264 |
"cell_type": "code",
|
| 265 |
+
"execution_count": 3,
|
| 266 |
"metadata": {
|
| 267 |
"execution": {
|
| 268 |
"iopub.execute_input": "2023-03-06T08:36:33.489978Z",
|
|
|
|
| 285 |
"name": "stderr",
|
| 286 |
"output_type": "stream",
|
| 287 |
"text": [
|
| 288 |
+
"100%|██████████| 116/116 [00:02<00:00, 53.55it/s]\n"
|
| 289 |
]
|
| 290 |
},
|
| 291 |
{
|
|
|
|
| 295 |
"traceback": [
|
| 296 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 297 |
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
| 298 |
+
"\u001b[0;32m<ipython-input-3-3b94fba6246d>\u001b[0m in \u001b[0;36m<cell line: 6>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 15\u001b[0m GENERATE_SQUARE),Image.LANCZOS)\n\u001b[1;32m 16\u001b[0m \u001b[0mtraining_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 17\u001b[0;31m training_data = np.reshape(training_data,(-1,GENERATE_SQUARE,\n\u001b[0m\u001b[1;32m 18\u001b[0m GENERATE_SQUARE,3))\n\u001b[1;32m 19\u001b[0m \u001b[0mtraining_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtraining_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat32\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 299 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/fromnumeric.py\u001b[0m in \u001b[0;36mreshape\u001b[0;34m(a, newshape, order)\u001b[0m\n\u001b[1;32m 283\u001b[0m [5, 6]])\n\u001b[1;32m 284\u001b[0m \"\"\"\n\u001b[0;32m--> 285\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_wrapfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'reshape'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnewshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morder\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 286\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 287\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 300 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/fromnumeric.py\u001b[0m in \u001b[0;36m_wrapfunc\u001b[0;34m(obj, method, *args, **kwds)\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0mbound\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mbound\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 56\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_wrapit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 57\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 301 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/fromnumeric.py\u001b[0m in \u001b[0;36m_wrapit\u001b[0;34m(obj, method, *args, **kwds)\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mwrap\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 45\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 46\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mwrap\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmu\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
|
|
|
| 327 |
"\n",
|
| 328 |
"\n",
|
| 329 |
" print(\"Saving training image binary...\")\n",
|
| 330 |
+
"# np.save(training_binary_path,training_data)\n",
|
| 331 |
" elapsed = time.time()-start\n",
|
| 332 |
" \n",
|
| 333 |
"else:\n",
|
benchmark/numpy_12/numpy_12_fixed.ipynb
CHANGED
|
@@ -561,34 +561,34 @@
|
|
| 561 |
"name": "stdout",
|
| 562 |
"output_type": "stream",
|
| 563 |
"text": [
|
| 564 |
-
"84/84 - 2s - 22ms/step - loss: 0.
|
| 565 |
"Epoch 2/10\n",
|
| 566 |
-
"84/84 - 0s - 2ms/step - loss: 0.
|
| 567 |
"Epoch 3/10\n",
|
| 568 |
-
"84/84 - 0s - 1ms/step - loss: 0.
|
| 569 |
"Epoch 4/10\n",
|
| 570 |
-
"84/84 - 0s - 1ms/step - loss: 0.
|
| 571 |
"Epoch 5/10\n",
|
| 572 |
-
"84/84 - 0s - 1ms/step - loss: 0.
|
| 573 |
"Epoch 6/10\n",
|
| 574 |
-
"84/84 - 0s - 1ms/step - loss: 0.
|
| 575 |
"Epoch 7/10\n",
|
| 576 |
-
"84/84 - 0s - 1ms/step - loss: 0.
|
| 577 |
"Epoch 8/10\n",
|
| 578 |
-
"84/84 - 0s - 1ms/step - loss: 0.
|
| 579 |
"Epoch 9/10\n",
|
| 580 |
-
"84/84 - 0s - 1ms/step - loss: 0.
|
| 581 |
"Epoch 10/10\n",
|
| 582 |
-
"84/84 - 0s - 1ms/step - loss: 0.
|
| 583 |
-
"\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m
|
| 584 |
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
|
| 585 |
-
"Train Score:
|
| 586 |
-
"Test Score:
|
| 587 |
]
|
| 588 |
},
|
| 589 |
{
|
| 590 |
"data": {
|
| 591 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMzklEQVR4nO3dd5hU5fXA8e+dur2zDXbpAksXEFbsoKjYiVGDJWpiYjCxJCYxP2OiJmpM0ZgQNYnRGHuPEhsigkoRll6kw/be67T7++POvTO7bJstM7vL+TzPPu7O3Jl776rM4bznnFdRVVVFCCGEEGIAMYX6AoQQQggh2pIARQghhBADjgQoQgghhBhwJEARQgghxIAjAYoQQgghBhwJUIQQQggx4EiAIoQQQogBRwIUIYQQQgw4llBfQE94PB4KCwuJjo5GUZRQX44QQgghukFVVerq6khPT8dk6jxHMigDlMLCQjIyMkJ9GUIIIYTogby8PEaMGNHpMYMyQImOjga0G4yJiQnx1QghhBCiO2pra8nIyDA+xzszKAMUfVknJiZGAhQhhBBikOlOeYYUyQohhBBiwJEARQghhBADjgQoQgghhBhwJEARQgghxIAjAYoQQgghBhwJUIQQQggx4EiAIoQQQogBRwIUIYQQQgw4EqAIIYQQYsCRAEUIIYQQA44EKEIIIYQYcCRAEUIIIcSAIwGKEEIIMYSoqsrLX+Wyq6Am1JfSKxKgCCGEEEPItrxq7nlrJ99/IQdVVUN9OT0mAYoQQggxhJTUtgCQX9XE3qK6EF9Nz0mAIoQQQgwh9S0u4/tP9paE8Ep6RwIUIYQQYgipa3Ya36+SAEUIIYQQA0F9sy+Dsj2/hpLa5hBeTc9JgCKEEEIMIf5LPACr9paG6Ep6RwIUIYQQYgip9WZQosMswOCtQ5EARQghhBhC9AzK4qlpAHxxsJxGh6uzlwxIEqAIIYQQQ0i9t0j25JHxZCSE43B5+PxAeYivKnASoAghhBBDSJ13iScmzMLCSSnA4OzmkQBFCCGEGEL0JZ4ou5VzvQHKp1+XhfKSeiTgAKWgoIBrr72WxMREwsPDmTp1Kps3bzaeV1WV++67j7S0NMLDw1m4cCEHDhxo9R6VlZUsXbqUmJgY4uLiuPnmm6mvr+/93QghhBAnOD2DEhVmYVJaDADl9S243J5QXlbAAgpQqqqqmD9/PlarlQ8++IA9e/bwxz/+kfj4eOOYRx99lCeeeIKnnnqKjRs3EhkZyaJFi2hu9vVhL126lN27d7Ny5UpWrFjB2rVrueWWW/ruroQQQogTlC+DYiHSbjEeb3C4Q3VJPWLp+hCf3/3ud2RkZPDss88aj40ePdr4XlVVHn/8ce69914uvfRSAJ5//nlSUlJ45513uPrqq9m7dy8ffvghmzZtYvbs2QD85S9/4cILL+QPf/gD6enpfXFfQgghxAlHVVUjQIkJs2CzmLCaFZxulYYWF7Hh1hBfYfcFlEF59913mT17NldeeSXJycnMnDmTf/zjH8bzR44cobi4mIULFxqPxcbGMnfuXNavXw/A+vXriYuLM4ITgIULF2Iymdi4cWO7521paaG2trbVlxBCCCFaa3K6cXu0HYyjvHNQ9CxKQ8vgajUOKEA5fPgwTz75JOPHj+ejjz7i1ltv5Uc/+hH//ve/ASguLgYgJSWl1etSUlKM54qLi0lOTm71vMViISEhwTimrYcffpjY2FjjKyMjI5DLFkIIIU4I+ph7s0kh3GoGINLmDVAG2RJPQAGKx+Ph5JNP5qGHHmLmzJnccsstfPe73+Wpp57qr+sD4J577qGmpsb4ysvL69fzCSGEEIORPkU2ym5BURTjexjiGZS0tDSysrJaPTZp0iRyc3MBSE1NBaCkpHW/dUlJifFcamoqpaWt9wVwuVxUVlYax7Rlt9uJiYlp9SWEEEKI1vwLZHURdnOr5waLgAKU+fPns2/fvlaP7d+/n5EjRwJawWxqaiqrVq0ynq+trWXjxo1kZ2cDkJ2dTXV1NTk5OcYxn376KR6Ph7lz5/b4RoQQQogTXX2bfXhg8GZQAuriufPOOzn11FN56KGH+OY3v8lXX33F3//+d/7+978DoCgKd9xxB7/5zW8YP348o0eP5pe//CXp6elcdtllgJZxOf/8842lIafTyW233cbVV18tHTxCCCFEL9R5x9z7ByiDtQYloABlzpw5vP3229xzzz088MADjB49mscff5ylS5cax/z0pz+loaGBW265herqak477TQ+/PBDwsLCjGNefPFFbrvtNhYsWIDJZGLJkiU88cQTfXdXQgghxAmorpMlniGdQQG46KKLuOiiizp8XlEUHnjgAR544IEOj0lISOCll14K9NRCCCGE6ES9MUXWN+9ksC7xyF48QgghxBDRXpGsbw7K4FrikQBFCCGEGCL0GpSYVjUog3OJRwIUIYQQYojoLINS75AARQghhBAh4L+TsU4PUBolgyKEEEKIUKgz5qC0VyQrNShCCCGECIF2J8naToBJskIIIYQYuDqdJCs1KEIIIYQIBb2LR9qMhRBCCDFg6JNk2x11L0s8QgghhAg2VVV9NSituni0GpQmpxu3Rw3JtfWEBChCCCHEENDgcKN6449ou6+LJ9JvuadxENWhSIAihBBCDAF6gazFpBBm9X282y0mzCYFGFx1KBKgCCGEEENAfYu3QDbMgqIoxuOKohjj7gdTq7EEKEIIIcQQYEyR9VvS0Q3GHY0lQBFCCCGGgPamyOoiB+EsFAlQhBBCiCFAX76JbieDEjEIZ6FIgCKEEEIMAfXtbBSoi/K2GssSjxBCCCGCqradKbI6Y1ibLPEIIYQQJ5Y3c/JZvvpgyM5f384UWV3kICySPf4uhBBCCBGQvMpG7n5jOx4VLp6WTmZiRNCvobMlHn2abL3UoAghhBAnjn+vO4o+Rb66yRGSazC6eNpb4vE+1jiIMigSoAghhBC9UNfs5NVNecbPoRqG5lviaafNWGpQhBBCiBPLa5vzjV2EIXStvPo1tFsk631MlniEEEKIE4Dbo/LcuiMAeLe7CVkhan2zb9R9W9JmLIQQQpxAVu4pJq+yibgIK/PHJQGhW+LxTZIdGl08EqAIIYQQPfTMF1r2ZOncTJKi7AA0hqjOwzdJVmpQhBBCiBNWeX0Lm45WoShwffaokLfydt5mLKPuhRBCiBNCZYPWThwbbiUlJiykyygej0q9o7MiWalBEUIIIU4ItU1aUWqMt603yha6AKXB4UL1zmFptwYlhNfWUxKgCCGEED2g730TG64FKL5W3uAHAfo5rWYFu+X4j3Yju+Nw49Enyg1wEqAIIYQQPVCjZ1DCtQ//qBAu8egdPFF2C4qiHPe8/7JPk3Nw1KFIgCKEEEL0QG2TFhToSzyhLET1tRgf38EDEGY1hXxOS6AkQBFCCCF6QK9B8S3x6F08oVviaa9AFkBRFKMOJVRzWgIlAYoQQgjRA74lHm+RrD10s0Y6azHWDbZWYwlQhBBCiB7oqEg2NDUo2rW0t5Oxzmg1HiTD2iRAEUIIIXrAyKCEtS6SDcUSSrW+3BTRfg0KDL5x9xKgCCGEED1gFMm2yaA0Oz243J6gXktVozY0Lj7C1uExUoMihBBCnAD0JZ6YNkWyoM0bCaYq71TbhMhOAhRvANUY5GvrKQlQhBBCiB6oaTNJ1m4xYzVrvbzBXkapbNCupdMMyiAbdy8BihBCCNEDbduMIXR1HvoST0Jk1zUossQjhBBCDFEej0pdi16D4uucCVWdhx6gxHWSQYmSJR4hhBBiaKtr8W3OF+M3vTUqRLNGulODEmEL3SC5npAARQghhAiQvrxjt5gIs/qKY0MxTdbtUY02485qUEK5V1BPSIAihBBCBKjtFFldKGpQapqcRjYnTuagCCGEECcuo8W4zWj5UIy7r/Qu70SHWbCaO/5Yl1H3QgghxBCnD2mL7SCDEswlnurGrutPACJtMupeCCGEGNJqO1jiCUWdh55B6az+BKTNWAghhBjy2m4UqPMNQwveMkpVNzMoRpuxLPEIIYQQQ1NtmymyulBkKfQpsp0VyIKvzViKZIUQQoghytfF00GRbChqULpY4vEv4FX1tp8BTAIUIYQQIkC1zR0UyYZgkqxRg9JVkaw3QPGo2o7LA50EKEIIIUSA2m4UqAvFrJHu1qCE+w2UGwyFshKgCCGEEAFqb6NACM1+N74uns5rUEwmhWjv9elFvgNZQAHKr3/9axRFafU1ceJE4/nm5maWLVtGYmIiUVFRLFmyhJKSklbvkZuby+LFi4mIiCA5OZm7774bl2vgR3JCCCEGhq+OVPLoh1/jcodumcIY1NZBF09w56B0PeZeNyzGDkBpbUu/XlNfsHR9SGuTJ0/mk08+8b2BxfcWd955J//73/94/fXXiY2N5bbbbuOKK67gyy+/BMDtdrN48WJSU1NZt24dRUVFXH/99VitVh566KE+uB0hhBBDmcejcscrWymsaWbO6ATOnpAckusYSEs8ld1c4gFIiQ7jcFkDJbXN/X1ZvRZwgGKxWEhNTT3u8ZqaGp555hleeuklzjnnHACeffZZJk2axIYNG5g3bx4ff/wxe/bs4ZNPPiElJYUZM2bw4IMP8rOf/Yxf//rX2Gxd/3KFEEKcuDYfq6KwRvtwrWkM3TJFV5NkgzUHxeX2GMFSXDcyKKmxYQCDIkAJuAblwIEDpKenM2bMGJYuXUpubi4AOTk5OJ1OFi5caBw7ceJEMjMzWb9+PQDr169n6tSppKSkGMcsWrSI2tpadu/e3dt7EUIIMcS9u73A+D5UhZ4Ol4cmpxaAHNdm7O3icbg9OFz9vwTV3Y0CdcneJZ7iQRCgBJRBmTt3Ls899xwTJkygqKiI+++/n9NPP51du3ZRXFyMzWYjLi6u1WtSUlIoLi4GoLi4uFVwoj+vP9eRlpYWWlp862W1tbWBXLYQQoghwOX28P5O32dFY4j2lPEvMI0+bonH1ynT0OLCZunflQG9gyemi40CdSnRWgZlyNWgXHDBBcb306ZNY+7cuYwcOZLXXnuN8PDwPr843cMPP8z999/fb+8vhBBi4PvyUIXRsQKh25VX7+CJtlswm5RWz1nMJuwWEy0uD/Utri5nk/RWlXeZqzv1J+Bb4hkMGZRetRnHxcVx0kkncfDgQVJTU3E4HFRXV7c6pqSkxKhZSU1NPa6rR/+5vboW3T333ENNTY3xlZeX15vLFkIIMQi9u60QAMUbE4Qqg1LTwUaBOv+Jrf1ND9i6U38CkOJd4hmSNSj+6uvrOXToEGlpacyaNQur1cqqVauM5/ft20dubi7Z2dkAZGdns3PnTkpLS41jVq5cSUxMDFlZWR2ex263ExMT0+pLCCHEiaPZ6ebj3dryzmnjkgCoD1UGxTtFtqMAJZidPFUN3e/gAUiJ8S3xDPRx9wEFKD/5yU9Ys2YNR48eZd26dVx++eWYzWauueYaYmNjufnmm7nrrrtYvXo1OTk53HjjjWRnZzNv3jwAzjvvPLKysrjuuuvYvn07H330Effeey/Lli3Dbrf3yw0KIYQY/D7bV0pdi4u02DDOPGkYEMIaFKPFuP0qCd+Ggf0fQOktxt2ZgQKQ7K1Bcbg9xvLQQBVQDUp+fj7XXHMNFRUVDBs2jNNOO40NGzYwbJj2H8tjjz2GyWRiyZIltLS0sGjRIv72t78ZrzebzaxYsYJbb72V7OxsIiMjueGGG3jggQf69q6EEEIMKe9u15Z3Lp6e7rchX2gyKF0v8QRv1+Bqowal6w4eAJvFRGKkjYoGB8U1zd3OvIRCQAHKK6+80unzYWFhLF++nOXLl3d4zMiRI3n//fcDOa0QQogT3OcHygG4cGoauZWNQHCHofnTu3jazkDR+TIoA68GBSA5JoyKBgcldc1kMXBLJmQvHiGEEANas9NNnbfuY3RSJJE2LUMRuiUebw1K2OCrQQFI1QtlawZ2oawEKEIIIQa0Cu+HsNWsEBNm8QUAQdyQz19NBxsF6vRhbcEIUAKtQQFfoWzJAJ+FIgGKEEKIAa2iXvsgTYy0oygKkUEMANrj2ygw9EWy1QHOQQFfgDLQZ6FIgCKEEGJAK/cGKEnR2odwRBCLUNtT28FGgbpgFsnqNSjx3Rhzr/O1GkuAIoQQQvRYeb32IZwYqdVO6F08jQ53SGZ51HaxxBOsGhT/jQIDmVibGjs49uORAEUIIcSAVqEHKFHeDIq3SNblUWkJwoZ8bXV3UFt/d/FUN/nmmMR1cC3t0WehSA2KEEII0Qt6DUpSlPY3/wibr/ajMQSFsl0WyQZp1H21t0A2NtyKpRsbBer0JZ6Khhac7uAHeN0lAYoQQogBTe/iSfJmUMwmhTCr9vEV7DoUVVV9NSghLpKtbPAu7wRQfwKQGGnDYlJQVSirG7hZFAlQhBBCDGjlfl08umBuyOevyenG5dHqXjqegxKcIlmjQDbAabAmk0Jy9MDfNFACFCGEEANaeZsaFPAt8wR73L2+vGMxKUYtTFtRQSqSrfIu8SQEMANFlxKr16FIgCKEEEL0SNsaFPAVygZ7mqwxRTbciqIo7R4TrCLZnmZQAFIGQaGsBChCCCEGLI9HNT6I/QOUYGUp2qrpYidjaH1t/dkGXVjdBARegwKQGjvwh7VJgCKEEGLAqm12GjUf/tNSI0K0o7Ex1dYvWGpLz6B4VGh29k+XTEOLy9jhed6YxIBfnxwjNShCCCFEj+kFsjFhFmwW30dWqDYMLPNez7BOApQIq682pb+WeV7fnEdds4sxSZGcPSE54NenxkgNihBCiEHG5fbw4a4irv3nRqb86iM2HK4I2bXoBbJJbQKCYO53409vyx0W3XGAYjIpRgDVH0tQbo/Ks+uOAnDj/FGYTO3XwnRmMGwY2PEimhBCiBPOh7uK+dW7u1p9cK07VNGjZYS+UNFRgBKqDEo3AhTQAqgGh7tf2qBX7S3hWEUjseFWlswa0aP3MAKUGsmgCCGEGASWrz5ISW0LSVE2stJiAN/E0lCoaNBrPlp3qoSqBqW7AUpUP17fM18cAeCaUzJbTdUNRIq3BqWuxRWyTRe7IgGKEEIIQ4G3M+TfN53ClbO1v53rXTSh0N4MFAhdF095Oy3P7YnydvnUNTs7PS5Quwpq2HikEotJ4YZTR/b4faLDrEYWaqDWoUiAIoQQAoBmp9sIRobHhRPvHQBWFcIMSntTZME3ByXYk2S7m0HRf3d9Hdy9sOEYABdOTSMtNrxX76Uv8wzUVmMJUIQQQgBQ5K1HCLeaiQ23GgPA9D1fQsEY0hbdtgZFy1AEc7NAVVV9XTxdBCh6xqeijwOUPUW1ACyeltbr99KvsSqE/347I0WyQgghACiq0ZZ30uLCUBTFGKEe0hoUvUi2zbTUYE1r9VfT5MTp1mayJEV1Pr1VXwLSA6y+UlitBZHD47qXPXF73Dy66VHcqpvvTP0OqZGpxnOx4do96MPnBhoJUIQQQgBQ5P3wS/cuHcRHahNKKxscqKra4Wj3/qRnINoORouwB7+LR1/eiQ23Yre0vw+PLtEbUOk1NH2h2ek2lry6G6D899B/eenrlwB45+A7XJ91PTdNuYkoWxSx4dq/3+qm0AWgnZElHiGEEIBfBsU7Bl2vo2hxeWhyBrdbRlde134Xj7HEE8Qunu7Wn4AvoCrvwwxKsd8SXFw3xts3Ohv569a/ApAemU6Lu4V/7PwH33jvG9Q56oz3GKgZFAlQhBBCAFDo/QBM8/7tPMJmNqa3hqKTp9npps67hJMU2XZQm5bBCOYST3emyOr0JaCKPsygFLZZguvK83uep6ypjOFRw3nv8vf489l/Jjk8mYL6At468JaRQalplABFCCHEAFbkbTFO92ZQWtehBP9DTA+KrGaFmPDWFQmhKJINJINi1KA09F0GJZD6k/Kmcp7d9SwAt598OzazjXMyz+HWGbcC8PLXLxMTroUAkkERQggxoOldPPpOt4BfJ0/wMyh69iEx0n5cxkCvQWlw9O+Owf4CW+LxZVA8nr65vkIjgOw6QHlq+1M0uhqZkjiF80edbzy+eMxiYu2xFNQXUOTcAoQm+OwOCVCEEEIAfh+Afn9Dj/fWKYRiFkp5B1NkwZdBUVWCVh8TSICi77zs8qjU9tGwNv8uq87k1eXxxv43ALhr9l2tgrtwSzjfGP8NAL6q+C8gGRQhhBADWEOLi9pmrZ4jbYBkUHwFsscHBOFWM/rnbrDG3QdSg2K3mInxTpPtq06eAr3Lqoslno+OfoRbdTM3dS5zUucc9/zVE6/GrJg5WLcdk71QAhQhhBADl/6382i7hegwX4dIgjFNNvgfYnqLcXszR0wmhQhrcFuN9QxK26FxHenrWSjdXeL55NgnAJw/+vx2n0+NTOXckecCYEv4UgIUIYQQA5degNl2+UDPoFSFpAal831vIoI8rK08gAwK9O00WVVVfUXMnSzxFNUXsbtiNwoKZ2ec3eFxSyctBcASs50GVzVOt6fX19jXJEARQgjhNwOl9d/O9RqUyhDUoPiKZNuf2qpvGBiMTh6X22MEGt2pQQHf/kF9MQultslFg/c+O1viWZW7CoCTU04mMTyxw+OmD5vOpIQsFJMLS8xOagdgFkUCFCGEEEYGpe3fzhNCmEEp72CKrM7YMDAIGRRtmi6YFN/vpCt6BqUvalD0XaYTIm2EWTueYvtJrra8szBzYafvpygKi0adB4Alai/VEqAIIYQYiDrOoISuBkUvku1o35tgzkIp9SvYNZu6N/K/L2tQ9H8/nS3vlDeVs6VEax1ekLmgy/c8O1NbAjJHHqK4rrrX19jXJEARQghhzEDx7+CB0GZQ9CFnHdWgBHOabCAdPLq+nCbbnQLZz/I+Q0UlKzGLtKiudzseEzsGizsZRXGzoWhdr6+xr0mAIoQQot0ZKICxX0tloyNoA9FAKwo1alA6yKDoRbKNwQhQApiBouvL/Xi602Ks1590tbzjL44ZAGwp/6LnF9dPJEARQogTnKqqXWZQHC5PUMfK1za5cHknsHZU8xGp16AE4bp6FKBE9l0XT1dLPHWOOjYUbQBgwciul3d0w23anJR9tV/h9AysOhQJUIQQ4gRX2+Qygo+2NSjhVjN274aBwZwmq58r0mbGbmm/KDTSm0EJRpFsTwIUfV5KX2RQOspw6V7f/zouj4sxsWMYEzum2+87InwSHlckLZ4Go37lQEkdK3YUsr+krtfX3RsSoAghxAlO3yU3LsJKuK11MKAoil8dSvD+hq0PD4uL6LhjJphFsj2qQfG2Gdc1u2hx9e4ajTk17dSgbCjawBNbngB88026Kz7Sjrt+IgCr81YD8PGeEm57aStPrzncm0vuNQlQhBDiBNdRB49ODxKCOQtFD1Biwq0dHmNsGDhAMygx4RYs3o6f3hTKuj0qxbXt72ScV5fHT9b8BLfq5pKxl3DlSVcG9N6x4VZcdVkArM5djaqqRrZmeBd7/vQ3CVCEEOIEZ8xAiW3/Aykh0rthYBA7efS5HLHhlg6P0Qe1NQRh1H15NwKUtw+8zZ82/4laRy2gZZ8S+6CTp7SuGbdHxWJSWp2/0dnIjz79ETUtNUxJnMJ92fcdt+tzV+LCrbgaxqOoVgobCtlftd8IUNK62POnv0mAIoQQJ7jimvbH3Ot8s1CCn0GJ7SyDYtNrUIJXJNtRy3NxQzG/Xv9rnt39LFe9dxV7KvYAftNkG3peh6IHkCkxYa1msPxz5z85WH2QpPAkHj/7cezm7md3dLHhVlBtRLq1LMr96++noKYa6HpTwv4mAYoQQpzgCrtY4gnFLBR99HpceGc1KMHZLLDZ6abOu4zUUQblrQNv4VG1/Wzy6/O57v3reH3/60ahbG8yKL4ll9b/fvSpsXfPvpuUyJQevXest43cXncxcfY4dpbvpCjsb6A4O8yoBYsEKEIIcYIr6mDMvS6UNSj6B2h7Io3NAvs3g6JnT2wWEzFhxy85uTwu3jrwFgD/N/f/OCvjLBweBw+sfwAlbD/Qu06ewnY2CcytzeVIzREsioXTR5ze4/fWM1QNDYk8tfApIiyREH6I8OEvMSym4+W1YJAARQghTnBdFckmROg1KMHr4qn2BkOdLfHok2T7O4Pi38HTXo3HFwVfUNJYQpw9jivGX8ETZz/BJWMv0V6rfAb0bty9MaPGL4OyJn8NALNSZhFti+7xe+vBZ02jk6zELH5+8qOoHguW6L08svn+oA7na0sCFCGEOMHp+8ykxHRQgxJ5YtegdNXB88b+NwC4dOyl2Mw2FEXh+qzrAShw5KCY63u1xFPQzgwUPUA5Y8QZPX5f8P1+HW4PzU4PcaaJNOVfC6qFOSlzAi667UsSoAghxAmsxeU25ojEd7CcotegVAaxBqU7AUqkLTiD2vQlluR2ApTihmI+L/gcgCUnLTEen5AwgazELDy4sMRsM3Zm7s359bbfekc9OcU5AJyVcVaP3xe0Oh69Fbq6yUFRdTPuhonM4Het7icUJEARQogTWI13l2KTAjFh7QcDoejiqW7sRoDiXeJpcrpxe/pvKWJXgdY2PCkt5rjn9OLYOalzGB07utVzV4y7AgBr3CbK65s7PYeqqrz8VS7rDpYf9/ixikYARsRHAPBl4Ze4VBejYkaRGZPZs5vyUhTF+B3XNDmNYGhUXHqv3rcvSIAihBAnsCq/QMBkaj+dH+83STZYNQm13cmg2H1FnE3O/lvm2VlQDcC0EbGtHnd5XLx54E0AvjH+G8e97oIxF2A12TCHlVDacrDTc6w9UM49b+3ktpe3tvodF1Q3Ud/iwmpWGJ0UqR2bvxaAM0ec2eN78qcXIlc3Ov1moIS2gwckQBFCiBOaXoza2Uj5BO9zDnfwNgz0jbrvOECxW0zoMVV/LfM0tLg4WFoPwNThrQOUz/M/p7SxlHh7PAtHHr+DcIwthtPTz9Hex7au0+DuxQ3HAG0ZTa85AdhXrO2HM3ZYFFazCbfHzef52pLSmRl9FKD4Z1Bq2m9pDgUJUIQQIgRW7Chk3kOrWLu/LKTXoWdQOgsEwm1mwqzax0Uw6lCcbo+xQ3FnGRRFUfp9w8A9RbV4VEiNCSO5TRHxGwe8xbHjtOLY9lw5QVvmMUdvo7Su/c33imqaWPV1qe+chbXG9/u8G/adlKJ16uws30lVSxXRtmhmJM/o2U21EacHKI3OTvf8CTYJUIQQIgRWbC+iuLaZn7+5o9/bZDtT0+TNoHQSCEBw61D07AlAdAd1Mbr+3jBwR34NAFPbLO8U1RfxRcEXACwZ33Ex6anD54IzAcXcwv8Or2z3mFc35bWqodlT5BegeDMoE1K1AEXv3jkt/TSsps5/N92lB4FVjQ6j5byjmTjBJAGKEEKEQH61VvhYWNPME6s6r0/oT3oGJb6TJR7/54ORQTE2CgyztBrt3h59w8D6fsqg7CrQApRpbZZ33jqoFceeknoKo2JHdfh6k2Ii3DEbgHWFXxz3vMvt4ZWv8gCYkREHwN72ApSUaJxuJ+8eehfou+Ud8C3vHSqrx+lWMSkdt5wHkwQoQggRAvlVvjqDf35+mAMl7af/+5ueEelsYiv4Wo317pr+1J0psjp9w8D+ykLtyK8GYIpfBsXlcfHWfm1y7DdOOr44tq0k8xQAdlflHFeHsnpfGcW1zSRE2rjz3JMAXwbF6fZwuKwB0DIo7x95n9LGUoaFD+Pckef27sb86BmUvUXaf4PJ0WFYzaEPD0J/BUIIcYKpa3YaH/TzxyXi8qjc+86ukEztrOluBiWIs1BqutFiDFDnqKMxfBVh6S9TVF/a6bHdUVrbzAc7i/B4l1vqmp0cLtcCBP8C2c/zP6e0SSuOXZC5oMv3HR4+EdVjpd5VxYHqA62ee3GjVhx75ewRzBgRB0BeZRM1TU6OljfgcHuItJlJi7Xz3O7nALg269oOa156Qv896/UuA2F5B3oZoDzyyCMoisIdd9xhPNbc3MyyZctITEwkKiqKJUuWUFJS0up1ubm5LF68mIiICJKTk7n77rtxuUK3BiuEEMGkd2nER1h55IpphFlNbDxSyXs7ioJ+LXoGpaMhbTr9+WDWoHQUoFQ2V/L7Tb/n3DfOpcTyBtbY7XxW9Eavz/vb9/dy64tb+NeXRwDYXViLqmodLf67GL++/3Wg8+JYf6kx0bgbtRkpGwo3GI/nVTayxlskfc2cTGIjrEb3zNdFtUbAMD4lmnVFX3Kw+iCR1kiuPOnKXt+rP71A2uHSNjsM9S7Guh4HKJs2beLpp59m2rRprR6/8847ee+993j99ddZs2YNhYWFXHHFFcbzbrebxYsX43A4WLduHf/+97957rnnuO+++3p+F0IIMYjkV2oByoj4CDISIrhpvvbh9fHu4qBfizEQbQDWoLS3k7Hb4+b7K7/P83uep8HZgJUoAI427Or1efWBaE+vPUyz081OvUDWL3vS3eJYf6mxYbgaxgGwvmi98fhXRypRVZg9Mp5R3hkn+jC4PUW1Rv3JxNRo/rXrXwB886Rv9mrvnfa0DQQHdYBSX1/P0qVL+cc//kF8fLzxeE1NDc888wx/+tOfOOecc5g1axbPPvss69atY8MGLWr8+OOP2bNnDy+88AIzZszgggsu4MEHH2T58uU4HMGbUiiEEKGSX6V9EOp/W57o/VDS98QJpmpjiafzDEpiVAiKZNvJoLx18C32Vu4l2hbN3xb8jQUxDwFQ0nKIRmdjr86rZ4fK6lp4dVMeOwqO7+B588CbqKhdFsf6S40Jw90wHoCckhycbu3+9I4ZfQAbQFa6N0Ap9AUo0bEF5JTkYDFZWDppaS/usH1tW8zTYwfxEs+yZctYvHgxCxe2HkyTk5OD0+ls9fjEiRPJzMxk/Xotaly/fj1Tp04lJSXFOGbRokXU1taye/fuds/X0tJCbW1tqy8hhBis9ALZEfFagKLv8VIWigDFaDPuPIOSGKldY282vev2NXVQg1LnqOOvW/8KwA+m/4DTR5zOmPgMPM5YVNzsKN/Rq/NW+QVfT605xNbcKsA3QdblcfH2gbcBAlpmSYsNw9OSguKJpsnVxLaybYDWwQW+XYr3VOwhLVF7bG+xb4nn66b3ALhozEWkRKbQ14ZMBuWVV15hy5YtPPzww8c9V1xcjM1mIy4urtXjKSkpFBcXG8f4Byf68/pz7Xn44YeJjY01vjIyMgK9bCGEGDD0GhQ9QNFbOktqO9+vpa+pqtqtQW3gy6CUN/R/ENXRFNm/7/g7lc2VjIoZxVUTrwK0gWJ6fceWki09PqfL7aG2WauFjAmzUFTTbASSU9K1AGVt/lqjOPaczHO6/d6psWGACY93mWdDkbaiUKTvUhwbxifHPuGqFVfx9IE7QHGwr7iO3MpGTLYStlVqk2O/PfnbPb6/zsS2CU4HZYCSl5fH7bffzosvvkhYWPBSQPfccw81NTXGV15eXtDOLYQQfc2XQdE2f9MzKI0Od7/N82hPk9NtFEbqXTodSQxmF087RbK5tbm8sPcFAO6ec7cxpCw1Ngx34yhAWz7pqWrvORUFfnjOeOPxjIRw43fzxn6tEPeycZcF1EWT6l0yaa4bC/gFKN4MCrZifvHFLwCoaC4jOnk9TreKqkJ0qjaYbWHmQsbGje3p7XVqSGRQcnJyKC0t5eSTT8ZisWCxWFizZg1PPPEEFouFlJQUHA4H1dXVrV5XUlJCamoqAKmpqcd19eg/68e0ZbfbiYmJafUlhBCDlV6DMiJB+yCItFuItGkDx0qDmEXRl1IsJsU4f0cSvV0s1Y1OnG5Pv16XPt3W/4PzTzl/wuVxMT99PqcPP914PC02zMig7CjbYdR3BErfkygmzMq180YaAdm04XEAFNYX+opjT+pecawuwmYhJsyC25tB2VW+i1pHrbYxn6mJfx34NU2uJpIjkgEwxa8BUyOKtRxPxFYAvjvtuz26r+6wWUxEeP/92y2mLuuRgiWgAGXBggXs3LmTbdu2GV+zZ89m6dKlxvdWq5VVq1YZr9m3bx+5ublkZ2cDkJ2dzc6dOykt9fWsr1y5kpiYGLKysvrotoQQYmCqb3EZyyr+G7Lp+7wEs1C2ym+jQEXpfGJrXLjV2Jivqp+zKG0zKEdrjrIqdxUKCnfPubvVtabEhOFxJONxRdLsbmZ3Rfu1jF2pbNDOmRBpI9xm5u5FE1AUuHBqGuArjp2bOpeRMSMDfv+02HBUVxwp4Rl4VA9Pb/snjfYNhA9/iaLGPNIi03j1olcZFzcOj9KILXEttqTPQFE5ffjpZCX27+ej/rseHhfe5X8LwWLp+hCf6OhopkyZ0uqxyMhIEhMTjcdvvvlm7rrrLhISEoiJieGHP/wh2dnZzJs3D4DzzjuPrKwsrrvuOh599FGKi4u59957WbZsGXa7/bhzCiHEUFLgXd6Ji7C22mdmWLSdI+UNQQ1QarpZfwJgMikkRNopr2+hvN5x3MZ5fXpdbQKU1/a/BsDpI04/bpkjzGomPsJGU9NITNF7yCnJ6dEmer5gTTvn1adkcsXJI7BZTK2KY7szObY9KbFh7CupIyN8OiVNeTy/91nC07Xn7GY7j5/9OEnhSfxo5o/40eofYUv4EhQtU3XLtFt6dM5AxIZbKappHjDLO9APk2Qfe+wxLrroIpYsWcIZZ5xBamoqb731lvG82WxmxYoVmM1msrOzufbaa7n++ut54IEH+vpShBBiwGnbYqzT61CCucRT1c0WY12St1C2op8LZf0DlCZXE+8cfAeAqydc3e7xqf6FsqU9K5TVs0L+E3VtFu0j8qOjH1HWVEZCWEK3Jse2J80b0I2xXcCZI85kYuwsXPUTCHPMYPmC5UaG5KyMsxgfOwXF5ERR3GTFndxnuxZ3Rg8G0wZIizEEmEFpz2effdbq57CwMJYvX87y5cs7fM3IkSN5//33e3tqIYQYdNq2GOuSo7UPhmC2GlcbtR7dK/jUO3n6s9W42emm2allDmIjrHxw5D3qHHUMjxrO/OHz231Naoydfce0AGVryVbcHjdmU+c1NW11tGlidXM1j256FNACJKu5Z/UZKd4P/qbGeP56+V95dVMumzbsZO6EYcxNO8U4TlEUfjzndr7/iVZzsmzm93t0vkDpmaOBlEHpdYAihBCi+4wCWW8Hjy4lRsugBLPVuLtD2nQJ+iyUfqxBqfVmT8wmhSibmVe+fgWAqyZchUlpP+mfGhuOpzkNixJGnbOOg9UHmZAwIaDzdjTy/3ebfkdlcyVjY8dy89SbA70dg56ZKPZ27hRWe2egxB4fEMwfPo+bs36E0+3i9Ix5PT5nIBZOSiHnWDVnT0wOyvm6QwIUIYQIog4zKN4AJZg1KHrnSlctxjq9s6Wivv+u0ZgiG2ZhZ8VO9lbuxWaycfm4yzt8jfbhbybONJ5y9042l2wOPEBpOP53sSZvDSsOr8CkmHhg/gO92qAvtU2Aok+R7Whq6x1z+q9rpz1Xzs7gG7NGDJgCWZDdjIUQIqjazkDR6Us8we3i6d6uwbqkICzx+NefvPr1qwCcP/p84sLiOnxNqre+w+bU5pfoc0YC4cugaPdY66jlgfVabeT1Wdczbdi0Dl/bHfo1FtfqAUrrKbIDwUAKTkACFCGECCrfEk/oi2SrG48vDO2MPgulP4tk9WWnqIhmPjz6IQDXTLym09fo2QlnnZY12VC4gSZXU0Dn1YO1hEgtWHtu13OUNpUyMmYky2YsC+i92qMv8VQ2OGh2urUZKAysotSBRgIUIYQIkgb/GSgdFMnWNrtodrqDcj3VAbQZg2+JpzwIGRRHxDqcHidTEqcwJWlKp6/RP+TLKhNIj0yn2d3MusJ1AZ1XX+KJ8wZrq3K1eV63Tr+VMEvvg4jYcCthVu0jt6S22ZdBkQClQxKgCCFEkOh78MSGW4kJax0UxIRbjLbWYHXytJ390ZXEILQZawGKiwrTZwAszep69169Q6au2c3pw88CYHXu6oDOq/8uEiJt5NXmcbjmMBbFwukjTu/ild2jKIqxzLO/pJ5GhxaEtlckKzQSoAghRJB0NAMFtA8wY5mnLjjLPMamfN1tM/Z28VT2YwalusmJJWYXDqpJCk9i0chFXb4m2m+rgCnxpwLaxn5uT/cyUW6P2mqDwjX52v43J6ecTIyt77ZW0Zeitnh3SY6PsBLexRYDJzIJUIQQIkg66uDR+XY17v8MiqqqvjbjyMAyKA0ON02O/lmGqm1yalNUgW9O+Ga35o4oimJ8+CeaJxJji6GqpYptZdu6fU6Pqn0fH2Hjs/zPADhjxBkBX39n9GzJlmNVrX4W7ZMARQghgqSjDh5dMAtl61tcuLyfyt0tko2y+5ah+muZJ7dhL+bwPExYuPKkK7v9Oj1AKatzcuaIMwH4NPfTbr1WX96JtltodjeQU6ztinxWxlkBXHnX9AB0R34NAOlxUn/SGQlQhBAiSDrq4NH5lnj6P4OiZ0/sFhNh1u4tMyiKQlJk/7YaH2r5CIApsWeSFJ7U7delxmi/06KaZs7OPBuA1XmrUVW1y9catTiRVtYVrsOluhgVM6pHmwJ2Ri+IbXJK/Ul3SIAihBBBUuCdHtrROPFg7mjcdu5HdyX0U6GsR/Xw7qF3qeQrAM5OuyKg1/tPap2fPh+byUZeXR6Hqg91+doqfSfjCBtr8rT6k77OnoAvg6JLkwxKpyRAEUKIINEnsA6Lbn/n9mEhyKB0t4NHpxfK9mWr8abiTVy94mr+74v/A8WDq34CU4ZNDug99E6e4tpmIqwRzE2bC2hZlK5UeoO12AgLnxd8DvR9/Qkc31KcLhmUTkmAIoQQQaIvi+gTWdsKZg1KoC3GOr1QtrKP9uNZk7eGmz66ib2Ve4myRmGuvoim/Gu7Pd1Wp+8WrI+SPyfzHACe3f0sO8t2dvpafWCdOTyX6pZqYmwxzEyeGeitdH2NbQIUmYHSOQlQhBAiCBodLqP2QJ/I2lYwdzTW22oDXeJJ0qfJ9sF+PKqq8rftfwPg3JHnsuLyFTSUng6qNeAARS+S1QegXTTmImYmz6TOUcd3V36XbaXbOnxtpXeJp860HYDThp+GxdT3W9UlRtkxm3zj5AfSzsEDkQQoQggRBHr2xG4xGTM72tJ3NK5ocOBwefr1evS6i8CXePquSHZT8Sb2VOzBbrZz77x7CTfH4nRrRa09DVAqGlpwuDyEWcJ4auFTzEmdQ4OzgVtW3sJ/D/6XozVHj5uPomVQPBQ6tT18zs44u9f31h6zSSHFmyVTlONrUkRrEqAIIYa80tpmPJ6uuzn6U5k345AUZe9wU7b4CBsW79+wy/txx2CA6qbWo927S8/+lPfBEs+zu58F4LJxl5EQlmBkdaxmhYgAB5glRNiwmU2oqm/QXYQ1guULlpOdlk2Tq4l7v7yXi9+5mLkvzeWO1XcYgUplgwNzxBHq3KVEWaP6pUBWpwdSSVF2o2VbtE9+O0KIIW31vlJOeWgVf119MKTX0VX9CYDJpAStUNYokg0wU+HLoPTu+vZV7uOLgi8wKSZuyLoBaL2TcaA765pMCimx2u9Or0MBCLeE85cFf+Hbk79NVmIWYeYwWtwtrMpdZWxGWN3oxBq7GdB2Tu6LvXc6ogco6VJ/0iUJUIQQQ9qmI5UAvJ6T162ZGP1F/0DvqP5EF6xC2Z62GRv78fRiiSfnWCXXv/kooNWeZMRkAHCsQpsTkxAZ2DXp9L1uitv87uxmOz+e/WNevehVNnxrA9+b9j0A/r7j73hUD+VNNVhidgFaNqc/6fNaZAZK1yRAEUIMafrY+LzKJg6XN4TsOiq8SyKJXXz4DosOziwUPYMSG3AXj3c/ngZHjwO+/2zeToNVy1jcOPlG4/GPdhcDcOrY7g9o85fq/dD3z6C0ZTaZSVPOJ8wUyeGaw6w8tpIqNqGYnAyPHMm0pGk9Ond3zRkVD8Bs7z9Fx/q+TFkIIQYQ/433PttXxthhUSG5jvLuZlBigrXE08MMijfAcrg91LW4jtuVuTt2132AonhwN4wl2T5Oez+Xh0/2lABwwZTUgN8TfG27RZ0EKDVNTn762n7MCfOwD1vF09ufpiXcgRk4f+TFAS8tBeqCqWls/eW5xPcwS3QikQyKEGJIK/XbeO+zfaUhu47ybtSggG+Jp6yPdjTuKMtRbbQZBxZghFnNRNm1v9v2ZJnHo3ooU7VuGUfVPN7fWQTA+sMV1Da7SIqyMXtUQsDvC77fXUkny2M782twe1QclfOxmcI5UH0Ac/gxVFVhyUmX9Oi8gZLgpHskQBFCDGn+GZSNhytpdLhCch0Vfl08nenLHY0PltYx+zefsLxNgbDbo/oKUgMMUMBXI9KTQtltpdtwm6pQ3XZc9RN5d3shAB/u0gKV8yantpoVEgj9d1faye9uW562kzCeCFLUBb4nGieQEZvWo/OK/iEBihBiyGpxualq9GUKHG4P6w9VhORa9GxDYjczKKV9kEFZu7+cigYHf/x4H3sKa43Ht+VVo6raLI648MD/Nq/fQ0/G3b936H8AuOomg2ol51gVuRWNfLy7d8s70L3f3ba8GuP7/GNzsJu0upUIx7wen1f0DwlQhBBDlj6R1WY2ceFU7W/Hn+0rC8m16Jvr6XvZdESfJttZFiDQc3pU+OV/d+HxqDQ6XPzkdW1i6iXT03s0i0O/h0A3DHR6nHx87GMAzI0nM2+MtpRz37u7qGhwEBtuZd6YxICvR+effWpvaUtVVbblVRs/1zbYOTP+TlpKz2OYeXaPzyv6hwQoQoghSy80HRZt5+wJyQB8tr806O3Gbo9q7F2TFN1FBiVG34yvBXcvh8uV1/kyHDnHqngjJ5+H3/+aI+UNpMaEcf8lgW3Ip0vqYavxxqKN1Dqq8bgiSbVP5ZLpwwFf0HhuVgpWc88/lvTfXZPTTX3L8Ut5RTXNlNe3YDYpnHHSMAC27kvDUXEOCREyl2SgkQBFCDFk6bNEkmPsnDouEZvZFJJ246pGB3qskdBF10xipA1F0bIegWYo2tI7hyamRgNw/3u7+c+GYwD8/sppAU+RNa6xhxsGfnDkAwBctVNJj43kgimpxuRc6N3yDkCEzWIU8LbXBbXdmz2ZkBLNuZO0gPVwmfbfQqDdTKL/SYAihBiy9A+p5Gg7ETYLc71LCqu/Dm43j55piI+wYukiQ2D5+r98bP85t5jf6/Uyjz6O/o6F45mQEk2DQxvt/u1TR3H6+GE9fl99iSeQcfzNrmY+OfYJAK7aGaTGhBEfaTMyGVF2C6eN79n8E396FqW9Tp5t+dUATM+I47Q29x9oN5PofxKgCCGGLP0DXq9NONP7Ybj2QHlQr6NbU2QbK+GNm+D1bzOeXO6yvEFVeUmvzlte57v/31w+BYtJ4aSUKH52/sReva+vSLb7Acra/LU0uhoJV5JwN2WS5t3J91unZAJw2cx07JbA9t9pj69Nu+MMysyMOEYlRjAi3jfNVVp/Bx4Z1CaEGLL0v0XrH1qzRmrTOw+U1AX1OvRMRoczUPI3wyvfgvoSUMzUKVFEe2qI/Pp1mP5/PTqnqqpGAJEUZScjIYLVPzmLuAgr4QFuxNeWXsgbSCu0vrwT55lDKSZjqNrCrBTW3H1Wn41+76jI2O1R2ZmvdfBMz4hDURROH5/Ey1/lAbLEMxBJBkUIMWT5lni0D62RiZGAVizZ7HQH7Tr0TEa7GZT8HPjP5VpwknQSfGclK1O/A8Coo69CDwt6GxxuWlwe73m1D9+MhAiiezD5ta3h3uxHYXVTtwuOM2MySQxLxF0/A/Btmgfav5e+2tk3pYMlnkNl9TQ43ETYzIxL1qYJnzbOt8wjGZSBRwIUIcSQVeJXJAtanUF0mJY4zqtsDNp16MWuSW0/BAu2aMFJSy2MnA/fXQ3DZ5GfcRH1ahgJTcfgyNoenVMPiiJsZiJsfZssT4m1oyjQ4vJ0u1D2zll3surKVVRUam3Eaf20m29yB3sZ6e3FU4fHGoPgTh2biD7ZXmpQBh4JUIQQQ1ZZmwyKoiiMTIwA4GhFEAMUY0ibXwalZDf85zJoqYHMbPjWa2DX/mYfH5fA2+7TtOM2/6tH5yzv5uTanrBbzMb7FlZ3PBRtxY5C/vTxPqNd2umG6kat/be/dvPtqEhWrz+ZkRFnPBYfaeOCKalEh1nISovpl+sRPSc1KEKIIcnp9hg7COtpf9CWE3YV1HKsInitxuXtTZFd/RA010DGXFj6uhGcgLaj8ePuhVxn+QS+XgF1xRAdWAtud/f+6an0uHDK6loorGli6ojYVs+53B5+87+9PLfuKACzRyVwxknDjF2GI2xmYsL65+NHD0bbFsnqGZTpfgEKwBNXzwTosrtKBJ/8GxFCDEn6B5TFpLQqgByZoGVQjgUzg9LQJpvhcsDhz7Tvz38E7NGtjk+OsfO1mskOZSJ4XLDlPwGfs7u7J/fU8DgtECisbmr1eE2jkxuf22QEJ6ANiQMorNGOTY0N67ddg9vbDbrZ6ebrYq0wum2AYjGbJDgZoOTfihBiSPKfImvyGwY2ylsoeyyINSi+5RZvoJS3ARz1EDkM0mYcd7zedfRv5znaA1ueD7hYtsLIoPRPgKIv0fgHKKqqcv2/NvL5gXLCrWbOn6xlfbZ6sxd6BqW/6k/A11Je3+KiwTtNdm9RLW6PSlKUjfR+PLfoWxKgCCGGJF+BbOsPpMxEPYMSvCUeowZF34fngLYfDeMWgun4P4aHeQOUFa5TUC3hUJMLpXsCOudxQVEfS9c7eWp8tR6ldS1sz6/BpMCbt57KbeeMA2BrbhUej0qREaD0T/0JaAPfIrxt1HqQqmdPJqXF9FvmRvQ9CVCEEEOS/xRZf3oGpaCqCafb0+/X0ehw0eid4GrUoBxYqf1z/LntvsZuMRMfYaUFGw1p3l12D34S0Hn7s0gWMDIR/hmUQ6X1gFbnk5Uew8TUaMKsJuqaXRwqq6fIu8TTnxkU8GVR9K0Ovi7SdnKeJIWwg4oEKEKIIamszZA2XXK0HbvFhMujHlc/0R/07IndYtL2ianOhbKvQTHB2HM6fJ1e7FmcfLr2gB7UBHjefgtQ4o5f4jlUpgUoY4dpQaDFbGLaiDgAtuZWG0s8qf0coOgZqBJvkLrXm0HR9yQSg4MEKEKIIamkzZh7nckU3FbjigZfoKAoii/QyJgL4fEdvk4v9jwQ682g5G6Alu5PwPUVyfbvEk9pXYuRiTrk3Xhv7DBfR9LJmdo9bsmt8lvi6d8ARQ9KS2ubUVXVyKBMTJUMymAiAYoQYkgqrWs/gwKQmaD9DT83CHUovimybZZ3xi3s9HV6FuCIJwUSxoDHCYfXdPu8Zf28xJMYacNmNqGqvuJXXwbFF6DMzIwDWmdQ+rMGBfyWeOpaKKppprbZhcWkMDY5sl/PK/qWBChCiCGpowwKwKigZlC8AUqkDZzNcMQbZIw/r9PXtdpTZpy3VuVg95Z5Wlxu6pq1Dpb+KpI1mRTS2rQa6zUoY5OPD1D2l9YZ2aRgZlD2erMnY4dF9clmhCJ4JEARQgxJ/m3GbY1MDN4slHL/WpDcdeBshKhUSJ3a6eta7cqrZ1sOfNKtdmO9/sRqVogN778R7uneTEhRTTMNLS6jo0evQQEt0BoRH25cdpjV1K/XBK0zKHoHz8Q0qT8ZbCRAEUIMOS63x8hcJMe0F6B4Z6EEYYmn1Zh7o3tnIXTR7qp/yJbUNsOo08Bsh9p8rcAWwOOBou3tvtaoP4m092tbrZ5BKahu4rC3/iQpykZcm52B9ToU0JZ3+rvVVw/uSvwyKFJ/MvhIgCKEGHLK6x2oKphNim/2iB89g5Jb2YjH07PdgrtLD5QyLVW+ibAnnd/l61pNRLVFaEEKaO3GBTnwzLnwz4VQefj4c7Y3Wr8f+O9qrNefjPGrP9Gd7F3mgf5f3oHWvzvfDBTJoAw2EqAIIYYcvUA2Kcpm7Fzrb3hcOBaTQovLQ0ldx5vd9QUtm6Fy9qFHwFEHI+bAhAu7fJ1RR1GndaIYM1M+/yP84xwo2AxmG5QcP8CtvwtkdXonT1FNc7sFsrqZfhmU/m4xBt9wvrpmF4e91yUzUAYfCVCEEEOOXiCrF5q2ZTGbGBGvfbgeLe/fOpSKegeLTRtJK/4MTFa45C9g6rpYU7/2ZqeHuhaXr1C2SdvXhmlXww9zYNJF7Z4T+j+DkuY3rK3tDBR/k9JisFtMrV7Tn6LtFsKs2vk8KsRHWNvt5hIDmwQoQoghR8+gpLRTf6LL9Nah5Fb2vg7F5fZw7zs7+fe6o1q2wyvnWBUV5SX82vqc9sDpP4bkSd16z3CbmWi7tuNvaW0LJI6FWTfCmLPgpo/hiqc73OFYr0EZ1s8ZlFZLPKXa73Fc8vEZFJvFxDTvjsd61qU/KYrSqntrYqqMuB+M+me/ayGECKHSWr2Dp+O/rY9KjGAtfdNqvOloFS9syAW0oOTRb0xjf3Etj/3rBf6ovMowpRY1aQLK6XcF9L7DYuzUlbkorWvWPvgvfrzd46oaHKw/XMH5k1MxmZR+H3OvS/MGG7XNLhodHS/xANy9aCJvbcnnwilp/XpNuuRou9GlJR08g5MEKEKIIaezIW26zARvoWwfBCh5Vb73eHd7Ien573Nlw4u8oBSAGVTFjHLJX8ASWMCQHG3ncFmD1mrcAVVV+c7zm8k5VsVDl0/lW3Mzg7bEE2W3EBNmobbZhcujYreYjKxKW6eMTuCU0Qn9ej3+/Jf3JkkHz6AkSzxCiCGnuBsj1fVNA4/2QatxQZU2qGxGRhxZ4dXcXf97xlJAC3acU65CuXklZM4N+H1btRp34KPdJeQc0+pS3t6aD/T/RoH+/JdsxgyLwtROUXIo+LeXSwZlcJIMihBiyCnqxqZ0/sPaVFXtVY1CgXeS6sJJyXxL2Y55jcph2wSSln1ITGzPswa+iajtZ1Bcbg+PfvS18fOmo1UUVDf1+z48/tLjwo1W3vYKZENFz6CYFDgpRQKUwUgyKEKIIae4tusAZUS8FqDUt7iobnT26nx6BmV4fDgJBZ8CMOaMa3oVnIDfuPsOlnhez8nncFkD8RFWowj13W2FVHpHyvd3kSxAepzvd9xR/Uko6AXSo5MiCbPKiPvBSDIoQoghpdnpNgKOtJiOO0bCbWaGRdspq2shr6qR+MieZxv0DEpGlAJHP9ce7MYwtq74Bo4dv8TT5HDz2Mr9ANx2znjsFhM78mt4YcMx9NlzCb24p+7yX+IZ204HT6icNj6J6RlxXDlrRKgvRfSQZFCEEEOKXn8SZjURE97538EyvLNQ8iqbenw+j0elqEZ7/ei6zeBqhthMGDaxx++pGxbtN022jX99eYTSuhZGxIdz7bxMLpyahsWkGMFSfIQVi7n//4hP99uZeNwAyqAkR4fx32XzuXbeyFBfiuihgP7rffLJJ5k2bRoxMTHExMSQnZ3NBx98YDzf3NzMsmXLSExMJCoqiiVLllBSUtLqPXJzc1m8eDEREREkJydz991343K5+uZuhBAnPH15pzt7vmR4O3n8u3ACVVrXgtOtYjYpxBes1h486bwu99rpDr1ItrimudV8FYDXN+cBcOfCk7BbzCRE2jhtfJLxfDAKZMGXQVEUbTlFiL4SUIAyYsQIHnnkEXJycti8eTPnnHMOl156Kbt37wbgzjvv5L333uP1119nzZo1FBYWcsUVVxivd7vdLF68GIfDwbp16/j3v//Nc889x3333de3dyWEOGHpGZTUmK4nlmZ461DyKnseoOR7g5vUaDumAx9rD45f1OP38zciPhxFgUaHmwpvXQmAw+Uh13vN/kHJJdPTje+DFaBMSI0mLsLKKaMSCLdJrYfoOwEFKBdffDEXXngh48eP56STTuK3v/0tUVFRbNiwgZqaGp555hn+9Kc/cc455zBr1iyeffZZ1q1bx4YNGwD4+OOP2bNnDy+88AIzZszgggsu4MEHH2T58uU4HI4uzi6EGMjK6lo48/ereeSDr7s+uB91p4NHZ8xC6UWAoi+pZEcXQ20BWMJh9Ok9fj9/dovZWELx33m5oLoJj6otY/nPejlvcqoxUj4YHTwAseFW1v38HF78TuBt1EJ0pscLlG63m1deeYWGhgays7PJycnB6XSycOFC45iJEyeSmZnJ+vXrAVi/fj1Tp04lJSXFOGbRokXU1tYaWZj2tLS0UFtb2+pLCDGwfHmwnGMVjTy15hC7CmpCdh0lnXXweDyw+VnY8RrUlzIiQfvwz6/qeQ2K/tqzla3aA2POBGvfjXPXg6hjfgPl9GBlZEJkq2WsKLuFBZOSgY73IeoPETZLUOpdxIkl4C6enTt3kp2dTXNzM1FRUbz99ttkZWWxbds2bDYbcXFxrY5PSUmhuLgYgOLi4lbBif68/lxHHn74Ye6///5AL1UIEUT+yyS/+/Br/nNzaP5GrRestjukbftLsOIO48fZSVO42jyPt6oW4vGoPRoypmdQZjR/pT0w/ryA36Mzo5IiWH+4otVIfj1YyfTOcvH38/MnEW61cMOpUhwqBreAQ94JEyawbds2Nm7cyK233soNN9zAnj3Hb/fdl+655x5qamqMr7y8vH49nxAicP6Fpp8fKOeLA+UhuQ69BiWlbQ2KqsKGJ7Xvo7VaDVv5Lh6x/pNvsJKSdlp5u6Ogqok46kir26k90McBSmaCVnjqv8SjByij2glQMhMj+OM3pzMyUQpWxeAWcIBis9kYN24cs2bN4uGHH2b69On8+c9/JjU1FYfDQXV1davjS0pKSE3VdtxMTU09rqtH/1k/pj12u93oHNK/hBADi77Uoe/F8siHe/F41M5e0i98XTxtApSjX0DJLrBGwA/WwU8Owqk/BOBBy7+o2/5ej85XUN3EOaatmPBAyhSIy+jV9bc1KrHjJZ5MCULEENbrRUOPx0NLSwuzZs3CarWyatUq47l9+/aRm5tLdnY2ANnZ2ezcuZPS0lLjmJUrVxITE0NWVlZvL0UIEUJ6BuWXF2URZbewq6CWFTuLgnoNTrfHmBlyXA3Kxqe0f06/GsLjIWoYnPsgqyPOx6yojPnsh5C/OaDzqapKQVUT55s3aQ9MvKi3t3AcPRPSKoNS2XEGRYihIqAA5Z577mHt2rUcPXqUnTt3cs899/DZZ5+xdOlSYmNjufnmm7nrrrtYvXo1OTk53HjjjWRnZzNv3jwAzjvvPLKysrjuuuvYvn07H330Effeey/Lli3Dbg9OS5wQou+53B4Kq7XMxYyMOG45YwwAf/5kf1Cvo6yuBVUFi0khKdLvz5SqY7Dvfe37U77ne1xRWDnmZ6x2T8fiaYaXroKWum6fr6rRCc4GzjDt0B6Y1PcBil5nUtXopKbJicejGl1HoySDIoawgAKU0tJSrr/+eiZMmMCCBQvYtGkTH330Eeeeey4Ajz32GBdddBFLlizhjDPOIDU1lbfeest4vdlsZsWKFZjNZrKzs7n22mu5/vrreeCBB/r2roQQQVVU04zbo2KzaG2v12drBZqHyhqobwneIEZ9eSclJqx1weumf4DqgTFnQ3LrCa/DE2NY5rydcms6NJbD7ne6fb78qkbONO0gTHFC/ChtiaePRdktxkyT3IpGimubcbg8WExKp7s1CzHYBdTF88wzz3T6fFhYGMuXL2f58uUdHjNy5Ejef//9QE4rhBjg9PqTEXHhmEwKcRE2EiJtVDY4OFbRwOT02KBcR3F7M1AcDbDlee37ud8/7jUj4sNpJIyP7Oez1Pkv2PoCnHxdt85XUNXEIv/lnT6YHtuekYkRlNe3cKyygboWbZ+hjIQIae0VQ5r81y2E6DW9/mR4vG/+h14fcbS850PQAlXU3hTZna9Dcw0kjGm3w0Yfd/+y41RQzJC3AcoPtH8CRyPsehOatVlMRZW1LDB5559MuqTvbqSNkX6FskaLcYLUn4ihTQIUIUSv5XtrIjL8PjT1+oijfsWd/a3dIW0739D+efL1YDr+jzx93P3uugjc47yDJre+cPybqyq8+R144yZ4/lJoqcea9wUxSiP11kQYMadP78XfSL9W485ajIUYSiRAEUL0Wp53iUf/sAcY5d047mh58AKU4zIodSVw7Evt+8lXtPuapCgb4VYzqgplY7+hPbj9FXC3qZ3Z+Trs+5/2feEWeP3bjC7R9t4pSD2n3eCnr4xK8majKhqlxVicMCRAEUL0mj5FdoT/Ek9S8DMoxd4pskYGZc9/teLY4bMhvv3JqoqikOEdeb8/dj5EJEJ9MRzyjUygrhj1/bsBeNs9H4dih4MrOa3uQwAax17YT3ekMfYM8lvikQyKGOokQBFC9JpeJNt6icf3t/5gOW5I2+63tX9OvrzT1+mZn9waF0y7Wntw63+0f6oqvHcHSnM1Ozyjudv5PW5tuQ3V+8dnjRpBxPiz+vQ+2tKXy4prmzlcXg/46lKEGKokQBFC9EqLy22Mic9oJ4NSVtcSlFZjVVUpqdGGtKXEhEFtIeRqG5Uy+bJOX6sHVnlVjTDzWu3Br9+HJ0+Dp8+A/R/Qolr4ifP7TM1MYpVnFvdzCy7VxJvuMxie1L/TreMirMSEaU2XzU4PigIj4iVAEUObBChCiF4pqGpCVSHCZiYh0mY8HhNmJdH7czDqUCobHDjcHsAboOx+B1AhYx7Ejuj0tfrSVH5lE6Rkwcj5oLqhZCcUa0PY/uxawqw5p/LqLdlMTo/hueYzmNXyFE9YbiTKHvC+qwFRFKXV3jppMWGEWc39ek4hQq1//68SQgx5eoHsiPhwlDZzQEYmRlDR4OBYRSNThvfvLBS9QDYpyo7NYoLd3iGRU9ovjvXXKoMCsPR1KNoOzib+sXoPnx+po2HEmbx8yRRsFhOPXTWDi/7yBTWuKLLig1OsOjIxgp0FNd7vpUBWDH2SQRFC9Eq+90M9o50lh2AWyvqGtNmhOhfyNwFKt+aTGEWo3mJfbJEw8lQYt4B3m2ey1jOd7581Tgt8gJNSornnAm0i7fSM4Ayh8685kfoTcSKQDIoQolfyKo8vkNUZs1CCsMSjF8iOjXTAJ/drD46cDzFpXb5Wv/bqRid1zU6iw6zGcwXVrXdp1t04fzRzRycaLcD9zT9rIhkUcSKQAEWIQe7Lg+XUNbs4f0pqSM6vL4v4txjrgplBKauq4Rbze9yZ/x54tE4X5tzUrddG2S3ER1ipanSSV9lEVroWoDQ53FQ2OIDjAxSArPT+LY71NzJBMijixCIBihCD2L7iOm7411d4VJX19yzQikODLN+YgXL8h+Zo79/0j/T3uPuCLXxr6w2kWHPBg7Zp37n3gz4ZthsyEiKoaqwhr6rRCDwKvXNVIm1mYsJD+8elHuyBBCjixCABihCDlKqq/PK/u3B5VAAOldaHJkAxZqAcn2EY6V3+KK/XWo37stulrtnJf3OOEbXpL1xU/R9ScFOqxnFs5t3MueRWMAXW5ZIRH8GO/Bpj6BxoHUqg7THUtgA42JKj7YxKjKC+xcXYYVEhvRYhgkECFCEGqbe3FvDVkUrj56MVjZw6LrjX0NDiosK7BNJeBkVvNa5ocHC0vKFPOnkOltbxry+P8s7WAv6o/oELvLsJ/889l1dT7uSPC84JODgBXx2KHnABFHrrT9LbWd4JNkVReP/203F5VGkxFicECVCEGIRqmpw89P5eQBviVd3o5Fhl8EbK6/QP85gwC7Hh1naP6ctW42anm0v/+iUNDjcZSgkX2DfhwcTR0//A2addz2J7+9fQHXoGKNcvg1LYQYFsqETY5I9sceKQNmMhBqE/fryP8noHY4dF8oOzxgJwrL/rPNqR184uxm31ZaHs4bIGGhxuouwWXphbAIBpzBmMWXAzEb0ITsDXJu2/xJM/gDIoQpxoJBwXYpApqW3mhQ3HAHjw0im0uLTpqccqQxCgdDIDRecrlO19gKLv5DsuOYqRRdpGfUxZ0uv3hdZLPKqqoijKgMugCHEikQyKEIPMV0cq8agwOT2GU8clkent6DhW0YCqqkG9lkNlWjvv6GFt5nI4GuDvZ8N/rmBctMO4vt464n2PedFlULILTFaYeFGv3xcgPS4MRYEmp5vyeu2aC6u12SrD22mhFkL0LwlQhBhkNh/VCmPnjEoAtPkjJgUaHb4P1mA5UKIFKOOT23SV7H4HCrfAoVWc/eV1jFBK+6TVWB/4dpbzc+2BcQsgIqHX7wtgt5hJ9XZB5VU14vGoFNXIEo8QoSIBihCDzOZjVQDMHhUPaB+sabHaB2hfZCkCoWdQxrUNULb+R/unYias5hBv235FasNe6pqdvTrf0YpGQGVy1SrtgT5a3tEZe/JUNlJW34LTrWI2KaRE2/v0PEKIrkmAIsQgUt/iYm9RLQCzR/oyB/q49WMVwatDqWpwGBmbVnM5yg9C7npQTPCdlZAylWFKDS/bfkv+oT29OufR8gaylGNE1x8BSxhMuKBX79eWf6GsPuI+NSYMi1n+qBQi2OT/OiEGka25VXhUrWgzNdY3lE3fmyWYGZSD3uzJ8LhwIv0HsOnZk3HnwvBZcOP77LdOIlppYtiqO8Dj7tH5Gh0uSutauNi8Xntg/Hlgj+7FHRxPbzXOq2wyhrSlxwV/+J0QQgIUIQaVzUe15Z053uUdnb5Py9EgZlD0+pNWyztuF2x/Wft+5rXaP8NieG/cA9SrYSRVboH1y3t0vqPl2vLOpZYN2gN9vLwDfhmUqsYBNaRNiBORBChCDCI53vqTWaNaF4YaGZQgthofLG0nQDm4EupLICIJTjrfeHhY5kk86LpO++HTB6Ek8KWeoxUNTFWOkE4ZWCO1DEofM2pQ/AIUaTEWIjQkQBFikHC5PWzN9RbIjmyTQfFrNQ6WA6V1QJsOnq0vaP+cfjVYbMbD44ZF8ar7LNabZ4PbAW9/D9yBFcwerWjgfPNX2g/jzwVb32+Yl+kNUAqrm41gTzIoQoSGBChCDBJfF9fR4HATHWbhpJTWtRd6gFLd6KSmsXedMt11qG0GpbYQ9nuHp828rtWx2jEKdzTeiBoeD8U7tFbkABwtb2CRabP2w6SLe3HlHUuOtmOzmHB7VLZ4s1WSQREiNCRAEWKQ0OefnJwZj9nUemfdCJuFYd5W2GDsyVPf4qKwRhtiNi45Clwt8NoN4HFBxjxIntjq+GHRdmLCLJSo8ZRPukF7UC+m7SZn8deMMxXiNln7ZXkHwGRSGOENSGqbXYAMaRMiVCRAEWKQMOaftFne0Y1KDF6rsZ49SYqyExduhRV3Qv5XEBYLlx5fBKsoipFp2Z50EaDAkTVQdbTb5xxf+RkADenzISymt7fQoRFt9hVKi5UuHiFCQQIUIQYBVVWNDp7Zo9qfnJqZ0I+txlVHYdMzUJADHjcHSv0myK7/K2x7ERQzXPkcJI1r9y3GJ2vLUjsaYmHMmdqDW1/s1ukbWlyc5tLaiy2TL+3VrXQlwy9jEhNmITqsd5sQCiF6RjYLFKKb9H1uFEXp4si+V1DdRHFtMxaTwoyMuOMP8Hj6N4Py1i2Qt1H7PiyWk+0TecNWxZjyevi4SHt80UMw9pwO30LPoBwqrddqVA5/pgU2Z/0cTObWB1fn4jn0GcqYM1DiR1F4dD/TTEdwoxAxtX/qT3T+OzMP72QTRCFE/5IARYhu+sXbu/hwVxEf3H5GqyFpwfDZvjIApgyPJdzm92HudsG/L4KCHK6PHM0IaxL5+dmgToO+CqRqCnzBiT0WmmsY07yRMSZA3/rnlO/B3O91+jbjUrQA5UBpnbbBX1gc1BbAodUwfiE0VUPOs7Dnv1C4FRPQZI4m/OrncO7OAeBraxaTo4b1zX11INM/QJEhbUKEjAQoQnRDXmUjr2zKRVVh3aFyrjh5RFDP/+72QgAunJra+okdr2hj5YHY2n1cbt4HNV/C1lFw8nX0ia//p/0zYy58+30o2s4fnn+dQ/U2fnDRqUzNmgxxGV2+zTjvOPwj5Q24TDYs066Cr56Grc9DSy188DNoKAXAg4kSNY40dyXqi99glFWru9mfcDaT++auOpThlzWRFmMhQkdqUITohlc35eFd4TF21A2WopomNnk7eC6alu57wtkMqx/Wvj/9JzRc/h/ecJ8BgGf1b8HRR0s9X7+n/XPiRWC20Jwyg7/Vnc4HnrmkTD2rW8EJaO264VYzTreqzRjRA6g9/4U3btSCk8TxNJ//R05zP8mZLY/xkuscFFQinNr9V2Wc2zf31Al93L1+zUKI0JAARYguON0eXtmUZ/x8uI8DFI9HpbC6CbdHbff5FduLUFU4ZVRC67/Rb/4X1OZDdDqc8RMip1/C78zfI19NwlRXBBv+1vuLa6yEo19q30+6CNAyIB5VKyAdFtX9XX5NJoWxyVoh78HSekidCmnTtSfNNjjz53Drl/zXfB6FzmgSYqK51/0d7nHejAMLX7onkzhifO/vqQux4VaivXsLSQZFiNCRJR4hurByTwnl9S3Gz0f6OED59Xu7eX79MSJsZqakx3LyyHi+d8YY4iO1Saz68s7FM/yyJ8218PkftO/P+jlYtQ/S4cPi+X3BN/mz7W/wxeMw69sQmdSj69qSWwVbX+Jk1Q0pUyBhDICvgyclOuCC4fHJ0ewqqOVgaT2LJgOXPaUVyp58PQybAMAbOfkA3HDqKHIrG3j5qwW8755LA2G86R3p358URWFGZhxfHixnyvDYfj+fEKJ9kkERogsvbjwGwAVTtPqPo+UNRkdPX9hwuAKARoebr45W8tSaQ3zn+c20uNwcKW9gZ0ENZpPChVP86k/WL4fGCkgcBzOWGg9PSovhXc+plERMAEcdrHm0x9f1o5e3UrH5Le8b+zpn9hXXAr6akkDonTz6Pj6kZMGi3xrBydHyBjYdrcKkwOUzh3P7gpMIs5qoIQoXFkYFIUAB+Pt1s1lz99mMTgrO+YQQx5MARYhOHClv4MuDFSgK/PT8iZgUaHC4Katr6frF3aCqKgVV2qZ0/7x+No9+YxoxYRZyjlXx63d38+42LXsyf1wSiVF2UFXY/iqse0J7g3PuBbMvEZqVHoOKiX9H3aQ9sPkZKD8Q8HU53R6qqqs4w7QDgPox2sZ/eZWN/HudFrDN6mBgXGf0AEXfx6ett7Zo2ZPTxw8jNTaM1Ngwbpo/GoD4CCuxEcGZSRJuM7dqNxZCBJ8EKEJ04uWvcgE466RhjE6KZIS3w6Ov6lBqmpw0ONwAnDY+iW/OzuCJa2ZiUuDlr/J4eu0hAC6Zng51JfDKUnj7FnA2wpizYFLroWVZadqE1Terx8G4hdro+ddugJb6gK6rrK6FM5Tt2BUnRz0p/GGrBbdH5cevb6e+xcWskfEsmRV4J5NvFkoDnjY1Nx6PyptbCgD4ht9733rWWC6cmsrtC/q//kQIMXBIgCJEB5qdbl7frBXHLp07EsBI+fdVHUq+N3uSFGUnzKrNNzlrQjI/O1/by6bR4SbW4uDiuldh+Smw739gssLZ98LSN8DU+n/hianRKAqU1LZQueAPEJkMpbvhvz+AtstSjkbY+DT8LRtW3NXq+eLaZhaZNwHwoWcOz284xj1v7eCrI5VE2Mz86ZvTj9sPqDtGJkRgNSs0Od0UVDe1em7D4QoKqpuIDrNwblaK8Xh0mJW/LZ3Ft72ZFCHEiUECFCE68OGuYqoanaTHhnH2xGTAF6D0Vaux/iHddkO6W84Yw+XThnGz+X98Yb8D+2cPQHO11vlyy2dw5t1gPn65I9JuYbS3TmN3fRRc9YIW0Oz5L3z+R2ip07pyPnsEHp8KH/wUSvdoS0F7/mu8T2Pedi4wfQVAw5gL8Kjw2mZt+eW+i7IY2cNaEIvZxJgkLYuyv6T1Ms8ne7UZKIunphnBmhDixCUBihAdeGmjtrxz1ZxMI1ugByh9tcSj15+MaNPOqtQW8MeGX/BL64tEu6shfjRc9iR89zNIndLpe07yLvPsKayFzLmw2Nvt8+mD8HAGPHchfPYwNJZD3EiYsFh7/v27oakKXC1krb8bu+JiR8Q8rl2yhChv2+3CSclcNad7c086vj5tT569RbWtHt9TVAN0vNeQEOLEIm3GQrRjf0kdXx2txGxSWn0g99cST6sMyqFP4c3vYGqs0HYHPu83MP2adjMm7clKj+F/O4vYowcAs74NxTth0z8BVZubkj4DJl8Ok68A1Q1PnQbl+2HlfRCRSEL9firUaD4aey93x4bz2FUz+HBXMb+4cGKv9yLKSo/hnW2FvutDKxbeU6j9rNfRCCFObBKgCNEOPXuycFJyq3139AAlt6IRt0ftUR2Gv4JqbdqrMbF011vwxk2ACqnT4JvPQ0JgtRdZ/hkU3QW/hxnfgtgMiEpu8woLXPwEPHs+bHke0O7pF87vMCNRm71yblZKq7qQ3pjUzvUVVDdR2+zCalaMQlohxIlNlniEaKPJ4eZNb7urXhyrS48Lx2Y24XB7KGxT5NkTRg1KXLhWpPrZI4AK066Gm1cGHJyAlqEAOFRWT7NT6xDCZILhs9oJTrxGZsOsG70/qKyNOJePPHNIje3+pNju0gOUY5WN1Le4AF+wMi45GptF/lgSQkiAIsRx3ttRSF2zi8yECE4b13oKq9mkMDKx71qNC/yXeI6tg/J9YI2EC38P1p7tpJscbScx0oZHPb4QtVPn3q8Nfhs2kT+YtGAlJbrvd/NNirKTEmNHVX1D3/TlHlneEULoJEARoo0Xvcs715ySiamdJRyjDqUssNkibTU6XFQ1OgFvgLL5X9oTU78BYT3/oFYUpd1llC6FxcKyTXDrOo7Uaau/KbF9H6DA8ctQRv1JugQoQgiNBChC+CmobmJ7XjUWk8KVs9sfRGa0Glf0brdgPXsSHWYhxlXta/OdfVOv3hd8H/R7igIIUABMJhqcKnXepZeUmH4KUNpcn2RQhBBtSYAihJ8jZdqyzcjECJI62Km3r1qN8/3rT7a9AB6nVieSPqNX7wsdFMp2U0ltMwBRdovRXtzXstK0Tfj2FNZS0+Q0upkkQBFC6CRAEcLP0Qo9QOl4EJmv1bh3Szx6BiUjLgw2P6s92AfZE/BlKPYW1R43Ur4rxd4AJTmm7wtkdfr1fV1cx+4Cbf7J8LjwoO21I4QY+CRAEcJPbqW2bKMXwrZn9DAtQCmoaqLF5e7xufSswRmWnVB9DOyx2lySPjAmKRKbxUSDw23cU3eV1mobIab20/IOaCPvI2xmWlwe/rezCJD6EyFEaxKgCOFHH2E/qpMMyrAoO5E2EylqBXkBfvj701uMT6/21p7MuAZsfbODrsVsYmKqNrE10DoUPYPSX/UnACaTYlzfu9u1HZtleUcI4U8CFCH86NmGzE4yKIqq8k/746wP+yHuL//a43MVVDUyRilkZPla7YHZN/f4vdozIUULAAJqNcZXg9KfAQr4MiZ1zVpB7iQJUIQQfiRAEcJLVVWjBqWzDAprHyXbuQGA8dt/D8fW9+h8BdVN3Gz+AAUVJlwIw07q0ft0RJ/IeqgssGJefYknpR9rUMBXKKubLEs8Qgg/EqAI4VVa10Kz04NJ8Rs939a+D7WN9oC9nkxMuOGNG6GhPKBzOVwe3HWlLDF7syen/rA3l96uscO8AUppYMW8+hJPf9agQOuak2i7hRHxHfzOhRAnpIAClIcffpg5c+YQHR1NcnIyl112Gfv27Wt1THNzM8uWLSMxMZGoqCiWLFlCSUlJq2Nyc3NZvHgxERERJCcnc/fdd+NyuXp/N0L0wjHvXJPh8eHtj1svPwhv3QJA/bRvs8Txaw6q6VBXBG99FzzdL5gtqmniWvNKwhQn6vBZkJndJ/fgb6w3g3K4vL7DTh6PR2Xt/jKOVfiyLCVGF0//BigTUqLR5+BNSo/p9SaEQoihJaAAZc2aNSxbtowNGzawcuVKnE4n5513Hg0Nvj/c7rzzTt577z1ef/111qxZQ2FhIVdc4etMcLvdLF68GIfDwbp16/j3v//Nc889x3333dd3dyVEDxgtxgl+yzvOJtj1Jrx0NfxtLrTUwIhTiLrk96QkJXKr4w7c5jBtB+LHpsDr34YNT0JNfus3V1XI36yNs/e4KSqr5DrzSgCUU38I/fDhnBEfjtWs0Oz0GAW5/nYX1nDFk+u4/l9fcf2/vkJVVVRV9XXx9NMUWV24zcwYb5ZHCmSFEG0FNIXpww8/bPXzc889R3JyMjk5OZxxxhnU1NTwzDPP8NJLL3HOOecA8OyzzzJp0iQ2bNjAvHnz+Pjjj9mzZw+ffPIJKSkpzJgxgwcffJCf/exn/PrXv8Zms/Xd3QkRgNyKNi3Gzmb457lQstN30Ig52g7DFhunjUviP+UNvJHxC67KfwjqCmH329rXx/dqG/7Nvx0qD8HaP0DBZu09otMYGTaWRKWOUnMqyRMv7pf7sZhNjEqM5EBpPYfK6slI0O7L41F5+IO9PPPFEfTEyrGKRnYX1pIeF47D7QG0bqX+dtq4JA6W1nP6+KSuDxZCnFB6VYNSU6MNWEpISAAgJycHp9PJwoULjWMmTpxIZmYm69drhYTr169n6tSppKT4tm5ftGgRtbW17N69u93ztLS0UFtb2+pLDC1Ot4evi2vZU6h99aZ9t6d8Q9q8AcqXf9aCk7A4OP3H8ION8J1PICYNgNO8H6pPl0+Hnx6GG1bAgvsg81TwuLTpsMvnwMtXa8GJJUx7r7oi0sq+AGBDylVg7p9preBXh+JXKPvejkL+8bkWnCyelkb2mEQAPtlbQnGNtryTFGULyq7CP79gIh/cfjoLJqV0fbAQ4oTS4z8ZPR4Pd9xxB/Pnz2fKlCkAFBcXY7PZiIuLa3VsSkoKxcXFxjH+wYn+vP5cex5++GHuv//+nl6qGAR+9PJWPtjV+t//U9fO4vwpqUG7Bt+QtkioPAJf/El74qI/wZQlxx2fPTYRs0nhcHkDBY0mho8+HUafrgUzeZu01+97H2xRMOc7kL1MC1AOfMz29/9BfnUjhaOv7Nd7GpccBbvhkN/GhusOVgDw7VNH8etLJvPa5jzWH67gk70lTM+IAyC5H3Yxbk+Y1SztxUKIdvU4QFm2bBm7du3iiy++6Mvradc999zDXXfdZfxcW1tLRkZGv59XBIfD5eHTr0sBSIqy0+JyU9fs4o2cvKAGKPqQtpGJEfDhHeBqhtFndDjdNSbMyoyMOHKOVfHFgTKumpPpezJjDlzzMtSXgTUc7FEUVjeRn1cPYafyoC2Onc4aHk9K6Nd7Gpus1dP4d/JsPlYJaMsrAOdMTEZRYFdBLdtyq4H+bzEWQoiu9ChAue2221ixYgVr165lxAjfjq+pqak4HA6qq6tbZVFKSkpITU01jvnqq69avZ/e5aMf05bdbsdulz8wh6rdhTW0uDzER1jZ9H8L2F9Sz6LH17L2QDn1La5+27AOALcTDn1Ky673+IGrmvWmLEYXN8L+D8BkgQv/0GkB62njksg5VsXnB8pbByj620cksfrrUl7YuIc1+8tQ2zTTDO/n1tq2SzxVDQ7j+1kj4wEtKJyZEceW3Gpe25wH9H+BrBBCdCWgRWZVVbntttt4++23+fTTTxk9enSr52fNmoXVamXVqlXGY/v27SM3N5fsbK2NMjs7m507d1JaWmocs3LlSmJiYsjKyurNvYhBKudYFaB9YCqKwkkpUYxJimyVWekLLreHHfnVqKoKzTXw4T3wx4nw0jex7/gP37e8x79tv8P+zne0F2Qvg2ETOn1Pvbhz3aGK41p565qdnPvYGr7z/GY+26cFJ6MSIxgzLJIxwyI5NyuF6SPi+uz+2qN3yZTXt1DT6DR+1+OSo4iP9BWkL8zSllmLvDUowVriEUKIjgT0V9Nly5bx0ksv8d///pfo6GijZiQ2Npbw8HBiY2O5+eabueuuu0hISCAmJoYf/vCHZGdnM2/ePADOO+88srKyuO6663j00UcpLi7m3nvvZdmyZZIlOUFtOqotOcwaqS13KIrC+VNS+dtnh/hwVxGXTE/vk/M8/skB/rr6IL86L4MbD98F+Zu0JyKHcTj5XDYfKOAs216SPaUQNxLO+GmX7zk9I44ou4XKBgd7imqZMtw3HXXdoQoOlzUQaTOzdN5IvnVKJqOSOplQ2w+i7BZSY8Iorm3mYFk9m7zLO7O92RPduZNSePRD30wjyaAIIUItoAzKk08+SU1NDWeddRZpaWnG16uvvmoc89hjj3HRRRexZMkSzjjjDFJTU3nrrbeM581mMytWrMBsNpOdnc21117L9ddfzwMPPNB3dyUGDVVVjb/Vzx7l+9C8YIrWKbP66zKaHD3fMVjndHt4+atcwmhh+uff14KTsDi4+mW4ay8rRtzFT13f49FJb8Cdu+H7X4A9qsv3tZpNzPN2waw9UNbquS252n1dMmM4v7hwUtCDE51Rh1JWT85RX7bK37jkqFY7OEsNihAi1ALKoKhtF9DbERYWxvLly1m+fHmHx4wcOZL3338/kFOLIepYRSPl9Q5sZhNT/bIPU4bHMDwunILqJtbsL+t1sexn+8qoa2jgn9Y/cbK6G5c1Cst1b8PwkwH89uCJgNgRnb3VcU4fn8Qne0tYf6iCH5w1znh8q7fgdGZmXK+uvbfGDYviy4MV7C2qZUeBNhpg9qjWxbmKorBwUgrPfHEE6P+NAoUQoiuyF48Iqc3e7MnUEbGEWc3G4/oyD8CHu4p6fZ43cvL4seU1zjDvpFG182jib4zgBHxD2jI72ySwA9ljtQzKpqOVOFzakDOnt94F4OTM+I5eGhT6yPsVO4pwuDwkRdm0QKyNhX6zSCRAEUKEmgQoIqQ2H22/JgLgAm+AsmpvKS2uni/zVNS3sG3vfq73jpa/w/kD/nEsmfwq3zC4o94Apb0P7q6MT44iKcpGs9PDtrxqAPYV19Hs9BATZmFMiJZ2dHonT1mdNsJeL0Zua86oeE4ZncAZJw0jMVImOgshQksCFBFSm4+1XxMBWuYhOdpOXYuLdYcqenyOd7cXcqPpf4QrDhg+m4bRi1BVeHWT1lLb0OKivF778G61D083KYpi1KGsO6TtaqzXn8zMjMdkCu0meHqAops9sv3ZKxazide+l83zN50iG/cJIUJOAhQRMtWNDg56B4i1F6CYTAqLJmtZlE/2lBz3fHet3Lzb2JiPM3/Kt+aOAuCVTXnUt7h4xRuoxEVYiY2w9ugc+jLPem8gteWYHqDE9fi6+0pKjJ1Im2/5bNao0C45CSFEd/TjBCwhOqd374wZFkliexvTtdRzQXwBZaavOHzUDUwN+Bx7i2o5tew1Ii0tuFKmYRl/Hue6VZKi7JTVtTD7Nytpdmp1I/5FuoE6daw2D2VrbjXNTjdbvUs9oa4/AS3DMzY5ih35NdgtJqak9/w+hRAiWCRAESGzydvyelz9yc434NPfQNURTgVOtYGj2ozztcuxzvsuZMztdLorNflQXwpxmazYeIDvmz8GwHL2z0FRsFkUrpozguWrD9Hs9DA8Lpxvzc3k2rkje3wvoxIjjHkjH+0u5lhFI4oCMwZABgW0Tp4d+TVMz4gLyiaAQgjRWxKgiD7X4nLz/LpjXDgtjeFxHY9yzzGGhvnVROx6E976LqhaVoPIZI402hhNPux5Q/uasgQu/3vrXYD3fwS734ZjX0J1rvHw7aoZm+KmLm4i0RMuNB6/7ezxRNotTEiJ5qwJyZh7WSeiKAqnjk3kra0FPPnZIUALCmLCerZk1NdOPymJt7YWsHhqWqgvRQghukUCFNHnXtuUx2/f38vaA2X85+a57R6z+utSo0B2zmhvgPL1+/DWLVpwcvINsOBXEJnIH17awrGdX/LoyE1klb6vBTFmG1z6Ny2T8ulv4PM/+N5cMUNkEp76UmyK1v0Tdf59rbIu4TZzq5klfWGeN0D5urgOGBjLO7rLZgxn7uhE0mRCrBBikJAARfS5XQW1gFYwWt3oIC6idcvq4bJ6fvTKFm4wfcg3Eo8x+vP3wGKHbS+BxwXTroKLHgeTthRxcmY8/9sxhj+Fz+OfV34TXrsetr8MljBoqYNdb2hvPOtGmHQxZJzC4VqFxY+tIlUt4/ErpzJ9YvuBUl861VsoqxsIBbI6RVFI7ySbJYQQA40EKKLPfV2iZRBcHpWVe0q4cnaG8Vxds5Pv/3sDv3b/lSXWz6EW2O734kmXaJkRk69OQv+g35JbjXr9YpTLn9aWgXKe1Q4wWeDiP8PMa43X/P6jHJo8FsZMnM70k+f01622MiI+goyEcPIqmwA4uZ3OJCGEEN0jAYroUx6PygFvgAKQs3ULV362AMJiUadfwyP7RvOLmsc4y7wdVTGjnH4X2KLAUQ9RKdrSjrn1f5aT02OwmU1UNjg4VtHIqGlXgrMR3vsR2GPhqudhzFnG8Vtyq/hgVzGKAj89f2Kwbh2A7DGJ5FXmE223MG5Y13v5CCGEaJ8EKCeYumYnn35daoxkt1lMLJyUQqS9b/5TyK9qotHhRlFAVWF23r/AVAL1JSir7ue3AGbwWMIxffN5OOm8Lt/TbjEzZXgMW3Kr2ZpXpW26N+sGGDEbIpIg2jeivdHh4v53dwOw5OQRTEiN7pP76q5zJqbw2uZ8sscmhnxAmxBCDGYSoJxgHv7ga17amNvqsW/NzeShywOfMdKefd7sycTUGGIdxVxa/zkA7jN+xq4vVjDds5smSyzh335LCzC6aWZmPFtyq9lyrJrLZ3o380uZ3OqYZqeb7/x7M9vza4i2W7jr3JP65J4CsWhyCs/fdAqT02OCfm4hhBhKZCDCCeaLA9oo9tkj45k/TivqfHtLAbXNzj55/33FWoHsxNRo7o7+GKvi5uvwmbwcsZRLG/+PC0xP41q2OaDgBHwdMVvzqtp9vsXl5nv/yWHdoQoibWaeu+mUkBSFKoqi7WXT3uA5IYQQ3SYBygmktLaZ3EptgNi/bpzDCzfP5aSUKJqcbt7ZWtAn59hXoo2unx7vYGbZfwF4pP5CHv/kAABXLZhLdHxywO+rF8ruLaqj0eE67vm7Xt3Omv1lhFvN/Ovbc9odnS+EEGLwkADlBKLPHZmQEk1MmBVFUfjWKZkAvLghF1VVe30OPYNydtUbmNwt7FZO4jNnFuX1LWQmRPCtHk5rTY8LJzUmDLdHZWd+Tavn8iob+d/OIswmhX/eMJu5YxI7eBchhBCDhQQoJ5DN3tHyc0b5JrdefvIIwqwm9pXUGXvj9JTD5eFwWQMxNJBx6EUAdo/9DqAVi/5k0YRejVn3bzf2t/GINpF2+ohY5o9L6vH7CyGEGDgkQDmBGKPl/XazjQ23cvG0dEDl1Q2HevX+h8vrcXlU7rS/i8lRD8lZTDn7KiwmhVkj47mol2PW9ToU/T50Xx3RdhA+ZbRkToQQYqiQLp4TRKPDxe5Cbfll1sh4qCmAjU/Brjd5pLGS39mbMX2t4nr6ZCzzb4NJlx43j6Qr+4rrmKQc43rlf9oDC35F1vA4Vv/kLBKjbL1uu832Tmpdd6iCZqebMKsZ8GVQ5o5O6PC1QgghBhcJUE4Q2/KqcXlUZsbUMnz1Hdp+Nh6t2NQM+ioMlqIt8MZNEJsJp96mDU6zdm//lv1F1TxkfQYzHsi6FCacD0BGQkSf3MPk9Bhjx+D1hys4e0IyxTXNHKtoxKTArFFSGCuEEEOFLPEMJY5GqDqq7U/TpuA152gVM5UDPO/+OcqOV7XgZNTpcPXLcPt23jh7NdnNf+GViG9BRCLU5MIHP4UnZsDGv4OzufW5VBXqS6HiEHi0oW9pB19mpukgDnMknP+7Pr89RVFYMEnrAFq1twSAr45q2ZOs9JgBs3OwEEKI3pMMylBx9Et45Rpo9na4mG2QMBamLoFpV6HsfYeXbb8jzO2EtOnaZnzDTzZePjMriaIPivh13SV84//+gGXnK/D5n6A2Hz64WwtWIhIhKhlQtEDI2aC9OCIRRs7nsopPAMifdTdjYnpXb9KRhVkpvLgxl0/2lPLgpaqv/mSU1J8IIcRQIgHKUHBgJbx6LbiaQTGD6ga3A8r2wqe/gU9/w20ACtRmLiTm2ufBFtnqLUYnRhJpM9PgcHO4xsNJc27WNt/b+h/4/DEtUGks174MihYINVbA3neJArZ5xpB5+vf77VazxyQSYTNTXNvM7sJaNh7WMiinSP2JEEIMKRKgDHa734Y3vwseJ4xfBN/8t7b80lgOR9bC9lfgqDZu/j/qBVxz3X/AevxSiMmkMCkths3HqthdWMNJKdFgscOc78Csm6ChzPtVqi3pxI+CuAxAgcItFG77mPWbNvKC/Wreju6/Ca5hVjNnjB/Gh7uLeW1zHgdKtcFwEqAIIcTQIgHKYHZwlVbQqnpg8hVwxd/B7A0+bJlaBmTmtby5egPPf7yR6LHzuK6d4EQ3ZXgsm49Vsauglstn+j1hMmkb8vltytdK5jzWFqfzc+csTh/V/3NIFkxK5sPdxcaeQielRJEQaev38wohhAgeKZLtRzWNToprmimuaaa0rrnnk1o9Hqg61vqx6lx482YtOJl2FSz5py84aePzEjvb1XFdjn/XN7jbVVDT6XFt1TY7eWGjdn0TUvp/9+BzJiajKODyaL9PyZ4IIcTQIxmUfvLhriJufXFLq2aaHu8avO1F+N9dkL0MTv+xVvfx2vXQVAVpM+DiJ8Bk7vDlW/OqAboMUKYMjwVgT2EtHo/arbkl9S0uvv2vr9hVUEt8hJVr5/VslH0gEqPszMqMN0b3y4A2IYQYeiSD0k+e+eIIqgomBSzeD/rXN+dRVtcS+Jsd/Vwrev3iMfjLLHj5GijcCuHxcNV/Op1TUtPo5FhFIwDTR8R1eppxyVHYLCbqWlzkVTV2eVmNDhc3PbeJLbnVxIZbeeE7cxmVFNnl6/rCwizfcpMMaBNCiKFHApR+cLS8gU1HqzApsO7nCzj40IXMyIjD6VZ5PScv8De8/Gm45hVIGAP1JXBoFaBoyzpxmZ2+dKd3uWZkYgSxEZ3PCbGaTUxM1ZZodhXUdnpss9PNd5/fzFdHKom2W/jPzacwOT22+/fUSxdMSSXMamJ6RhwpMd0bJCeEEGLwkAClH7y5JR+A08cPIzVW+/BcOlcLJF7amIvHE2AtiqLAhAvgBxvg3AcgbiSc/wiMW9jlS3cUVAMwdXj3ggc9yNhV2HEdSovLzff+k8OXByuIsJl57qZTmNZFdqavjUyM5JO7zuT5G08J6nmFEEIEhwQofczjUXlrSwEAS2aNMB6/aFo6MWEW8quaWHugrGdvbrHD/Nvhjh0w7/t4PCrPfnnkuM3z/O3M1wKNaSO6F6BMGa4Vyur79rTlcHlY9uJW1uwvI8xq4tlvz+mytqW/jIjvOiskhBBicJIApY9tOFxBQXUT0WEWzvOrkwi3mY2ARW+P7a2Ve0u4/709LP3nxg47b/QlnindzKBM8WZQdhfUtNt19Kt3d/PJ3hJsFhP/vH4Oc8dIgaoQQoi+JwFKH3sjR1veuXh6urHbrk5f5ln1dSlFNU29PtcHO4sAaHZ6+N5/cqiob12AW9ngIL9KO093A5QJqdGYTQoVDQ6Ka1vvv+P2qLyzVcsO/eWamZw2vv9nngghhDgxSYDSh+pbXHywqxiAb/gt7+jGJUdzyugE3B6VVzf1oFjWT4vLzaq9pQDER1gpqG7iBy9uwen2GMfo2ZMxSZHd3kgvzGpmfHIUcHyh7NGKBpqcbsKsJhZO6mBomxBCCNEHJEDpQ+/vLKLJ6WZMUiQzM+LaPUbPory+Ob/ng9uAdQcrqGtxkRJj59XvZRNpM7PxSCW//d9e45id+dUATO1m/YlOL5Td3aZQdm+RFrBMTI3B3I0ZKUIIIURPSYDSh972K45VlPY/wBdN1tpjC6qb2FdS1+NzfbCryHi/k1KiefxqbTb9c+uOst/7vju8BbLd7eDR6YWybTMoe7yFs1neibNCCCFEf5EApRtUVWX56oP86eN91DY72z2mpLaZDUcqALhkenqH7xVmNTPPW1j62b6edfO43B5W7ikB4PwpqQCcm5XCBd7v//rpQcC3xBNoC7Ber7Ijv7pVlmePN4OSlSYBihBCiP4lAUo3bMmt5vcf7eOJTw+y8I9rWLGj8LjlmRU7ilBVODkzjoyEiE7f76yThgHw2b7SHl3PxiOVVDU6SYi0ccoo3xTVZWeP815LIV8dqaSophlF8e2x011Th8diM5sorWvhaIVvoqyeQZkkAYoQQoh+JgFKN7y3vRDQxtaX1rVw20tb+e7zm3G4fAWp73qP6Sx7ojtrQjIAm49WUddBRqYz+vLOeVkpWMy+f4VThseyYGIyHhV+8vp2AMYNiyLSHtiWS2FWMzMz4wBYd6gcgLK6FkrrWlAUjGmzQgghRH+RAKULLreHFTu0gOBvS0/mjoXjsZlNfLK3lGe+OALAsYoGtudVY1Jg8bSuA5RRSZGMTorE5VH58mB5QNfj8ah8tLv18o6/287Rsii5lVrmI9D6E92pY7UW4vWHtGUrvUB2dGJkwAGPEEIIESgJULqw8Ugl5fUtxEVYOWdiCncsPIlHlmg7Ej+x6gAF1U1GhuXUsUkMi7Z3633PNJZ5AqtDycmtoqyuhegwixFE+JuZGc/pfvNJAu3g0WWP1epk1h+qQFVVo/5kkhTICiGECAIJULrw7jYt+LhgSho2i/brunzmcE4ZnUCT080D7+0OaHlHd9YEX4ASSLuxPoX2vKxU43raus1biwLdH3Hf1oyMOMKsJioaHOwvqfd18Ej9iRBCiCCQAKUTLS63Ue9x8fQ043FFUXjw0ilYTAof7S5hf0k9NrOJRe0suXRk3phE7BYTxbXN3W43LqltNrI1N5w6ssPj5o5J5NunjmLR5JQeb+Jns5iY4y3AXX+o3NfBIxkUIYQQQSABSifW7i+nttlFcrSduaNb7zkzITWam04bbfx85oRhxIZ3f+O6MKvZWEZZ/XX3lnmeX38Ul0fllFEJXQYev75kMk9fNxuruef/ivXr+3RfGYfL6gGYLBkUIYQQQSABSif0pZuLpqW3Ozn19gXjSYsNA7Rln0Cd7e3m6U67cZPDzYve5R3/wKg/ZXvntazdX4ZHhcRIW7drbIQQQojekHaMDjS0uPjEOwztkhnt15ZE2i28+J25bMurNoakBUKvQ8k5VkVNk7NVBmZPYS3v7SjkqtkZjEqK5M0t+VQ3OslMiODcrODsgzN1eCxRdgv1LS5AW97paEKuEEII0Zckg9IOVVX55Tu7aHK6GZUYwfROCk3HDIviipM7Hm3fmZGJkYxLjsLlUfn065JWz/349e08+dkhznt8LU+sOsC/vtRamr996qig7YNjMZs4ZbRvEJwUyAohhAgWCVDa8cwXR3hrawFmk8JDl0/t16yBnnn5YGex8diBkjpj7ojD5eFPK/dzuKyBaLuFb87J6Ldrac+pY321N1IgK4QQIlgkQGnj8wNlPPS+tiPwvYsnceq442eN9CV92Nqa/WU0eJdS9NqXcyYm88Q1M0mK0uo+ls4bSVSQh6Tp+waBZFCEEEIEj9Sg+DlW0cBtL23Fo8I3Zo3g26eO6vdzZqXFkJkQQW5lI5/tK+PCqalGK/El09O5ZHo6Z540jK25VZzWz8FSR9c3f1wibo/KmGFRQT+/EEKIE5MEKH6eX3+MmiYn0zPi+M1lU4JSEKooChdMSeXptYf5YFcRGQnhHK1oJMxqMophY8Otxv49wWYyKbz4nXkhObcQQogTlwQofv7vwkkkRNr4xqwRhFnNQTvv+d4AZfXXpcRH2ABYMClF9rwRQghxwpJPQD8mk8IyvzHxwTJ9RBxpsWEU1TTz4sZjQGBj84UQQoihRopkBwCTSWHRZK1Y1qNCdJjFmJEihBBCnIgCDlDWrl3LxRdfTHp6Ooqi8M4777R6XlVV7rvvPtLS0ggPD2fhwoUcOHCg1TGVlZUsXbqUmJgY4uLiuPnmm6mvr+/VjQx2/oPezp+cit0SvCUmIYQQYqAJOEBpaGhg+vTpLF++vN3nH330UZ544gmeeuopNm7cSGRkJIsWLaK5udk4ZunSpezevZuVK1eyYsUK1q5dyy233NLzuxgCZo9KICVGaye+rAdj84UQQoihRFFVVe3xixWFt99+m8suuwzQsifp6en8+Mc/5ic/+QkANTU1pKSk8Nxzz3H11Vezd+9esrKy2LRpE7Nnzwbgww8/5MILLyQ/P5/09K5rL2pra4mNjaWmpoaYmKEzm2NXQQ1Hyhu4WOpPhBBCDEGBfH73aQ3KkSNHKC4uZuHChcZjsbGxzJ07l/Xr1wOwfv164uLijOAEYOHChZhMJjZu3Nju+7a0tFBbW9vqayiaMjxWghMhhBCCPg5Qiou1ce0pKa03s0tJSTGeKy4uJjm59UwPi8VCQkKCcUxbDz/8MLGxscZXRkZwx70LIYQQIrgGRRfPPffcQ01NjfGVl5cX6ksSQgghRD/q0wAlNVXrRCkpab0zb0lJifFcamoqpaWlrZ53uVxUVlYax7Rlt9uJiYlp9SWEEEKIoatPA5TRo0eTmprKqlWrjMdqa2vZuHEj2dnZAGRnZ1NdXU1OTo5xzKefforH42Hu3Ll9eTlCCCGEGKQCniRbX1/PwYMHjZ+PHDnCtm3bSEhIIDMzkzvuuIPf/OY3jB8/ntGjR/PLX/6S9PR0o9Nn0qRJnH/++Xz3u9/lqaeewul0ctttt3H11Vd3q4NHCCGEEENfwAHK5s2bOfvss42f77rrLgBuuOEGnnvuOX7605/S0NDALbfcQnV1NaeddhoffvghYWFhxmtefPFFbrvtNhYsWIDJZGLJkiU88cQTfXA7QgghhBgKejUHJVSG6hwUIYQQYigL2RwUIYQQQoi+IAGKEEIIIQYcCVCEEEIIMeBIgCKEEEKIAUcCFCGEEEIMOBKgCCGEEGLACXgOykCgd0YP1V2NhRBCiKFI/9zuzoSTQRmg1NXVAciuxkIIIcQgVFdXR2xsbKfHDMpBbR6Ph8LCQqKjo1EUpU/fu7a2loyMDPLy8k64IXBy73Lvcu8nDrl3ufdQ3LuqqtTV1ZGeno7J1HmVyaDMoJhMJkaMGNGv5ziRd02We5d7P9HIvcu9n2hCee9dZU50UiQrhBBCiAFHAhQhhBBCDDgSoLRht9v51a9+hd1uD/WlBJ3cu9z7iUbuXe79RDOY7n1QFskKIYQQYmiTDIoQQgghBhwJUIQQQggx4EiAIoQQQogBRwIUIYQQQgw4EqD4Wb58OaNGjSIsLIy5c+fy1VdfhfqS+tzDDz/MnDlziI6OJjk5mcsuu4x9+/a1Oqa5uZlly5aRmJhIVFQUS5YsoaSkJERX3H8eeeQRFEXhjjvuMB4byvdeUFDAtddeS2JiIuHh4UydOpXNmzcbz6uqyn333UdaWhrh4eEsXLiQAwcOhPCK+4bb7eaXv/wlo0ePJjw8nLFjx/Lggw+22gtkqNz72rVrufjii0lPT0dRFN55551Wz3fnPisrK1m6dCkxMTHExcVx8803U19fH8S76JnO7t3pdPKzn/2MqVOnEhkZSXp6Otdffz2FhYWt3mMo3ntb3//+91EUhccff7zV4wPx3iVA8Xr11Ve56667+NWvfsWWLVuYPn06ixYtorS0NNSX1qfWrFnDsmXL2LBhAytXrsTpdHLeeefR0NBgHHPnnXfy3nvv8frrr7NmzRoKCwu54oorQnjVfW/Tpk08/fTTTJs2rdXjQ/Xeq6qqmD9/PlarlQ8++IA9e/bwxz/+kfj4eOOYRx99lCeeeIKnnnqKjRs3EhkZyaJFi2hubg7hlffe7373O5588kn++te/snfvXn73u9/x6KOP8pe//MU4Zqjce0NDA9OnT2f58uXtPt+d+1y6dCm7d+9m5cqVrFixgrVr13LLLbcE6xZ6rLN7b2xsZMuWLfzyl79ky5YtvPXWW+zbt49LLrmk1XFD8d79vf3222zYsIH09PTjnhuQ964KVVVV9ZRTTlGXLVtm/Ox2u9X09HT14YcfDuFV9b/S0lIVUNesWaOqqqpWV1erVqtVff31141j9u7dqwLq+vXrQ3WZfaqurk4dP368unLlSvXMM89Ub7/9dlVVh/a9/+xnP1NPO+20Dp/3eDxqamqq+vvf/954rLq6WrXb7erLL78cjEvsN4sXL1ZvuummVo9dccUV6tKlS1VVHbr3Dqhvv/228XN37nPPnj0qoG7atMk45oMPPlAVRVELCgqCdu291fbe2/PVV1+pgHrs2DFVVYf+vefn56vDhw9Xd+3apY4cOVJ97LHHjOcG6r1LBgVwOBzk5OSwcOFC4zGTycTChQtZv359CK+s/9XU1ACQkJAAQE5ODk6ns9XvYuLEiWRmZg6Z38WyZctYvHhxq3uEoX3v7777LrNnz+bKK68kOTmZmTNn8o9//MN4/siRIxQXF7e699jYWObOnTvo7/3UU09l1apV7N+/H4Dt27fzxRdfcMEFFwBD+979dec+169fT1xcHLNnzzaOWbhwISaTiY0bNwb9mvtTTU0NiqIQFxcHDO1793g8XHfdddx9991Mnjz5uOcH6r0Pys0C+1p5eTlut5uUlJRWj6ekpPD111+H6Kr6n8fj4Y477mD+/PlMmTIFgOLiYmw2m/E/rS4lJYXi4uIQXGXfeuWVV9iyZQubNm067rmhfO+HDx/mySef5K677uIXv/gFmzZt4kc/+hE2m40bbrjBuL/2/h8Y7Pf+85//nNraWiZOnIjZbMbtdvPb3/6WpUuXAgzpe/fXnfssLi4mOTm51fMWi4WEhIQh9btobm7mZz/7Gddcc42xYd5Qvvff/e53WCwWfvSjH7X7/EC9dwlQTmDLli1j165dfPHFF6G+lKDIy8vj9ttvZ+XKlYSFhYX6coLK4/Ewe/ZsHnroIQBmzpzJrl27eOqpp7jhhhtCfHX967XXXuPFF1/kpZdeYvLkyWzbto077riD9PT0IX/v4nhOp5NvfvObqKrKk08+GerL6Xc5OTn8+c9/ZsuWLSiKEurLCYgs8QBJSUmYzebjujVKSkpITU0N0VX1r9tuu40VK1awevVqRowYYTyempqKw+Ggurq61fFD4XeRk5NDaWkpJ598MhaLBYvFwpo1a3jiiSewWCykpKQM2XtPS0sjKyur1WOTJk0iNzcXwLi/ofj/wN13383Pf/5zrr76aqZOncp1113HnXfeycMPPwwM7Xv31537TE1NPa4xwOVyUVlZOSR+F3pwcuzYMVauXGlkT2Do3vvnn39OaWkpmZmZxp97x44d48c//jGjRo0CBu69S4AC2Gw2Zs2axapVq4zHPB4Pq1atIjs7O4RX1vdUVeW2227j7bff5tNPP2X06NGtnp81axZWq7XV72Lfvn3k5uYO+t/FggUL2LlzJ9u2bTO+Zs+ezdKlS43vh+q9z58//7h28v379zNy5EgARo8eTWpqaqt7r62tZePGjYP+3hsbGzGZWv9RZzab8Xg8wNC+d3/duc/s7Gyqq6vJyckxjvn000/xeDzMnTs36Nfcl/Tg5MCBA3zyySckJia2en6o3vt1113Hjh07Wv25l56ezt13381HH30EDOB7D1l57gDzyiuvqHa7XX3uuefUPXv2qLfccosaFxenFhcXh/rS+tStt96qxsbGqp999plaVFRkfDU2NhrHfP/731czMzPVTz/9VN28ebOanZ2tZmdnh/Cq+49/F4+qDt17/+qrr1SLxaL+9re/VQ8cOKC++OKLakREhPrCCy8YxzzyyCNqXFyc+t///lfdsWOHeumll6qjR49Wm5qaQnjlvXfDDTeow4cPV1esWKEeOXJEfeutt9SkpCT1pz/9qXHMULn3uro6devWrerWrVtVQP3Tn/6kbt261ehU6c59nn/++erMmTPVjRs3ql988YU6fvx49ZprrgnVLXVbZ/fucDjUSy65RB0xYoS6bdu2Vn/2tbS0GO8xFO+9PW27eFR1YN67BCh+/vKXv6iZmZmqzWZTTznlFHXDhg2hvqQ+B7T79eyzzxrHNDU1qT/4wQ/U+Ph4NSIiQr388svVoqKi0F10P2oboAzle3/vvffUKVOmqHa7XZ04caL697//vdXzHo9H/eUvf6mmpKSodrtdXbBggbpv374QXW3fqa2tVW+//XY1MzNTDQsLU8eMGaP+3//9X6sPpqFy76tXr273/+8bbrhBVdXu3WdFRYV6zTXXqFFRUWpMTIx64403qnV1dSG4m8B0du9Hjhzp8M++1atXG+8xFO+9Pe0FKAPx3hVV9RunKIQQQggxAEgNihBCCCEGHAlQhBBCCDHgSIAihBBCiAFHAhQhhBBCDDgSoAghhBBiwJEARQghhBADjgQoQgghhBhwJEARQgghxIAjAYoQQgghBhwJUIQQQggx4EiAIoQQQogBRwIUIYQQQgw4/w+jEUXL1/ZDFQAAAABJRU5ErkJggg==\n",
|
| 592 |
"text/plain": [
|
| 593 |
"<Figure size 640x480 with 1 Axes>"
|
| 594 |
]
|
|
|
|
| 561 |
"name": "stdout",
|
| 562 |
"output_type": "stream",
|
| 563 |
"text": [
|
| 564 |
+
"84/84 - 2s - 22ms/step - loss: 0.0425\n",
|
| 565 |
"Epoch 2/10\n",
|
| 566 |
+
"84/84 - 0s - 2ms/step - loss: 0.0124\n",
|
| 567 |
"Epoch 3/10\n",
|
| 568 |
+
"84/84 - 0s - 1ms/step - loss: 0.0088\n",
|
| 569 |
"Epoch 4/10\n",
|
| 570 |
+
"84/84 - 0s - 1ms/step - loss: 0.0074\n",
|
| 571 |
"Epoch 5/10\n",
|
| 572 |
+
"84/84 - 0s - 1ms/step - loss: 0.0065\n",
|
| 573 |
"Epoch 6/10\n",
|
| 574 |
+
"84/84 - 0s - 1ms/step - loss: 0.0053\n",
|
| 575 |
"Epoch 7/10\n",
|
| 576 |
+
"84/84 - 0s - 1ms/step - loss: 0.0045\n",
|
| 577 |
"Epoch 8/10\n",
|
| 578 |
+
"84/84 - 0s - 1ms/step - loss: 0.0039\n",
|
| 579 |
"Epoch 9/10\n",
|
| 580 |
+
"84/84 - 0s - 1ms/step - loss: 0.0036\n",
|
| 581 |
"Epoch 10/10\n",
|
| 582 |
+
"84/84 - 0s - 1ms/step - loss: 0.0034\n",
|
| 583 |
+
"\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 80ms/step\n",
|
| 584 |
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
|
| 585 |
+
"Train Score: 28.98 RMSE\n",
|
| 586 |
+
"Test Score: 82.74 RMSE\n"
|
| 587 |
]
|
| 588 |
},
|
| 589 |
{
|
| 590 |
"data": {
|
| 591 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNgElEQVR4nO3dd3hb5fXA8a+W5b3jlcTZe5OQxOwRCBCgQAqFhlGg8CskZRVKaYGWUQK0hRaaQgerZVN2CoEQQgJkO3vv2PHee2jc3x9X90qyZVvykGznfJ7HTxzpSvde00bH5z3nvAZFURSEEEIIIXoRY6gvQAghhBCiJQlQhBBCCNHrSIAihBBCiF5HAhQhhBBC9DoSoAghhBCi15EARQghhBC9jgQoQgghhOh1JEARQgghRK9jDvUFdIbT6SQ/P5+YmBgMBkOoL0cIIYQQflAUhZqaGjIyMjAa28+R9MkAJT8/n8GDB4f6MoQQQgjRCbm5uQwaNKjdY/pkgBITEwOoNxgbGxviqxFCCCGEP6qrqxk8eLD+Od6ePhmgaMs6sbGxEqAIIYQQfYw/5RlSJCuEEEKIXkcCFCGEEEL0OhKgCCGEEKLXkQBFCCGEEL2OBChCCCGE6HUkQBFCCCFEryMBihBCCCF6HQlQhBBCCNHrSIAihBBCiF5HAhQhhBBC9DoSoAghhBCi15EARQghhBC9jgQoQgghRD+iKApvbchhZ15VqC+lSyRAEUIIIfqRrbmVPPDBDn72ejaKooT6cjpNAhQhhBCiHymqbgLgeEUDewpqQnw1nScBihBCCNGP1DbZ9e+/2lMUwivpGglQhBBCiH6kptGmf79CAhQhhBBC9Aa1je4MyrbjVRRVN4bwajpPAhQhhBCiH/Fc4gFYsac4RFfSNRKgCCGEEP1ItSuDEhNuBvpuHYoEKEIIIUQ/omVQ5k1KB+C7g6XUN9vbe0mvJAGKEEII0Y/UuopkTxqSwODECJrtTr49UBriqwqcBChCCCFEP1LjWuKJDTczZ1wq0De7eSRAEUIIIfoRbYkn2mrhPFeA8vXeklBeUqcEHKDk5eVx7bXXkpSUREREBJMmTWLTpk3684qi8PDDD5Oenk5ERARz5szhwIEDXu9RXl7OggULiI2NJT4+nptvvpna2tqu340QQghxgtMyKNHhZsalxwJQWtuE3eEM5WUFLKAApaKiglNPPRWLxcLnn3/O7t27+dOf/kRCQoJ+zNNPP81zzz3Hiy++yPr164mKimLu3Lk0Nrr7sBcsWMCuXbtYvnw5S5cuZfXq1dx6663dd1dCCCHECcqdQTETZTXrj9c1O0J1SZ1i7vgQt6eeeorBgwfzyiuv6I8NGzZM/15RFP785z/z4IMP8oMf/ACAf//736SmpvLRRx9x9dVXs2fPHpYtW8bGjRuZMWMGAM8//zwXXXQRf/zjH8nIyOiO+xJCCCFOOIqi6AFKbLiZMLMRi8mAzaFQ12QnLsIS4iv0X0AZlE8++YQZM2Zw5ZVXkpKSwrRp0/jnP/+pP3/kyBEKCwuZM2eO/lhcXByzZs1i7dq1AKxdu5b4+Hg9OAGYM2cORqOR9evX+zxvU1MT1dXVXl9CCCGE8NZgc+BwqjsYR7vmoGhZlLqmvtVqHFCAcvjwYV544QVGjRrFF198wW233cYdd9zBa6+9BkBhYSEAqampXq9LTU3VnyssLCQlJcXrebPZTGJion5MS4sXLyYuLk7/Gjx4cCCXLYQQQpwQtDH3JqOBCIsJgKgwV4DSx5Z4AgpQnE4nJ510Ek888QTTpk3j1ltv5ZZbbuHFF1/sqesD4IEHHqCqqkr/ys3N7dHzCSGEEH2RNkU22mrGYDDo30M/z6Ckp6czfvx4r8fGjRtHTk4OAGlpaQAUFXn3WxcVFenPpaWlUVzsvS+A3W6nvLxcP6Ylq9VKbGys15cQQgghvHkWyGoirSav5/qKgAKUU089lX379nk9tn//foYMGQKoBbNpaWmsWLFCf766upr169eTlZUFQFZWFpWVlWRnZ+vHfP311zidTmbNmtXpGxFCCCFOdLUt9uGBvptBCaiL5+677+aUU07hiSee4KqrrmLDhg384x//4B//+AcABoOBu+66i8cff5xRo0YxbNgwHnroITIyMrjssssANeNywQUX6EtDNpuNRYsWcfXVV0sHjxBCCNEFNa4x954BSl+tQQkoQDn55JP58MMPeeCBB3j00UcZNmwYf/7zn1mwYIF+zC9/+Uvq6uq49dZbqays5LTTTmPZsmWEh4frx7zxxhssWrSIc889F6PRyPz583nuuee6766EEEKIE1BNO0s8/TqDAnDxxRdz8cUXt/m8wWDg0Ucf5dFHH23zmMTERN58881ATy2EEEKIdtTqU2Td80766hKP7MUjhBBC9BO+imTdc1D61hKPBChCCCFEP6HVoMR61aD0zSUeCVCEEEKIfqK9DEptswQoQgghhAgBz52MNVqAUi8ZFCGEEEKEQo0+B8VXkazUoAghhBAiBHxOkg07ASbJCiGEEKL3aneSrNSgCCGEECIUtC4eaTMWQgghRK+hTZL1OepelniEEEIIEWyKorhrULy6eNQalAabA4dTCcm1dYYEKEIIIUQ/UNfsQHHFHzFWdxdPlMdyT30fqkORAEUIIYToB7QCWbPRQLjF/fFuNRsxGQ1A36pDkQBFCCGE6Adqm1wFsuFmDAaD/rjBYNDH3felVmMJUIQQQoh+QJ8i67Gko+mLOxpLgCKEEEL0A76myGqi+uAsFAlQhBBCiH5AW76J8ZFBieyDs1AkQBFCCCH6gVofGwVqol2txrLEI4QQQoigqvYxRVajD2uTJR4hhBDixPJ+9nGWrDwYsvPX+pgiq4nqg0Wyre9CCCGEEAHJLa/nvv9uw6nAJZMzyEyKDPo1tLfEo02TrZUaFCGEEOLE8dqao2hT5CsbmkNyDXoXj68lHtdj9X0ogyIBihBCCNEFNY023tmYq/89VMPQ3Es8PtqMpQZFCCGEOLG8u+m4voswhK6VV7sGn0WyrsdkiUcIIYQ4ATicCq+uOQKAa7ubkBWi1ja6R923JG3GQgghxAlk+e5CcssbiI+0cOrIZCB0SzzuSbL9o4tHAhQhhBCik176Ts2eLJiVSXK0FYD6ENV5uCfJSg2KEEIIccIqrW1i49EKDAa4PmtoyFt5228zllH3QgghxAmhvE5tJ46LsJAaGx7SZRSnU6G2ub0iWalBEUIIIU4I1Q1qUWqsq603Oix0AUpdsx3FNYfFZw1KCK+tsyRAEUIIITpB2/smLkINUNytvMEPArRzWkwGrObWH+16dqfZgVObKNfLSYAihBBCdEKVlkGJUD/8o0O4xKN18ERbzRgMhlbPey77NNj6Rh2KBChCCCFEJ1Q3qEGBtsQTykJUd4tx6w4egHCLMeRzWgIlAYoQQgjRCVoNinuJR+viCd0Sj68CWQCDwaDXoYRqTkugJEARQgghOsG9xOMqkrWGbtZIey3Gmr7WaiwBihBCCNEJbRXJhqYGRb0WXzsZa/RW4z4yrE0CFCGEEKIT9AxKuHeRbCiWUCq15aZI3zUo0PfG3UuAIoQQQnSCXiTbIoPSaHNidziDei0V9erQuITIsDaPkRoUIYQQ4gSgLfHEtiiSBXXeSDBVuKbaJka1E6C4Aqj6IF9bZ0mAIoQQQnRCVYtJslazCYtJ7eUN9jJKeZ16Le1mUPrYuHsJUIQQQohOaNlmDKGr89CWeBKjOq5BkSUeIYQQop9yOhVqmrQaFHfnTKjqPLQAJb6dDEq0LPEIIYQQ/VtNk3tzvliP6a3RIZo14k8NSmRY6AbJdYYEKEIIIUSAtOUdq9lIuMVdHBuKabIOp6K3GbdXgxLKvYI6QwIUIYQQIkAtp8hqQlGDUtVg07M58TIHRQghhDhx6S3GLUbLh2LcfblreScm3IzF1PbHuoy6F0IIIfo5bUhbXBsZlGAu8VTWd1x/AhAVJqPuhRBCiH6tuo0lnlDUeWgZlPbqT0DajIUQQoh+r+VGgRr3MLTgLaNU+JlB0duMZYlHCCGE6J+qW0yR1YQiS6FNkW2vQBbcbcZSJCuEEEL0U+4unjaKZENRg9LBEo9nAa+itf30YhKgCCGEEAGqbmyjSDYEk2T1GpSOimRdAYpTUXdc7u0kQBFCCCEC1HKjQE0oZo34W4MS4TFQri8UykqAIoQQQgTI10aBEJr9btxdPO3XoBiNBmJc16cV+fZmAQUov/vd7zAYDF5fY8eO1Z9vbGxk4cKFJCUlER0dzfz58ykqKvJ6j5ycHObNm0dkZCQpKSncd9992O29P5ITQgjRO2w4Us7Ty/Zid4RumUIf1NZGF09w56B0POZeMyDWCkBxdVOPXlN3MHd8iLcJEybw1Vdfud/A7H6Lu+++m//973+89957xMXFsWjRIq644gq+//57ABwOB/PmzSMtLY01a9ZQUFDA9ddfj8Vi4YknnuiG2xFCCNGfOZ0Kd729hfyqRk4elsjZY1JCch29aYmn3M8lHoDUmHAOl9RRVN3Y05fVZQEHKGazmbS0tFaPV1VV8dJLL/Hmm29yzjnnAPDKK68wbtw41q1bx+zZs/nyyy/ZvXs3X331FampqUydOpXHHnuM+++/n9/97neEhXX8wxVCCHHi2nSsgvwq9cO1qj50yxQdTZIN1hwUu8OpB0vxfmRQ0uLCAfpEgBJwDcqBAwfIyMhg+PDhLFiwgJycHACys7Ox2WzMmTNHP3bs2LFkZmaydu1aANauXcukSZNITU3Vj5k7dy7V1dXs2rWrq/cihBCin/tkW57+fagKPZvtThpsagDSqs3Y1cXT7HDSbO/5JSh/NwrUpLiWeAr7QIASUAZl1qxZvPrqq4wZM4aCggIeeeQRTj/9dHbu3ElhYSFhYWHEx8d7vSY1NZXCwkIACgsLvYIT7XntubY0NTXR1OReL6uurg7ksoUQQvQDdoeTz3a4PyvqQ7SnjGeBaUyrJR53p0xdk50wc8+uDGgdPLEdbBSoSY1RMyj9rgblwgsv1L+fPHkys2bNYsiQIbz77rtERER0+8VpFi9ezCOPPNJj7y+EEKL3+/5Qmd6xAqHblVfr4ImxmjEZDV7PmU1GrGYjTXYntU32DmeTdFWFa5nLn/oTcC/x9IUMSpfajOPj4xk9ejQHDx4kLS2N5uZmKisrvY4pKirSa1bS0tJadfVof/dV16J54IEHqKqq0r9yc3O7ctlCCCH6oE+25gNgcMUEocqgVLWxUaDGc2JrT9MCNn/qTwBSXUs8/bIGxVNtbS2HDh0iPT2d6dOnY7FYWLFihf78vn37yMnJISsrC4CsrCx27NhBcXGxfszy5cuJjY1l/PjxbZ7HarUSGxvr9SWEEOLE0Whz8OUudXnntJHJANSGKoPimiLbVoASzE6eijr/O3gAUmPdSzy9fdx9QAHKvffey6pVqzh69Chr1qzh8ssvx2Qycc011xAXF8fNN9/MPffcw8qVK8nOzubGG28kKyuL2bNnA3D++eczfvx4rrvuOrZt28YXX3zBgw8+yMKFC7FarT1yg0IIIfq+b/YVU9NkJz0unDNHDwBCWIOitxj7rpJwbxjY8wGU1mLszwwUgBRXDUqzw6kvD/VWAdWgHD9+nGuuuYaysjIGDBjAaaedxrp16xgwQP0fy7PPPovRaGT+/Pk0NTUxd+5c/va3v+mvN5lMLF26lNtuu42srCyioqK44YYbePTRR7v3roQQQvQrn2xTl3cumZLhsSFfaDIoHS/xBG/X4Eq9BqXjDh6AMLORpKgwyuqaKaxq9DvzEgoBBShvv/12u8+Hh4ezZMkSlixZ0uYxQ4YM4bPPPgvktEIIIU5w3x4oBeCiSenklNcDwR2G5knr4mk5A0XjzqD0vhoUgJTYcMrqmimqaWQ8vbdkQvbiEUII0as12hzUuOo+hiVHERWmZihCt8TjqkEJ73s1KABpWqFsVe8ulJUARQghRK9W5voQtpgMxIab3QFAEDfk81TVxkaBGm1YWzAClEBrUMBdKFvUy2ehSIAihBCiVyurVT9Ik6KsGAwGooIYAPji3igw9EWylQHOQQF3gNLbZ6FIgCKEEKJXK3UFKMkx6odwZBCLUH2pbmOjQE0wi2S1GpQEP8bca9ytxhKgCCGEEJ1WWqt+CCdFqbUTWhdPfbMjJLM8qjtY4glWDYrnRoGBTKxNi+sb+/FIgCKEEKJXK9MClGhXBsVVJGt3KjQFYUO+lvwd1NbTXTyVDe45JvFtXIsv2iwUqUERQgghukCrQUmOVn/zjwxz137Uh6BQtsMi2SCNuq90FcjGRVgw+7FRoEZb4imra8LmCH6A5y8JUIQQQvRqWhdPsiuDYjIaCLeoH1/BrkNRFMVdgxLiItnyOtfyTgD1JwBJUWGYjQYUBUpqem8WRQIUIYQQvVqpRxePJpgb8nlqsDmwO9W6l7bnoASnSFYvkA1wGqzRaCAlpvdvGigBihBCiF6ttEUNCriXeYI97l5b3jEbDXotTEvRQSqSrXAt8SQGMANFkxqn1aFIgCKEEEJ0SssaFHAXygZ7mqw+RTbCgsFg8HlMsIpkO5tBAUjtA4WyEqAIIYTotZxORf8g9gxQgpWlaKmqg52MwfvaerINOr+yAQi8BgUgLa73D2uTAEUIIUSvVd1o02s+PKelRoZoR2N9qq1HsNSSlkFxKtBo65kumbomu77D8+zhSQG/PiVWalCEEEKITtMKZGPDzYSZ3R9ZodowsMR1PQPaCVAiLe7alJ5a5nlvUy41jXaGJ0dx9piUgF+fFis1KEIIIfoYu8PJsp0FXPuv9Uz87ResO1wWsmvRCmSTWwQEwdzvxpPWljsgpu0AxWg06AFUTyxBOZwKr6w5CsCNpw7FaPRdC9OevrBhYNuLaEIIIU44y3YW8ttPdnp9cK05VNapZYTuUNZWgBKqDIofAQqoAVRds6NH2qBX7CniWFk9cREW5k8f1Kn30AOUKsmgCCGE6AOWrDxIUXUTydFhjE+PBdwTS0OhrE6r+fDuVAlVDYq/AUp0D17fS98dAeCamZleU3UDkeqqQalpsods08WOSIAihBBCl+fqDHntpplcOUP97VzrogkFXzNQIHRdPKU+Wp59iXZ1+dQ02to9LlA786pYf6Qcs9HADacM6fT7xIRb9CxUb61DkQBFCCEEAI02hx6MDIyPIME1AKwihBkUX1NkwT0HJdiTZP3NoGg/u+4O7l5fdwyAiyalkx4X0aX30pZ5emursQQoQgghAChw1SNEWEzERVj0AWDani+hoA9pi2lZg6JmKIK5WaCiKO4ung4CFC3jU9bNAcrugmoA5k1O7/J7addYEcL/vu2RAEUIIQQABVXq8k56fDgGg0EfoR7SGhStSLbFtNRgTWv1VNVgw+ZQZ7IkR7c/vVVbAtICrO6SX6kGkQPju5Y9AYiLUO9BGz7X20iAIoQQAoAC14dfhmvpICFKnVBaXtfcoxNR26NlIFoORou0Br+LR1veiYuwYDX73odHk+QKqLQamu7QaHPoS17dE6Co/30rG0IXgLZHAhQhhBCARwbFNQZdq6NosjtpsAW3W0ZTWuO7i0df4gliF4+/9SfgDqhKuzGDUuixBBffifH2LWnvIRkUIYQQvVq+6wMw3fXbeWSYSZ/eGopOnkabgxrXEk5yVMtBbWoGI5hLPP5MkdVoS0Bl3ZhByW+xBNdVWgalql4CFCGEEL1YgavFOMOVQfGuQwn+h5gWFFlMBmIjvOd9hKJINpAMil6DUtd9GZTurD8ByaAIIYToI7QuHm2nW8Cjkyf4GRQt+5AUZW2VMdBqUOqae3bHYE+BLfG4MyhOZ/dcX74eQHZPgKLXoEgGRQghRG+mfwB6/Iae4PotOxSzUErbmCIL7gyKohC0+phAAhRt52W7U6G6m4a1eXZZdQd9iUcyKEIIIXqruiY71Y1qPUd6L8mguAtkWwcEERYTWlIlWOPuA6lBsZpNxLqmyXZXJ0+e1mXVTUs8EqAIIYTo9bTfzmOsZmLC3R0iifo02eB/iGktxr5mjhiNBiItwW011jIoLYfGtaW7Z6F09xJPfKTMQRFCCNHLaQWYLZcPtAxKRUhqUNrf9yYyyMPaSgPIoED3TpNVFMVdxNzNSzy1TXZsDme3vGd3kgBFCCGExwwU79/OtRqU8hDUoLiLZH1PbdU2DAxGJ4/d4dQDDX9qUMC9f1B3zEKpbrBT57rP7lri0Zag1PfvfVkUCVCEEELoGZSWv50nhjCDUtrGFFmNvmFgEDIo6jRdMBrcP5OOaBmU7qhB0XaZTowKI9zS/hRbf5lNRmJcQV6lBChCCCF6o7YzKKGrQdGKZNva9yaYs1CKPQp2TUb/hqR1Zw2K9t+nu5Z3NHG9eBaKBChCCCH0GSieHTwQ2gyKNuSsrRqUYE6TDaSDR9Od02S7u0BW05unyUqAIoQQwucMFHBPGy2vD+6GgYqiuGtQ2sigaEWy9cEIUAKYgaLpzv14urvFWNObp8lKgCKEECc4RVE6zKA0251BHStf3WDH7prA2lbNR5RWgxKE6+pUgBLVfV08PbXEEx+hbWXQ+3Y0lgBFCCFOcNUNdj34aFmDEmExYXVtGBjMabLauaLCTFjNvotCo1wZlGAUyXYmQNHmpXRHBqWtDFdXxerD2tw/wwNFNSzdns/+oppuPVegJEARQogTnLZLbnykhYgw72DAYDB41KEEbxlAW3LQhon5Eswi2U7VoLjajGsa7TTZu3aN+pyabq5B0ZZ4KhvcweeXu4tY9OYW/r7qcLeeK1ASoAghxAmurQ4ejRYkBHMWihagaL/h+6JvGNhLMyixEWbMro6frhTKOpwKhdXdu5Oxxte4ey1bM7Cbl5MCJQGKEEKc4PQZKHG+P5ASo1wbBgaxk0ebyxEXYW7zGG1QW10QRt2XdiJAMRgMXrsad1ZxTSMOp4LZaAjo/P6I99HFowUo6d0cDAVKAhQhhDjBFVb5HnOvcc9CCX4GJa69DEqYVoMSvCLZtlqe26JPk63rfB2KFkCmxob7PYPFX74yKFrBdHfXuwRKAhQhhDjB5XewxBOKWSja6HWty8QXrYunpzcLbLQ5qHEtIwWawdAKZbuSQXEvuXR/wBCn16C4A5Q8feaKLPEIIYQIoYI2xtxrQlmDon2A+hKlbxbYsxkULXsSZjZ67V/jj+Qobdx9VzIo3dNinF+bz43LbuSSDy9hRc4KFEVplUGpabRR06gGY6Fe4gnsJy2EEKLf6ahINjFSq0EJXhePNpejvSUebZJsT2dQPDt4DIbAlljcNSidD1D0GTVdCBhWH1/NA98+QHVzNQB3rbyL0waexk1j7wbUGhTPeThxERa9xidUJIMihBAnOG2fmdTYNmpQok7sGpTOdPBokqK7vsST18UZKH/b+jcWrlhIdXM1E5MmcuPEG7EYLXyX9x23fbMAo7WAZoeTRptTP1fLgX2hIAGKEEKcwJrsDn2OSEIbyylaDUp5EGtQ/AlQosKCM6hNW2JJ6USAohXVlnbhZ9eVtt9tJdt4YdsLAFwz9hpeu/A17pl+Dx9c+gFTBkyhydFIeOrngDoLRVvu64l6l0BJgCKEECcwrb3UaIDYcN/BQCi6eCrr/QhQXEs8DTYHDmfP7RO0M09dFhmXHhvwa/1d4lEUhbc25LDmYGmrx4+V1QMwKCEy4PO/uedNAC4Zfgm/nvVrwkzq9QyNG8ri0xdjNpoxRe3HFHmQqgZbj02s7QwJUIQQ4gRW4REIGNtoYU3wmCQbrA0Dq/3JoHjUSDTYem6ZZ0deJQCTB8UF/FptmmxHRbKrD5TywAc7WPTWFq+fcV5lA7VNdiwmA8OSowI6d0l9CV8e/RKABeMXtHp+cMxgrhp9FQDWlGVU1DV7zECRJR4hhBAhpBWjtjdSPtH1XLMjeBsGukfdtx2gWM1GtJiqp5Z56prsHCyuBWDSwMADFM9Bbe0Fd2+sOwaoy2haHQjAvkJ1P5wRA6KxmAL7yH5v/3vYFTtTB0xlQtIEn8fcOvlWDIoVU8Rxvs1fobecyxKPEEKcoJZuz2f2EytYvb8kpNehZVDaCwQiwkyEW9SPi2DUodgcTn2H4vYyKAaDocc3DNxdUI1TgbTYcFLaKCJujxag2J0K1Q2+r7GgqoEVe4vd58yv1r/f59qwb3RqTEDntTlsvLvvXQAWjGudPdGvLyKJdGUuAP87/jJ5lXVA9+/50xkSoAghRAgs3VZAYXUjv3p/e4+3ybanyrVJXHw7gQAEtw7Fc6ppTBt1MZqe3jBw+/EqACZ1YnkHwGo2EeOandLWNNl3NuZ61dDsLvAIUFwZlDFpgQUoXxz7grLGMlIiUjh3yLntHjsqfB5OexTlzfmUGL8Auj5zpTtIgCKEECFwvFItfMyvauS5FQdDdh1aBiWhnSUez+eDkUHRNwoMN3c42l3bMLC2hzIoO/PUAGVyJ5Z3NHonT03rAMXucPL2hlwApg6OB2CPrwAlwAyKVhx71ZirsBjbD/KSo+JoKr4QAHPyF5ijDrXZch5MEqAIIUQIHK9w1xn869vDHHCl8oNNy4i0N7EV3K3GlfU9P6zNnymyGm2YWE9lobYfrwRgYiczKABJrp9dmY/gbuW+EgqrG0mMCuPu80YD7gyKzeHkcIm65BJIBmVr8VZ2lO7AYrTww9E/7PD4uAgL9qrpRDXPwmBQiBz4NpVNZX6fr6dIgCKEEEFW02jTP+hPHZmE3anw4Ec7g9Yh46nK3wxKEGehVPnRYqyJdO3H0x3D2oqrG/l8RwFO13JLTaONw6VqgNCZAlmNVofiq5PnjfVqceyVMwYxdVA8ALnlDVQ12DhaWkezw0lUmCmgotV/7fgXAPOGzyMpIqnD49Wfs4HynEtwNKahmGq4d9W92JzBmxzsS5cClCeffBKDwcBdd92lP9bY2MjChQtJSkoiOjqa+fPnU1RU5PW6nJwc5s2bR2RkJCkpKdx3333Y7aFbgxVCiGDSujQSIi08ecVkwi1G1h8p59PtBUG/Fi2D0taQNo32fDBrUPwJULpzWNvvP9vDbW9s5uXvjwCwK78aRVE7WgLdxbiwrpAVOSuwOW2kxKjLJcXV3gFKbnk9q1xF0tecnElcpEUPRPYWVOsFsqNSY9psAW9pX/k+Vh1fhdFg5OaJN/v1Gq1AutlmpuH4tZiIYHPxZp7b/Jxfr+8pnQ5QNm7cyN///ncmT57s9fjdd9/Np59+ynvvvceqVavIz8/niiuu0J93OBzMmzeP5uZm1qxZw2uvvcarr77Kww8/3Pm7EEKIPuR4uRqgDEqIZHBiJDedOgyAL3cVBv1a9IFovbAGpb2djDXuDQO7HqBoA9H+vvowjTYHO7QC2QCzJ6UNpSz4bAF3rbyLqz69Cof1AODeU0ez4Ug5igIzhiQw1DXjRBsGt7ugWq8/GRvA8s4/d/wTgPOHnM/QuKF+vcYzEFRsyWTF3o7RYCTCHBGSrJ6mUwFKbW0tCxYs4J///CcJCQn641VVVbz00ks888wznHPOOUyfPp1XXnmFNWvWsG7dOgC+/PJLdu/ezeuvv87UqVO58MILeeyxx1iyZAnNzcGbUiiEEKFyvEL9INR+Wx7r+lAq9lFE2dMq9SWe9rMV2jJFUItk/cigJLZT3xEoLTtUUtPEOxtz2Z4XeAeP3WnnvlX3UVyvtg0frDzIp8UPE57xJvnVFV7Haps0eg5gG5/hClDy3QGKvy3GR6qO6IPZfjrpp35fc8sW81kpZ/LxDz7m9qm3B7w5YnfqVICycOFC5s2bx5w5c7wez87OxmazeT0+duxYMjMzWbt2LQBr165l0qRJpKam6sfMnTuX6upqdu3a5fN8TU1NVFdXe30JIURfpRXIDkpQAxRtj5eSUAQoeptx+9mKpKiub3rn9zUFUIOS5trUrrBFdqIzKjyCnBdXHWJLjhpQBDJB9tnsZ9lUtIlIcyT/ufA/XD3magwYscRt55D9Ha9j833sUjzeFazuKXQv8fibQXlpx0soKJw16CzGJI7x+5pb/pwz4iP8zr70pID3Un777bfZvHkzGzdubPVcYWEhYWFhxMfHez2emppKYWGhfoxncKI9rz3ny+LFi3nkkUcCvVQhhOiVtBoULUDRWjqLqrv+IRsIRVH8GtQGHoWebczy6E7+TJHVpMV2T4BidzipblSXiWLDzV7LMRMz/AtQlh1Zxr93/xuAx097nKkpU5maMpUxsTN5ZOM91IevIbc6l8GxgwEo0Pa98dg5eIIrg7KvsAa7q1h3tB8BSl5tHv87/D8Abpl8i1/Xq4lrEZz2hn14IMAMSm5uLnfeeSdvvPEG4eHB65F+4IEHqKqq0r9yc3ODdm4hhOhu7gyKuvmblkGpb3b02DwPXxpsDprtTsDdpdOWpGB28QRQJKtnULoY3FW6zmkwwM/PGaU/PjgxosOfDUCTo4nH1z8OwE0Tb+K8Iefpz1008mzstaMxGJz8efPz+uMFPjIogxIiiLGasTkUFAWSo8M6LNB1Kk4eXfsodsXOrPRZTB4wud3jW/KVQekNAgpQsrOzKS4u5qSTTsJsNmM2m1m1ahXPPfccZrOZ1NRUmpubqays9HpdUVERaWlpAKSlpbXq6tH+rh3TktVqJTY21utLCCH6Kq0GZVCi+kEQZTUT5WqXLQ5iFkVbSjEbDfr525Lk+pCsrLdhczh79Lq06bb+BCjprgCloKqhSwWd2p5EseEWrp09RA/IJg+M9+v1q3JXUdVURWpkKj+f9nOv5yLDzJirLgJg+bFl7K/YD+DeOdgjg2IwGBiX4f6M86f+5M09b7Imfw1Wk5Vfz/y1X9frKcxs1Nu1rWZjh/VIwRJQgHLuueeyY8cOtm7dqn/NmDGDBQsW6N9bLBZWrFihv2bfvn3k5OSQlZUFQFZWFjt27KC42L3vwPLly4mNjWX8+PHddFtCCNE71TbZ9WUVz9kW2j4vwSyUrfDYKLCjYsj4CIu+MV9FD2dRAsmgaMtjjTZnm3vd+KO8Tj1nYlQYEWEm7ps7BoMBLpqU7tfrlx5eCqizR8zG1tUTGRGjsFVPQkHh+c3PU9dk15eU0ltkLLQ6FOg4QNlfsZ9ns58F4N4Z9zI8frhf19uS9rMeGB8R0sJYTwHVoMTExDBx4kSvx6KiokhKStIfv/nmm7nnnntITEwkNjaWn//852RlZTF79mwAzj//fMaPH891113H008/TWFhIQ8++CALFy7Eag2sz1wIIfqaPNfyTnykxWufmQExVo6U1gU1QKnys/4EwGg0kBhlpbS2idLa5k5tnOf3dQUQoIRbTCREWqiot1FQ3eDX9Flf3MGa+vqrZ2ZyxUmDCDN3/Ht8ZWMl3+Z9C8Alwy/xeUxqXDj7j55PWOwuvjn+DSuPbgAgJtysT8PVeAYo7RXINjmauH/1/TQ7mzlj0Bn8aMyPOrzWtsRFWCioauw1yzvQA5Nkn332WS6++GLmz5/PGWecQVpaGh988IH+vMlkYunSpZhMJrKysrj22mu5/vrrefTRR7v7UoQQotdp2WKs0epQgrnEU+Fni7EmOVpr6e3ZICqQAAUgzbXzbss5I4HQskKeE3X9CU4Alh1dht1pZ1ziOEYmjPR5THpsOErzAEZHnQPAq3v+DkCGj12Dx3su8bQRoBypOsItX97CwcqDJIYn8ugpj3Yp86H9rNPjQr8HjybgLp6WvvnmG6+/h4eHs2TJEpYsWdLma4YMGcJnn33W1VMLIUSf07LFWKNNGw1mq3GlXuvRcREouDt5erLVuNHmoNGm1rj4mw1Ji7WypwCKuhKg+Dny35dPD38KwMXDL27zmFTXB/8gwyUcMnzDvqrNGCNmkR4/o9Wxo1KjSYoKw+5UGDkgkic3PMnmos2MTxrP1JSpFNcX8/dtf6fZ2UykOZLFpy/2a6R9e7TMUW/KoHQ5QBFCCOE/vUDW1cGjSY1VMyjBbDX2d0ibJlGbhdKDNSjVruyJyWggxtrxR9Sbe95kq/EvmGOuoKBqVIfHt8Xfkf8tHas+xvaS7RgNRi4aflGbx2mZieqaGC4dfSkfHPgAa/IK0uNOb3Ws1Wzig9tPodlh57END7Ls6DIA9pTv4f0D7+vHnTbwNB6e/TDp0f7VybRnzrhUso9VcvbYlC6/V3eRAEUIIYKozQyKK0AJZg2K1rniTxsteOzK62PTu+6iT5ENN3e4ZJFfm8+z2c9ip5HwjHc5UDEJGN2p8+pLPH7+LDRacWxWRhbJEcltHuc5UO6RiT/lwwMfYY7ejzkiF5jU6vj0eAv3rnqAlbkrMRvN3DHtDioaK9hWso0aWw03TriRi4df3G0FrVfOGMwPpw/qNQWyIAGKEEIEVcsZKBp9Q7mgdvEEVuuRHIQlnkDqT/646Y80OhoxYARjMxvqn6Gm+XRiwvzfu0bjzqD4H6AoisLSQ2qA0lZxrEYfKFfdyODYwcQ7Z1FhXMvuhg8Ad+alydHEytyVvL77dbaVbCPMGMazZz/LGYPOCPCOAtebghOQAEUIIYLKvcQT+iLZygA/lLVZKD1ZJOvvmPu1+WtZfmw5JoOJheOe4s/bHqPJUsRvvvsNfz77zxgNgfWAaMFaYpT/Szzf5n3L8drjRFmiOCfznHaP1ZZ4yuuaabQ5MFSdixK/jv0163l///vU2mrZX7GflbkrqWlWR9xHmCN47pznmJ0+O6B76S8kQBFCiCCp85yB0kaRbHWjnUabg3BL+4PTukNlAG3G4F7iKQ1GBqWdoMnmtPHkhicBuHrs1ZyVeQqL/3ctUUNfZGXuSt7a+xYLxi0I6LzaEk98ABmUl3a8BMCVo68kwtx+cWlchIVwi5FGm5Oi6kZKyuNwGidjidvG79b+zuvY1MhULh1xKVeMuoJBMYMCuo/+RAIUIYQIEm0PnrgIC7Hh3kFBbISZMLORZruTkpomBidG+nqLbtVy9kdHkoLQZuzPEs+be97kcNVhEsMTuX3q7eAMx9k4mMaiiwhP+5T/7P4P14y9JqAsivazSPSzBmVz0WY2F2/GYrRw3fjrOjzeYDCQFhvO0bJ69hfVUt/swFByHqMGV2M2mhgeN5zh8cM5KeUkZqbNxGTs+QC1t5MARQghgqStGSigfoClxFg5XtFAcU1jUAIUfVM+f9uMXV085T2YQanUAxTfH08Op4N/71I35Ltj2h3EhsWiKApRYSbqKk8madBK8mrzWF+wnqyMLL/O6XAqAW1QCPDyzpcBuHTEpaRE+tf5khanBiibXbskx1vS+fTyT/x67Ymo2we1CSGE8K2tDh6Ne1fjni+UVRTF3WbsZ92FlkGpa3bQ0Ozokeuq7iCDsq5gHcUNxcRZ47hkhFqYajAY1C4ZJYwZyecC8MGBD3y+vq1zujYO9qseZ3/FflYdX4XRYOTGiTf6fZ5011C2zccqvP4ufJMARQghgqStDh5NMAtla5vs2F2fyv4WyUZbzfp01Z5a5ukoq/PxoY8BuHDohYSZ3MdobbzjotVdhFfkrKCiscKvc2rLOzFWMxZTxx+LWvbkvCHnMSR2iF/nAHcAuv14FQAZ8b1namtvJAGKEEIESVsdPBo9QAlCq7GWPbGajX4X5BoMBpKjerbVuL0alJrmGr7O+RqAH4z8gddzabGun2nzQMYnjcfmtPHJIf+WT/RaHD8ySXm1eSw7og5Ou2niTX69v0br5GmwOVx/lwxKeyRAEUKIIMmrVDMjbY0TD+aOxp2Z+wGQ2MOFslrrc6yPAGX5seU0OZoYHjecCUkTvJ5L9xiENn/UfEBd5lEUpcNzVmg7Gfvxs3hn7zs4FAez02czPml8h8d7Sm2xwWK6ZFDaJQGKEEIEiTaBdUCM753bB4Qgg+JvUahGK5TtqVbj9opVPz6oLu9cMuKSVkPFtL1uCqsbuWjYRUSYIzhcdZitJVs7PGd5vX8txg32Bn3UfKBtzNB6Iz5fGwUKNwlQhBAiSLRlEW0ia0vBrEEJtMVYoxXKlvfQfjxVDXag9RJPbk0um4s3Y8Dgc1O+9Fh3BiU6LJq5Q+cC8N/9/+3wnJV+thgvO7KM6uZqBkYP5PSBrffQ6UjLAKU37RzcG0mAIoQQQVDfbNdrD7SJrC0Fc0djLVMR6BJPsjZNtgf241EUhSp9h2XvAOXTQ+qOwbPTZ5MWldbqtVqRbIFrR+Mfjv4hAF8c/YLKxsp2z1te13E2SVEU3tz7JgA/GvOjTs0pSYq2YjK6Mz+9aefg3kgCFCGECAIte2I1G4kK8/3hpu1oXFbXTLPd2aPXU+HHh7IvST1YJNtgc2BzqDUjngGKU3HqBa+XjrzU52u1AKWsrolmu5PJyZMZlziOJkcTHx78sN3z6hmUdoK1bSXb2Fu+F6vJyuUjL/f/pjyYjAZSXVkyg6F1TYrwJgGKEKLfK65uxOnsuFiyJ5W4Mg7J0dY2N2VLiAzD7PoNu7QHdwwGqGwIfLQ7uLM/pT2wxKNldSwmA5EeQdy6gnXk1eYRbYnm3Mxzfb42MTKMMJMRRYHimkYMBgNXj70agHf2vYPD2fbcFm25Kr6dJZ4396jZk4uGXUR8eHxA9+VJC6SSo616y7bwTX46Qoh+beW+YmY+sYK/rjwY0uvoqP4EwGg0BK1QVi+S9XMnY407g9L91+fZYuwZxGl1JBcPv7jNPW+MRgOpcerPrtC1zHPhsAuJDYslrzaP7/O/b/O82s/CVwbFqTjZVLiJ5ceWA+hBT2dpAUqG1J90SAIUIUS/tvFIOQDvZef61XLaU7QP9LbqTzTBKpTtbJuxvh9PF5Z4so+VM++5b9l0tNzr8WNl6pwYz2LV0oZSVuasBODKMVe2+75pse5OHlB3A9aWY97a+1abryvXfxbuYK2soYw/bfoTc9+fy41f3IhdsTN1wNSAW4tbX6MaYMkMlI5JgCKE6Ne0sfG55Q0cLq0L2XWUuZYRkjroFBkQE5xZKFrWIC7gLh7Xfjx1zZ0O+N7fnMeu/Gr+suKA1+Nf7CoE4JQRyfpjHx38CLtiZ8qAKYxOGN3u+6a5PvS1DAqoBa0GDHyX9x051TkAfLajgI+25OnHaDUoCa7/NvvK93H1/67m1V2vUlhXSKQ5knnD5/GHM//Qqfv1dPLQBABmuP4UbZPNAoUQ/VpxjfvD6pt9JYwYEB2S6yj1N4MSG6wlnk5mUFwf4s0OJzVN9la7MvujwLWr8/cHSympaWJAjJVmu5OvdhcBcOFEtUvHqTj15R2tK6c96S06eQAGxw7m1IGn8l3ed7yz7x1unXgXP39rCw6nwvQhCQxKiKCi3t3RtDJnJfd/ez8N9gaGxg7lrpPu4tSBpxJu7p4lmQsnpbPlofP0YEi0TTIoQoh+rdhj471v9hWH7DpK/ahBAfcST0lN9yzxtJXlqNTbjAMLMMItJqKt6u+2nV3m0QIIp6JmMwDWHi6jutFOcnQYM4Ymqo/lryWvNo8YS4w+16Q92s+uqMXy2DVjrwHg3X3v8r+9G3G4Cqa/PVBKdaNd/bvBxlsH/s6dK++kwd7ArPRZvH7R65w75NxuC040Epz4RwIUIUS/5plBWX+4nPpme0iuo8yji6c93bmj8cHiGmY8/hVLWhQIO5yKuyA1wAAF3DUinS2ULfQIID7Zlg/Asp1qoHL+hDR9VoiWPblkxCVtFsd60n52xS1+dqcNPI1TB55Ko6OR53b9GoO5GoDvDpZQWd+MKWof0SOe5eVd/0JB4arRV/HCnBeIs8Z16v5E95AARQjRbzXZHR7pewvNDidrD5WF5Fq0bEOSnxmU4m7IoKzeX0pZXTN/+nIfu/Or9ce35laiKOosjrZ2DW6Pdg+dGXff0OzQ618Aso9VkFNWz5e7vJd3cmtyWZmrFsf6s7wDbf/sjAYjfzjjDwyLG0ado4yIQf8BQxPf5X/D/d8vIjLzFQyWclIiU/jTmX/iwdkPYjEGHriJ7iUBihCi39ImsoaZjFw0KR1Q61BCQdtcT9vLpi3aNNmWWYCunNOpwEMf78TpVKhvtnPve9sAuHRKRqdmcWj30JkNAwuq1PqTqDATs4erSzkPf7KTsrpm4iIszB6eBMDftv4Nh+IgKz2LUQmj/Hpvz+xTy6WtmLAYnjv7OXBEYorIJXr0Yygpr7KrYhOKYiSm6Vw+uewTzh96fptzakRwSYAihOi3tELTATFWzh6TAsA3+4uD3m7scCr6MLDkmA4yKLHaZnxNeq1EZ5XWuDMc2ccq+G/2cRZ/tpcjpXWkxYbzyKUT2nl125K70Gqsddikx0dw6ZSBgDtoPG98KhaTkX3l+/jf4f8BcOf0O/1+b+1n12BzUNvUeikvTEml/viPURQjBqMdpz2aiPo51B36BSNM1xBliQr4fkTPkQBFCNFvabNEUmKtnDIyiTCTMSTtxhX1zWixRnvj1EHtkjEY1KxHZzIUnrTOobFpMQA88uku/rPuGAB/uHJywFNk9WvswoaBWoFselw4F05M0yfngnt557ktz6GgMHfoXCYk+R9ERYaZ9QJeX11Q23IrcdSPJLX2bi7PeJC6A7+i+NgcFFtSwN1MoudJgCKE6Le0D6mUGCuRYWZmuZYUVu4NbjePlmlIiLRgNrX/z67ZZNSXULq6zKONo79rzijGpMZQ16yOe//JKUM5fdSATr+vdn2dGcdfUNWAMayIivD/8sSm35A6+jUihy4hOv0LRg90kF2UzerjqzEZTCyauijg99eyKC07eQC2Hq8EYGbGdG6cdjGekzYC7WYSPU8CFCFEv6V9wGu1CWeOVj+UVx8oDep1+DtFVuNuNe5igFLjvv/HL5+I2WhgdGo0918wtkvv6y6SDez6mhxNrCz6N5HDn+OYfRnLji6j2rAbU0QuhviVXPrxPO5ddS8AV4y6gqFxQwO+tvZ+dttyKwGYNjieoUmRDEpwdwZJ62/vI4PahBD9lvZbtPahNX2IOr3zQFFNUK9Dy2R0NANFPfggL9bewUZLBhWli4GUTp1TURQ9gEiOtjI4MZKV955FfKSFiDZ2U/aXVsgbSCv0+oL1PLbuMY41H8NggBFRM5g//hzirfGU1jbxTf5SNhdnU9pQitVk5WdTftala2uZfXI4FXYcrwJgyuB4DAYDp49K5q0NuUDgA+tEz5MARQjRb7mXeNQPrSFJahFkQVUjjTYH4ZaufVD7S8tkdJhBcTrgo9vItB0m03SYulWXwYAlMObCgM9Z1+ygye50nVf98B2cGBnw+/gyMF7NPORXNqAoSoddLw6ng8XrF3Os+hhGZxx1+Rdzx/wbOWdsqn7MjVN+yM7SnXx88GNmpc8iJbJzgVlqG0s8h0pqqWt2EBlmYmSKOk34tJED3AGKZFB6HQlQhBD9VpFHkSyodQYx4WZqGu3kltczKjUmKNehFbsmd/QhuP7vcHwDTaYocmzxjLLlwVtXw6l3wnmPBnROLSiKDDMRGda9/9SnxlkxGKDJ7qS8rrnDwMtkNPFw1sN8duQz/rt8EvY6MxnxrQevTUyeyMTkiV26tpQ29jLa6lremTQwTh8Ed8qIJAwGUBSpQemNpAZFCNFvlbTIoBgMBoYkqVmEo66dc4PBPaStnQ/y8sOwQg1Ctoy5h4ubf88XcVepz33/HNQUBnTOUj8n13aG1WzS3ze/su2Bcku35/PMl/twOBVOSj2Je6c/QGWdGiz11G6+bRXJavUnUwfH648lRIVx4cQ0YsLNjE+P7ZHrEZ0nAYoQol+yOZz6DsJa2h/cyzzHyoLXalza0RRZpxM+uQPsDTDsDCrHLaCJMF4I+wkMmgkosOujTp3Tr7qXTtAyIPmuwWue7A4nv/tkF4ve3MJzXx/k+4NqUbI2AyUyzERseM8k8LVgtGWRrJZBmeIRoAA8d/U0tjx0nt8FzCJ4JEARQvRL2geU2WjwKoAc4qrDOBbMDEpdB9mMHe/B0W/BEgmXPk9KnMeH7MT56jE7/xvQOf3dPbmzBsar15hf6R2gVNXbuPHVjby65qj+WPaxCvVYVzCTFhfeY9Nafe0G3WhzsLdQLYxuGaCYTcYOW79FaMh/FSFEv+Q5RdboMQxsqJZBKQ9egOJebmkjm7HpJfXP0+6BhKFee8ooEy4DgxGOb4SKo36fs0zPoPRMgKIt0XgGKIqicP3L6/n2QCkRFhMXTFAHr21xZS8KPYa09RStpby2yU6da5rsnoJqHE6F5OgwMnrw3KJ7SYAihOiX3AWy3h9ImUlaBiV4Szx6DYqvfXhK9kPuejCY4KTrADWoArA5FCqMiTD0NPXYnR/4fc4Og6Iuci/xuGs9imua2Ha8CqMB3r/tFBadMxKALTkVOJ2KxxTZnqk/AYi2mol0tVFrQaqWPRmXHiv77PQhEqAIIfolzymynrQMSl5FAzaHs8evo77ZTr1rgqvPGpStr6t/jjofYtSMg9Vs0rtKimsaPZZ5OhOg9EwGRctEeGZQDhXXAmqdz/iMWMamxRBuMVLTaOdQSa2+UWBPZlDAnUXRtjrYW6Du5DxOCmH7FAlQhBD9UkmLIW2alBgrVrMRu1NpVT/RE7TsidVs1PeJ0TlssPUt9XtX9sR9nR4Dx8ZdCkYzFO2Akn0BnbfHApT41ks8h0rUAGXEADUINJuMTB4UD8CWnEp9iSethwMULQNV5ApS97gyKNqeRKJvkABFCNEvFbUYc68xGoPbalxW5w4UWi0vHFgOdcUQNUDNoHjwKvaMTIQR56pP7Hzfr/O6i2R7domnuKZJz0QdKlGXzUYMiNaPOylTnd67OafCa6PAnqTX8FQ3oiiKnkEZmyYZlL5EAhQhRL9UXOM7gwKQmaj+hp8ThDoU9xRZH4HCFtfyzpSrweQ9KGyAR6Es4F7m2fFfdbJYB0p6eIknKSqMMJMRRXEXv7ozKO4AZVpmPOCdQenJGhTwWOKpaaKgqpHqRjtmo4ERKVE9el7RvSRAEUL0S21lUACGBjWD4gpQWk6RrSmC/cvU76ddR0ut9pQZe5Hahlx+CA5+1e45m+wOahrVDpaeKpI1Gg2kt2g11mpQRqS0DlD2F9fo2aRgZlD2uLInIwZEYzUHZ2sD0T0kQBFC9EuebcYtDUkK3iyU0rZqQba/DYpDHcQ2YEyr17XaldcaAzNuUr9f+US7WRSt/sRiMhAX0XMj3DNcmZCCqkbqmux6R49WgwJqoDUoIUK/3HCLsUevCbwzKFoHz9h0qT/payRAEUL0O3aHU89cpMT6ClCCN022zTH3ez9T/5zyI5+v0z5kvUa2n3onmCMgfzMc+LLNc+r1J1E+6l66kZZByats4LCr/iQ5Ooz4FjsDa3UooC7v9HSrrxbcFXlkUKT+pO+RAEUI0e+U1jajKGAyGnzOHtEyKDnl9TidHddzdIV7iqzHh3ZjlTp4DWDkeT5f52siKtEpMPOn6vffLG4zi1LW0Wj9buK5q7FWfzLco/5Ec5JrmQd6fnkHvH927hkokkHpayRAEUL0O1phaXJ0mL5zraeB8RGYjQaa7E6KahpbPd+dfHbTHF6lLu8kjYSEIT5f5zVN1jMQOfUusERB/hZ3DUsLPV0gq9E6eQqqGn0WyGqmeWRQerrFGNzD+Woa7Rx2XZfMQOl7JEARQvQ7WoGsVmjaktlkZFCC+uF6tLRn61B8TpE99LX6p9Y67IN27Y02JzWuke0ARCXDzFvU79uoRQlWBiXdY1hbyxkonsalx2I1G71e05NirGbCLer5nAokRFp8dnOJ3k0CFCFEv6NlUFJ91J9oMl11KDnlXa9DsTucPPjRDl5bc9Qr25F9rILDper767UwigKHVqjfj2w7QIkIMxHjGuymd/JoTrkDwqKhcDvs/V+r12pZmwE9nEHxWuIpVu9zZErrDEqY2cjkQXGAO+vSkwwGg1f31tg0GXHfF0mAIoTod7QP9AFtZFCge1uNNx6t4PV1Ofz2k13c+fZWGm0Oth+v5Ccvb6DZ7uT0UcmMSXXVQJQdgsocMIW599hpw4DYFrNQNFFJMPt2mLoA0iZSUdfMZzsK9Hqanh5zr0l3BRvVrlH24HuJB+C+uWO5+uTBXDQxvUevSeOZMZEOnr7J3PEhQgjRt7Q3pE2TmegqlO2GACW3wv0en2zL51BJLccrGqhpsjNzaCJ/v266+zd4LXuSORvC2h8clhJj5XBJnbvV2NPZvwaDAUVR+OmLa8k+VsETl0/ix7Myg7bEE201ExtuprrRjt2pYDUb9axKSzOHJTJzWGKPXo8nz+W9cdLB0ydJBkUI0e8U+jFSXds08Gg3tBrnVaiDyqYOjich0sKu/GqqGmyclBnPyzeeTGSYx++Cev3JOR2+r89WY40r4PliVxHZxyoA+HDLcSB4GRTwXrIZPiAao4+i5FDwbC+XDErfJAGKEKLfKfBjUzrPYW2KH6Pj25PnmqQ6Z1wKHy88jZnDEjlz9ABevWmm9waB9mY48q36fTsFshr3RFQfGRTU2penv9ir/33j0QryKht6fB8eT54Biq8C2VDRMihGA4xOlQClL5IlHiFEv1NY3XGAMihBDVBqm+xU1ttIaDmKPgBaBmVgQgSZSZG8+39Zvg/MXQe2OohKgdSJHb6vPu7e1xIP8F72cQ6X1JEQaWFwYiTbj1fxydZ8yl0j5Xu6SBYgI979M26r/iQUtALpYclRhFtkxH1fJAGKEKJfabQ5qKy3AZAe23bHSESYiQExVkpqmsitqO9agOLKoAyMj2z/QM/lHWPHCeyUtopkgYZmB88u3w/AonNGYTUb2X68itfXHUObPZfYhXvyl1cGxUcHT6icNiqZKYPjuXL6oFBfiugkWeIRQvQrWv1JuMVIbET7v4MNds1CyS1v6PT5nE6Fgip3BqXtAx2w6yP1ez/qT8BzR+PWGZSXvz9CcU0TgxIiuHZ2JhdNSsdsNOjBUkKkBbOp5/+Jz/DYmXhkL8qgpMSE8/HCU7l2tu9BeKL3C+h/vS+88AKTJ08mNjaW2NhYsrKy+Pzzz/XnGxsbWbhwIUlJSURHRzN//nyKioq83iMnJ4d58+YRGRlJSkoK9913H3a7veWphBCiU7TlHX/2fDnbuo/phn3kdmEWSnFNEzaHgsloILW9YWD7PoOKIxAeD+Mu9uu9tSLZwqrGVnUy723KBeDuOaOxmk0kRoVx2qhk/flgFMiCO4NiMKjLKUJ0l4AClEGDBvHkk0+SnZ3Npk2bOOecc/jBD37Arl27ALj77rv59NNPee+991i1ahX5+flcccUV+usdDgfz5s2jubmZNWvW8Nprr/Hqq6/y8MMPd+9dCSFOWFoGJS22g4mlB5bz89y7ed/6CHM33uwaPx94sexxV4txWmx4+xmLNc+rf558c4ftxZpBCREYDFDf7KDMVVcC0Gx3klOuntczKLl0Sob+fbAClDFpMcRHWpg5NJGIMKn1EN0noADlkksu4aKLLmLUqFGMHj2a3//+90RHR7Nu3Tqqqqp46aWXeOaZZzjnnHOYPn06r7zyCmvWrGHdunUAfPnll+zevZvXX3+dqVOncuGFF/LYY4+xZMkSmpubOzi7EKI3K6lp4sw/rOTJz/d2fHAP8qeDh4ZK+OTn+l+H1W2Ff18Kb10DjsAyunr9SXvLO7kbIXe9Opxt5q1+v7fVbNKXUDx3Xs6rbMCpqMtYnrNezp+Qpo+UD0YHD0BchIU1vzqHN346KyjnEyeOTi9QOhwO3n77berq6sjKyiI7OxubzcacOXP0Y8aOHUtmZiZr164FYO3atUyaNInU1FT9mLlz51JdXa1nYXxpamqiurra60sI0bt8f7CUY2X1vLjqEDvzqkJ2HUV+dPDwxa+hpoCGmKGc1fQnPrDMU4OH/Z/D3qUBne+4q4NnUHsj3Ne6sieTroKYtIDeXxsod8xjoJwWrAxJjPJaxoq2mjl3XArQ9j5EPSEyzByUehdxYgn4f1E7duwgOjoaq9XKz372Mz788EPGjx9PYWEhYWFhxMfHex2fmppKYWEhAIWFhV7Bifa89lxbFi9eTFxcnP41ePDgQC9bCNHDcsvdH6BPLQtdFkUrWG1zSNv+L2DrG4CB6gue46iSzq/qr0M55Q71+XV/C+h8WgZlUFsZlPIjsOdT9ftTFgX03gBDk1uP5NeClcyk1l1Dv7pgHPNPGsQNp0hxqOjbAg5QxowZw9atW1m/fj233XYbN9xwA7t37+6Ja9M98MADVFVV6V+5ubk9ej4hROA8x71/e6CU7w6UhuQ6tBqUVF81KA2V8IkrEDllEUljT8dkNNDscFI89jowWtSlmOPZfp/PcwaKT2ueB8UJI+dAyrhAbgWAzES1XsVziUcLUIb6CFAykyL501VTGJIkBauibws4QAkLC2PkyJFMnz6dxYsXM2XKFP7yl7+QlpZGc3MzlZWVXscXFRWRlqamNNPS0lp19Wh/147xxWq16p1D2pcQonfRljq0vVieXLZH37wumNxdPD4ClJ3vQ20hJI6As3+D2WTUB40da46FST9Ujwsgi9LmDJTmerXOZdNL6t+zAs+egDsI8bXEkylBiOjHurxo6HQ6aWpqYvr06VgsFlasWKE/t2/fPnJycsjKUqcqZmVlsWPHDoqLi/Vjli9fTmxsLOPHj+/qpQghQkjLoDx08XiirWZ25lWzdEdBUK/B5nDqM0N81qDsc41FmHYtWNRAarBromxueT3Mvk19fvdHUJXX4fkURfGdQSnaDf88Gzb/GzDAWb+G4Wd15pb0TIhXBqW87QyKEP1FQAHKAw88wOrVqzl69Cg7duzggQce4JtvvmHBggXExcVx8803c88997By5Uqys7O58cYbycrKYvbs2QCcf/75jB8/nuuuu45t27bxxRdf8OCDD7Jw4UKs1uC0xAkhup/d4SS/Us1cTB0cz61nDAfgL1/tD+p1lNQ0oShgNhpIjmrxb0pTDRxZpX4/dp7+sL6rcXk9pE+BIaeB0w4b/9nh+SrqbTTYHIBHxiZ3A/xrDpTsheg0uOETOOt+fXO/QGl1JhX1NqoabDidit5iPFQyKKIfCyhAKS4u5vrrr2fMmDGce+65bNy4kS+++ILzzjsPgGeffZaLL76Y+fPnc8YZZ5CWlsYHH3ygv95kMrF06VJMJhNZWVlce+21XH/99Tz66KPde1dCiKAqqGrE4VQIM6ttr9dnqQWah0rqqG0K3iBGbXknNTa89a66h74GRzMkDofk0frDg10Bil5Do2VRNr0Cze0PcNNmoAyIsar7vRRshzd+qO63M/R0+Nl3MOyMLt1TtNWszzTJKaunsLqRZrsTs9HQ7m7NQvR1Ae3F89JLL7X7fHh4OEuWLGHJkiVtHjNkyBA+++yzQE4rhOjlPFttjUYD8ZFhJEaFUV7XzLGyOiZkxAXlOgrbm4Gy1/XvzpiLvLIZWvfNcW3c/ZgLIWEoVByFnR/ASde1eb48z7qbkv3wn8uhsQoGz4Yfv+P3QLaODEmKpLS2iWPlddQ0qfsMDU6MlNZe0a/J/7qFEF2mZR886zC0+oijpfU+X9MTCtqaIuuww4Ev1O/HXOT1VKsMitEE029Uv89+td3zaQWy42Pq4d8/gPpSdZlowbvdFpyAGqCAWiirtxgnSv2J6N8kQBFCdNlxV03EYI8PTa0+4mhZ5/e5CVSbQ9py10FDBUQkwmDviadakWxhdSNNdrWehKk/BqMZ8jZB4c42z3e8ogEDTm4pfRJq8tWlo2s/gPDuzRgN8Wg1bq/FWIj+RAIUIUSX5bqWOrQPe4Chro3jjpYGL0BpM4OiLe+MvgBM3ivbydFhRFhMKIp7yYboFHemZfNr+rFOp8KO41V6+3ReZQM/My1lWPUmsETCj16HqGS6m+ewNmkxFicKCVCEEF2mTZH1nKaqByhBzKAUuqbIemVQFAX2/U/9fsyFrV5jMBgYnKhetxZoATD9J+qf298BWwOKonDXO1u55K/f8cv3twMQXbKFX5jfVY+78CkYMKZb70ejdxp5LPFIBkX0dwEVyQohhC9akaz3Ek/rEe09zeeQtpK9asGryQojzvH5usEJkewvqvUa18/wsyE+EypzYPfH/L3yZD7Zlg/Af7OPc9EQhXtrnsJscFI94lJip7VdTNtV2nJZYXUjlQ3qxqpDJEAR/ZxkUIQQXdJkd1BUowYGg31kUEpqmoLSaqwoCkVV6pA2rzH32nC24WeCNdrna1sVygIYjXDS9QBUfvdPfX+hkwbHcq1pOSd/dgEDKSHHOQDjpX/p9JwTf8RHWogNV3+fbLQ5MRhgUIIEKKJ/kwyKEKJL8ioaUBSIDDORGBWmPx4bbiEpKoyyumaOltYxcWDPthqX1zXT7HACLQKUQ1+rf446v83Xtmo11ky9FmXlYuJLNvEP859ITkpiiqUMo0Xdq2ercwQPG3/OJ3GJ3XcjPhgMBoYkRbHDtUt0emy4OndFiH5MMihCiC7R6jYGJURgaJFFGOJjH5meohXIJkdbCTO7/mlrqoWcder3bSzvQBsZFIDYdLZGnwbAeaZsplV+iTE/G6clisccP+GK5kewJ4zs3htpg+eSjmwEKE4EkkERQnSJNk11sI8lh6HJUWzOqQxKoax7SJvHiPuj34HTBvFD1AmybfAad9/Ck+aFpDRP4rasFMYnmQAF44TLGbTThvPT3UwZHJwhdN4BiizviP5PAhQhRJfklrcukNXos1CC0GqsFcimxXps2nfItXnpyHPbrRHRrr2y3kZNo42YcIv+3IFqI+udp3Db9NMhw72T+o2nwqxhSXoLcE/zzJpIBkWcCGSJR4g+7vuDpSzbWRiy82vLIp4txppgthprGRSvDh6t/mTEue2+NtpqJiFSDUpyPepQGpodlNepXTMD41vf3/iMWCLDgvN73pBEyaCIE4sEKEL0YfsKa7jh5Q3c/ka2PkU12I7rM1Baf2gOc/2mfyQI4+61sfP6DJSKY1B2EAwmGHZ6h6/3VYeS75qrEhVmIjYitAlnLdgDCVDEiUGWeITooxRF4aGPd2J3TTU9VFzr3b0SJO4ZKK0zDENcyx+ltWqrcbS1+/7JqWm08dGWPFbtL2X78UqKa9QWY32KrLa8M3imX6PnBydEsv14ldcsFH0zQB8FwMGWEmNlaFIktU12Rgzw3S4tRH8iAYoQfdSHW/LYcKRc//vRsnpOCU5Dia6uyU6ZawnEVwalJ1qNDxbX8PL3R/loSx71zQ79caMBpgyO54zRA9QH/Fze0WgZlOMe02TzXVmZDB/LO8FmMBj47M7TsTsVaTEWJwQJUITog6oabDzx2R5AHeJVWW/jWHnwRsprtA/z2HAzcREWn8cMSYqkrK6ZY2X1XQ5QGm0OfvDX76lzBSYjU6L54fRBTB+SwATPehCHHQ6vVr9vp73Yk5YB8uzk0QIUX/UnoRCsehchegP5X7sQfdCfvtxHaW0zIwZE8aOTB/PEZ3s5FoQ6j5Zyfexi3NLQ5CiKc/dTnbMdJqd36XyHS+qoa3YQbTXzz+tnMHt4ou+ll7xN0FQFEQmQMdWv99bapD2XeI73ogyKECcaCVCE6GOKqht5fd0xAB77wUSa7Or01GM+Znj0tNx2ZqBoziabJ8LuJ2yTHWJ+A6f/Qh0j3wnaTr4jU6LJGpHU9oH7v1D/HH42GP1bDvFc4lEUBYPB0OsyKEKcSKSLR4g+ZsORcpwKTMiI5ZSRyWTq01rrUBQlqNdyqKQWgGED2pjLsfVN5u25j3CDDSMKrHwc3r0OGqs7db4jrgBlWHI7c0Aaq2DTy+r34y7x+70z4sMxGKDB5qC0Vq2rya9UO6MG+mihFkL0LAlQhOhjNh1VC2NPHqru/zIoIQKjAeqb3R+swXKgSA1QRqX46CpZuwQ+ug2j4uB9x+k8bvwZmMJg71L41xxoqAj4fNrAt3bbbNe9CI2VkDwGxv/A7/e2mk16B1BuRT1Op0JBlSzxCBEqEqAI0cdsOqZ+sM8YmgCoH6zpceoH6LEgDETzpGVQRrYMUEoPwBe/BqBp5u3ca/s//lV/BnULlkJMOpTug43/Cvh8R117+rSZQWmoUAMjgLN+5ffyjkafhVJeT0ltEzaHgsloIDXG2sErhRDdTQIUIfqQ2iY7ewrU5ZEZQ9w76Grj1oOxKZ+moq5Zz9i0msux+2P1z+FnY73wCZKi1QDqoGUMzHlEfW7Dv8AeWMZHy6AMbWvU+9q/qcWxKeNh/GUBvTd4F8rqg99iwzGb5J9KIYJN/l8nRB+yJacCp6IWbaZ5jHTX9mYJZgbloCt7MjA+gqiWA9j2fKr+OeEyMBj0JaCDxbUw4XKIToPaQtj9kd/nq2+268PYfAYo9eWw7gX1+7Me6FQhrtZqnFveoA9py4gP/vA7IYQEKEL0KZuOqss7J7uWdzTaPi1Hg5hB0epPWi3vVOZCwVbAAGPmeR1zoLgWzGEw86fqsWuXgJ+FvUddbdQJkRbiIn3MXPnuGWiugbRJMPbigO8HPDIoFfW9akibECciCVCE6EOyXfUn04cmej2uZ1CC2Gp8sLiNAGXvUtdFnQLR6lTXUanRXq9h+o1gDlcDmZx1fp1P23DQ506+h76GNX9Vvz/7N51uY/bcj0dajIUILQlQhOgj7A4nW3JcBbJDWmRQPFqNg+VAcQ3go4NnjytA8chijBygBSjqa4hKhslXqd+v+5tf5zvaVotx1XF4/6eAAiddD2Mu9P8mWsh0BSj5lY16sCcZFCFCQwIUIfqIvYU11DU7iAk3Mzo1xus5LUCprLdRVW8LyvUc8pVBqS2BnDXq9+M8AhTXMTnl9TTaXPvnzL5d/XPvUqg42uH5fLYY25vh3RugvgzSJsOFf+jczbikxFgJMxtxOBU2u7JVkkERIjQkQBGij9Dmn5yUmYDJ6D3ePTLMzABXK2ww9uSpbbKTX6UOMfMKUPZ9BooT0qdAfKb+8IAYK7HhZpwKHHEFGqSMg+Fnqcdnv9bhOVu1GJcdgg9uUcfah8fBVf8GS9cKWo1GA4NcAUl1ox2QIW1ChIoEKEL0Efr8kxbLO5qhScFrNdayJ8nRVuIjw9xPaPUnLSa4GgwGPZDR61AApv9E/XPb2+B00B4tgzLevgde/yE8f5K7C+jyv0PisE7dS0uDWuwrlB4nXTxChIIEKEL0AYqi6B08M1oUyGpGxhs427gF6+7/QkNlj17PgWIfE2Qbq+HwN+r34y5t9ZpRKTFerwVgzEXqhn41+XBoZZvnq2tSW4wzKGXk5z+Gg8sBA4yaCzcs7VLdSUuDPTImseFmYsJ979IshOhZslmgEH7S9rnxuXtuD8urbKCwuhGz0cDUwfHeT+79DNYu4fGcdZjC7LAP+NPv1THv02+EIVndfj0+O3j2LgVHMySNggFjWr1GO/aQZ4BitsKkq2DD32Hr6zBqjv6U06lgMKg/by0rdFv4lxgcTZBxEsz/FySN6PZ789yZeWA7myAKIXqWZFCE8NOvP9zJSY8tp9BVexFM3+wrAWDiwDgiwjzGt1cchXeuhWPfYVLs5DoHkGvOBHsjbH8HXrkAdr7f7dejdeNo7cMAbP6P+ueUH/l8zchUbRZKjfcT0xaof+79nzpsDdh+vJJxDy/jyWV7AbWDJ4Z65htWqMee/eseCU7A3ckDMFCGtAkRMhKgCOGH3PJ63t6YQ0W9jTWHSoN+/k+25QNw0aQ07ye+fw4UB2Sewp4rV3F685/5oeEZ+OnX7jbfrx8Hh71br0fPoGgj7ksPqN07BiNMXeDzNdqxR0rrsDuc7ifSp0DqJDX7suO/ALz83RGa7E7+ufowB4trOFJax49MK4lUGmDAWBg5x9cpusVgj6yJtBgLEToSoAjhh3c25uoDT7VizWApqGpgo6uD5+LJGe4nagphy+vq9+f8hoxhEwADRTXN1KdMUQtHI5Og/HC3ZlEabQ5yXDNCtKwIW1zZk5HnQWyGz9cNjI8gwmLC5lBaD5Sbdq3659bXqWm0sWxXIQBOBZ5ato/c0ipuMn+uHpO1EHpwmU0bd69dsxAiNCRAEaIDNoeTtzfm6n8/3M0BitOpkF/ZgMPpe+T70m0FKArMHJro/Rv92iXgaILBs2DIqcRFWoiLUAs6c8rrwRoNWYvUY1f/ocMuGX8dKa3DqagFpAOireCwwda31CdPuq7N1xmNBkakqC3CXp08AJOuBKMFCrax9rsVNNqcpMWGYzTA8t1FmPZ8TIahnEZrklqz0oPiIizEuPYWkgyKEKEjAYoQHVi+u4jS2ib970e6OUD53ae7OOXJr5n0uy+46sW1PPn5Xirq3Lv8ass7l0z1yEw0VMCml9XvT/+FnlHQZoRo++Qw8xa1S6bsAOz6MKDr2pxTwUdb8vTiYI3ewZMaoxYMH/gS6oohagCMvqDd99Q6eVoFKFFJeifOOd8t4EXLs/x21BF+Ob6C84ybuNb+AQAVE37S5VknHTEYDEzNjMdoUGt+hBChIV08QnTgjfXHALhwYhqf7yzkaGkdiqJ0WzfPusNlANQ3O9hwtJwNR8vZeLScN2+ZRX5lIzvyqjAZDVw00aP+ZMM/obkWUifCqPP1h8elx7I1t5I9BdVcMiUDrDHqksjXj8Oqp2HCFX7vU3PHW1s47trR97JpA/XH9xVWAx71J5v/rf455Rowtd+S63MWiua8R2gqPYq1ZDsXmDbCro3q464xKw1KGFGn/p9f195V/7huBqW1TV4dPUKI4JIMihDtOFJax/cHyzAY4JcXjMVogLpmByU1TR2/2A+KopDnCgL+df0Mnv7hZGLDzWQfq+B3n+zik61q9uTUkckkRauTYqkvh3UvqN+fdrdXPcb4jFgA9hRUu08y81Z10mrpPvdgsw7YHE7yXJvlPf6/PVQ3quPzc8vreW2NGrBNH5IA1QVqBgVgWtvLOxr3rsY1rZ9MHM6SUf9ibtOTfB7zQ0gYBonDyY+ewNeOqTxivJ3YpFS/rr+rIsJMEpwIEWKSQRGiHW9tyAHgrNEDGJYcxaCESHLK6zlcWkdKbNeXGqoabNQ1q7Uhp41KJtxiIiXGyk2vbuStDblEulqKL53iWt5xOuHD/4OGckgeAxMu93q/8elqgLLbM0AJj4NZt8GqJ9WN+SZe0eF1ldQ06UXBpbVNPPPlfh66eDy/eG8btU12pg9JYP70QfD5veqo+sGzYcDoDt/XPQulDqdTwegxst/pVHh/cx55Sib2OT8A1z3HNNr47/vbmdnGgDohRP8kGRQh2tBoc/DeJrU4dsGsIYC7xqO76lC0JZTkaCvhFjUYOWtMCvdfMBZQl33CzEbmTnBlDtb8Rc1YmMPhhy+B0eT1fmPTYjAYoKi6yatuhpNvVotQj2+E/C0dXldhtTrrJcys/hPx77VHeeCD7Ww4Uk5kmIlnrpqC6egq2Pgv9QVnP+DX/Q5JjMRiMtBgc+gZGs26w2XkVTYQE27mvPHuTElMuIW/LZjOT07tnlH2Qoi+QQIUIdqwbGchFfU2MuLCOXtsCuAOULqr1Vj7kG65Id2tZwzXsybnjU9Vx60fWwsrHlMPuPApSJvU6v2irGaGJanX6LXME53izrZs+FeH11XsClAmZsRyyZQMnAq8u+k4AA9fPJ4hUQ742NUhNONmddM/P5hNRoYnq1mU/UXeyzxf7SkGYN6kdD1YE0KcuCRAEaINb65Xl3d+dHKmvnuwFqB0V6uxVn8yqEU7q8Fg4I9XTuH5a6bx2A8mql07/71JHco26So46YY233OctsyTX+39xMxb1T93vKdPbG2LNi03NTacB+eNI9rVdjtnXAo/OnkwfPkgVOVC/BA471G/71e9PrWTxyuAAnYXVAFt7zUkhDixSIAihA/7i2rYcLQck9GgfiC79NQST8sMCqjLK5dMySAxKkwdyFaTD4kj4OJn2x1UphXK7m4RADBoBqRPVWenaJ03bShyFQGnxoaTGhvOsz+ayk2Twnh2whEM//sFbH5NPfCyv6nzVgLg6/oURdEDKq2ORghxYpMiWSF80LInc8alkBbnLobVApScsnocTkXPrHRWXqU6UbXdiaWK4t7n5tQ7OgwIxreVQTEY1LkoHy+EjS/BKT9vVcOiKfLIoNBcx3k7f8l5Bz6CAx4HzboNhp7W7rX44ivDk1fZQHWjHYvJ4L0BoRDihCUZFCFaaGh28P5mtd5CK47VZMRHEGYy0uxwkt+iyLMz9BqU9gKU3A1qi7AlUp1j0gEtQ3GopJZGW4vpsRPnq4PbqnJg/xdtvkdRjRqgDA2rgJfnqu3JBqO6b87MW+HK12DuEx1eiy9agHKsvJ7aJnWPIC1YGZkSoxfmCiFObPIvgRAtfLo9n5pGO5mJkZw2MtnrOZPRwJAkdT5Gd9Sh5LWzxKPTlmMmXAHhHS9/pMRYSYoKw6m0LkTFEgEnXa9+v+opdUy9D4VVjUw2HOLc1VdD4Q51SuxNX8D/rYaL/gATLvN74FtLydFWUmOtKIp76Ju23CPLO0IIjQQoQrTwhmt555qZmV5zOjR6HUqJj2moAahvtlNRrwYIbQYojdWwSx3z3t4+N54MBkPbhbIAs2+H8Hgo2KpOl/VhaHU2b4U9TlhjCaSMh1u+hsEz/Tq/P1ouQ+n1JxkSoAghVBKgCOEhr7KBbbmVmI0GrpwxyOcxeqtxWb3P5/0+lyt7EhNuJja8jRHxuz4AWz0kj1Y3BfRTm4WyADFpaqEtwLd/VJeQPDTu+oy/sZgoQxP2oWfBzV9CfKbf5+7M9UkGRQjRkgQoQng4UqIu2wxJiiRZGy3fQne1Gh/3p/5EW96Zdl27nTsttVkoq5l4BUz+kToF9oNb1UxN+RHY+BLW96/HarCxQpmB+dp31f18utn49Dj9+qoabHo3kwQoQgiNdPEI4eFomRagRLV5zLDkKC4xruGW41/Bd1fD1GshekDA59JnoCS0sedLwXbIywajWd2ILwCee/K0HCmvu+gPcGwNVByBp4eBUy1YNQCfOLJ4Pu5ezjX7DtK6Sru+vYU17MpT558MjI8gLrL9zQaFECcOyaAI4SGnXF220QphfRlTt5FnLX9jsnMvfPU7eGYcvHcj1BQGdK7jeoDiI4NSdRzeuVb9fuy8gAOg4clRhJmN1DU79HtqJTwOLnsBDCY1ODFZIW0Se8fczl22hQyI67l23yGJkUSGmWiyO/nfjgJA6k+EEN4kgyKEB22E/dC2MiiFO4j79KcYDE6+cUxhdoaR8KItaq1IUzVc+77f52qzxbimEF67FCqPqTv6XvBUwPdhNhkZmxbD9uNV7C6oZmhyG/cz7HRYtBGcDkgcDiYz36w6hHPbXnUGSg8xGg2MTYthc04ln2xTd2yW5R0hhCfJoAjhQcs2ZPrKoFTnwxtXYWiuYbt5ErfYfsHqM96Gm75UsxAHv4Kc9X6fK6/CNaTNM4NSV6oGJ+WHIC4TbvgUYtM7dS9jUtXakVatxi0ljVB3Ijapv68UVXsMaetBWsakplFdWhonAYoQwoMEKEK4KIqi16C0yqAoCrz/U3XcfPIY3hr2BDbM7MqvhsxZMPXH6nErH/f7fK0yKPZmePvH6lC2mAy44ROIH9zOO7RPm8h6qCSwYt7iam3Mfc/Un2i0QlnNBFniEUJ4kABFCJfimiYabU6MBh/LLke/hWPfq3UaP36HKaOGAvDdwVL1+TN/CUYLHFkNR77t8FzNdifFrv1u9AzK57+E3PVgjYPrP4bEYV26nxEDXAFKcWDzWgpdGZS0IGVQAGKsZt+1OEKIE1ZAAcrixYs5+eSTiYmJISUlhcsuu4x9+/Z5HdPY2MjChQtJSkoiOjqa+fPnU1RU5HVMTk4O8+bNIzIykpSUFO677z7sdnvX70aILjhW5l5yaTVuffUf1D9Puh4Sh3HaKHXC7NbcSqobbeqcEG1C68on1IxLOwqqGlAUCLcYSYoKg00vQ/YrgAHm/0tdcumiEa4MyuHSWpxO39fjdCqs3l/CsTJ3lkVb4knp4QBlTGoMWnPRuIxYDAG0UQsh+r+AApRVq1axcOFC1q1bx/Lly7HZbJx//vnU1bn/cbv77rv59NNPee+991i1ahX5+flccYV7/xCHw8G8efNobm5mzZo1vPbaa7z66qs8/PDD3XdXQnSC3mKc2GJ5J2e9mhkxmuHUOwG1NXhYchQOp8K6Q2XqcWfcq2ZYctbA4ZXtnktrMR4d58Cw7S347JfqE+c+DKPP75b7GZwQgcVkoNHm1JeTPO3Kr+KKF9Zw/csbuP7lDSiKgqIo+hKP5yaJPSEizMRwV5ZHCmSFEC0FFKAsW7aMn/zkJ0yYMIEpU6bw6quvkpOTQ3Z2NgBVVVW89NJLPPPMM5xzzjlMnz6dV155hTVr1rBu3ToAvvzyS3bv3s3rr7/O1KlTufDCC3nsscdYsmQJzc3N3X+HQvgpp6yNFuNv/6j+OeUar5oQbZ8efZknNgNm3KR+/+ld7bcd7/6QD8Ie5qPa6+Cj28BpgwmXw2l3d8etAGonj1ZLc8hjLL/TqfD7/+3mkue/Y2tuJaBmj3blV1NRb6PZ4QRgQBuD6rqT9jM8fVRyB0cKIU40XapBqapSBywlJiYCkJ2djc1mY86cOfoxY8eOJTMzk7Vr1wKwdu1aJk2aRGpqqn7M3Llzqa6uZteuXT7P09TURHV1tdeX6F9sDid7C6vZna9+5bY1u6MHuYe0eQQo+VvhwJfqTr4tggdtmee7A6XuB8+4T20NrjwG/7kCGipbn2jPp2Rtvo+TjAcx4oTkMep7/+BvAU2L9Ydeh+JRKPvp9nz++e0RnArMm5xO1vAkAL7aU0Rhlbq8kxwdFpRdhX914Vg+v/N0zh2X2vHBQogTSqfnoDidTu666y5OPfVUJk6cCEBhYSFhYWHEx8d7HZuamkphYaF+jGdwoj2vPefL4sWLeeSRRzp7qaIPuOOtLXy+0/u//4vXTueCiWlBuwb3kDaPJR4tezLxh2o7roesEUmYjAYOl9aRV9mgFtZGJcF1H8LLc6F4F7x1NVz7AYS5gp7j2fD+LRhQeNd+JvWn3MdPLjq9x+5pZEo07PLOoKw5qC5J/eSUofzu0gm8uymXtYfL+GpPEVMGxwOQEtOzyzuacItJ2ouFED51+lekhQsXsnPnTt5+++3uvB6fHnjgAaqqqvSv3NzcHj+nCJ5mu5Ov9xYDkBxtJSZcjZv/mx3c/87akDY9g1KyH/YsVb8//Z5Wx8eGW5jq+kD/7kCJ+4nEYWpQYo2DnLXwj7Pgmycp2/Y5ttevBHsDGy0zeMD+U+LTh/fgHcGIFNcSj0cnz6Zj5YB7eeWcsSkYDLAzr5qtOZVAz7cYCyFERzoVoCxatIilS5eycuVKBg1y7/ialpZGc3MzlZWVXscXFRWRlpamH9Oyq0f7u3ZMS1arldjYWK8v0X/syq+iye4kIdLCxt+cy39/dgoAqw+UUtsUnO6uyvpmql0DwzITXQHK2ucBBcbMg5RxPl+nfch/67nMA5A2EX78DkpYtDrX5JvFJH14NZbGMnY5h3BDze04MHkPaesBLZd4Kuqa9e+nD0kA1KBwmivQeneTGhT2dIGsEEJ0JKAARVEUFi1axIcffsjXX3/NsGHecxqmT5+OxWJhxYoV+mP79u0jJyeHrKwsALKystixYwfFxcX6McuXLyc2Npbx48d35V5EH5V9rAJQPzANBgOjU6MZnhzllVnpDnaHk+3HK1F8tAAfdRXIpsRYiQwzqwWu21zZQVfnji9aceeaQ2WtWnlrUmdwueUF7rPdypeO6TQoYeQZUnkk5rekDUjivPGpTBkU3z031watS6a0tomqepv+sx6ZEk1CVJh+3Jzx6jJrgasGJVhLPEII0ZaAalAWLlzIm2++yccff0xMTIxeMxIXF0dERARxcXHcfPPN3HPPPSQmJhIbG8vPf/5zsrKymD17NgDnn38+48eP57rrruPpp5+msLCQBx98kIULF2K1Slr5RLTxqLrkMH2IWmxtMBi4YGIaf/vmEMt2FnDplIxuOc+fvzrAX1ce5NcXjeXWM7zrSY61nCC77gVwNMPg2eqk2DZMGRxPtNVMeV0zuwuqmTjQPR11zaEytpaZOBB2Lgmzb2L09DSGJkfzril4O/ZGW82kxYZTWN3IwZJaNrqWd2a4siea88al8vQy90wjyaAIIUItoAzKCy+8QFVVFWeddRbp6en61zvvvKMf8+yzz3LxxRczf/58zjjjDNLS0vjggw/0500mE0uXLsVkMpGVlcW1117L9ddfz6OPPtp9dyX6DEVR9N/qZwx1f2heOFHdf2bl3hIamh1dPo/N4eStDTkAvPr9URwtsh3akLbMpEhorFYHp0G72RMAi8nIbFcXzGrPOhRgc456X5dOHcivLxrH0NQECGJwotHrUEpqyT7qzlZ5GpkS7dW9JDUoQohQC3iJx9fXT37yE/2Y8PBwlixZQnl5OXV1dXzwwQetakuGDBnCZ599Rn19PSUlJfzxj3/EbJaNlU9Ex8rqKa1tJsxkZJJH9mHiwFgGxkfQYHOwan9JO+/gn2/2lVBWp87Zya9q5Jt93ktH7j14IiH7VXVn4uTRMPqCDt9bW+ZZqw1sc9niKjidlhnftYvvopGuZZ49BdVsz1NHA8wYmuh1jMFgYI5Hq29PbxQohBAdkb14REhtcmVPJg2KI9xi0h/XlnkAlu0s6PJ5tI6gaKsaCL+xPsfr+eOlNZxk2M95RS/Bd8+qD55yBxg7/r9I1gg1g7LxaDnNdnXImc1V7wJwUmZCWy8NCm3k/dLtBTTbnSRHh6mBWAsSoAghehMJUERIbTrquyYC4OJRkdxtfo8791yD/esnwN7UqXOU1TaxYo+aMfnjlZMBWLmvmOMV9WBrhDV/5cXiH/OB9XeM2fcCNJRD0iiYfJVf7z8qJZrk6DAabU59Muu+whoabU5iw80MT45q/w16mNbJU+LanFArRm7p5KEJzByWyBmjB6j7AwkhRAjJuooIqU3HfNRENNfDuiVMXfM808zqkgSrn4I9H8Olz8PgmQGd45Nt+didChMHxnLBxHTOGhFD7uG97P70OQaV/geqj5MIVCmRRIw9j7Cxc2HsPDD7V4dhMBiYPTyJpdsLWHOolJnDEvX6k2mZCRiNod0ETwtQNDOGJPo8zmwy8u7/ZQXjkoQQokMSoIiQqaxv5qBrgJgeoDgd8PaP4fBKDEBR+DBeqzmZ2yO+JLpkL7x0Ppz3SIfFq57e33wcgDszj8Gfb+eVylwMVgUOq8/XWlN5tPZSVoSdS/Y1F3bqXrJGqAHK2kNl3DUHNh/TApT4Tr1fd0qNtRIVZqLOVWw8fWhol5yEEMIfssQjQkbr3hk+IIokbWO6rx9TdwK2RMIV/2TzRUv5m+Mybor6G0z5MaDA8ofhwHK/zrGnoJqdedVEmeycc/gpqMzBgEItEexwDuVJ53VMr3qKdx1nM36Q78yCP04ZoRbKbsmppNHmYItrqSfU9SegZni0OhSr2cjEjLgOXiGEEKEnGRQRMhtdLa96/cmeT90Fqj/4K0ycz0nV6uCwTcVQe/vzRIdFwsZ/wQe3wP+thvjMds/x32w1e/LbtLWYynIgJh1u/YYXvq9gyTdqCmVgfAQ/npXJtbOGdPpehiZF6vNGvthVyLGyegwGmNoLMiigdvJsP17FlMHxQdkEUAghukr+pRLdrsnu4J+rD5NX2dDucdn60LBEdd+bD29Tn8haBBPnA2o3ycD4CJwKalfM3Ccg4yRoqIB3b2i3cLa4ppE31+cQSx2X17ylPnjWAxCTxqJzRvPLC8bw0g0zWP3Ls1l49kjiIjs/o8RgMHCKq5vnhW8OAWpQEBse/Lknvpw+Ws3wzJuUHuIrEUII/0iAIrrduxtz+f1ne/jV+9vbPGbl3mK9QPbkIbHw35uguQaGng5zvHeu1rIQW3Iq1cLVq16D8HjI3wyf3w8+RtcD/OWrAzTYHPw28UsszZWQPAamLgAgIszE7WeN5NxxqZi6qYh1titA2VtYA/SO5R3NZVMHsuZX53B9VuezREIIEUwSoIhutzOvGlAHl1XWN7d6/nBJLXe8vQVFgWtmZjLs0OtQtAMiEuCHL4PJe+VR+6Df4uqMIT4Trvin+n32K7DqaZ/neHtjLmmUcXnTJ+qDc37X6r27k5ZB0fSGAlmNwWAgIz7CZ3uxEEL0RhKgiG63t0jNINidCst3e+9cXdNo45Z/b6Km0c6MIQk8clYCrHxCfXLOIxCd0ur9tA/6zTkeG/2NPh8ueEr9/psnYP0/vF7z58+3Md/wNe/H/BGjowkys2BM5zp0/DUoIZLBie7diU/yMdtFCCGEf6RIVnQrp1PhgCtAAVi2s5ArZwwG1K0S7n5nK4dK6kiPC+eFa6cT9vmt0FwLg2bCtOt8vueEjFjCTEbK65o5VlbPUG3w2eyfqbUoq56Ez++DqhxwOqgoPMKjR1YTb6kDGxAWAxcshiBkD7KGJ5FbfpwYq1kfMS+EECJwEqCcYGoabXy9t1gfyR5mNjJnXCpR1u75n8Lxigbqmx0YDGppyLcHSqlptBETbmHZzkK+2lNMmNnI36+bzoCib2H3R2AwwsXPtDlW3mo2MXFgLJtzKtmSW+EOUADO+pU6+XXDP2DN8wAkABig1JJB8lm3wbRrIbLzLcSBOGdsKu9uOk7WiKSQD2gTQoi+TAKUE8ziz/fyZot9aH48K5MnLp/ULe+/z5U9GZsWS5PdweGSOr7eW8xFk9L5wxf7APjZmSOYnOiEf9ytvmjWzyCt/fNPy0xgc04lm49Vcvm0Qe4nDAZ1qSciAUfxPj7PNbOpIpLj5iE8evttkBDcMfNzJ6Ty75tmMiEjNqjnFUKI/kZqUE4w3x0oBdTZI6eOVIs6P9ycR3WjrVvef1+hWiA7Ni2GC/XN/gp5Z2Muh0vrSIoK45ZTBsI710JljlrwetYDHb6vXiibW9H6SaORptPv56a6hSwqvYL3TPO47aabyQhycAJqMeoZowe4B88JIYToFAlQTiDF1Y3klKsDxF6+8WRev3kWo1OjabA5+GhLXrecY1+ROrp+dGoMF05UZ26s3FfMn786AMDPzx5BzFe/hGPfq7UhP34XwjvONmiFsnsKaqhvtrd6/p53trFqfwkRFhMv/+Rk7719hBBC9DkSoJxAtLkjY1JjiA23YDAY+PFMdRLrG+ty3B0yAE5np87hmUGZkBHLoIQIGm1OSmubmJRg57qmt2DL62rdyZWvQso4v943Iz6CtNhwHE6FHcervJ7LLa/nfzsKMBkN/OuGGcwantTGuwghhOgrpAblBLLJNVr+5KHugtHLTxrEn5btZEzJF1T/8w/ENRdCXanaHTPiHPjxO2Dybxpqs93J4ZI6AEanxWAwGPjBuBgSN/yDM43bGNmQD9+6Dp67GEbNCej6p2XG8/nOQjbnVHoFIeuPqBNppwyK49SRyQG9pxBCiN5JApQTiD5aXtvNtrmeuPXP8b3178TayyG/xQsOrYAvH4QLn/Lr/Q+X1mJ3KsRYzWTEhUNNIYuO3UmEeZf7oAFj1a6aWf8X8PWflJnA5zsLXfcxQn98w5EyAGYOk8yJEEL0FxKgnCDqm+3syleXX6YPSVB7gD+8FfZ8SixQpMTztvM8bvrxj4lJTIOSPer4+fUvqnvfTPlRh+fY5xrxPjotBkPpAXh9PhFVOTgikrBf8AesI8+CqM4HEVmuSa1rDpXRaHMQbjEB7gzKrGHBaSUWQgjR86QG5QSxNbcSu1MhPU7dfI+1f1V3DzZaUC57kVsTX+FZ2+W8UzoUUserm/Wdeb/64k/vhIK299XRaAHKRVH74OXz1cFpiSMw3fIV1inzuxScgDqwLS02nPpmB2sPq1mTwqpGjpXVYzTA9KFSGCuEEP2FBCgniGxX/cn0IQkYctbC8t+qT1ywGMPUa7hylrpk8r8dBe4XnfkrGHU+2BvgnQVQX97uOQ4UVnG76WNuPHyPWsMycAbc/CUkDu+WezAYDJw7Th2Fv2KPOkJ/w1H1msZnxPaanYOFEEJ0nQQoJwitg+e0NCe8dyMoDph0JZz8U8C9fLKnoBq7w9XBYzTCFf+AhKHqzJL3fwpOh+8TNFZxfc5v+KXlHYw4Yeq18JOlENW9RatzxqcC8NXuYhRFcdefDJX6EyGE6E8kQDkBOJwKm3MqSKeMy3bcBrWFarHqJX/R96cZlhRFVJiJRpuTw6V17hdHJMCP3gBzhFo0u/L3rU9ga8Txxo843bmRJsVC3dxn4LIlYIlofWwXZQ1PIjLMRGF1I7vyq1l/WM2gzJT6EyGE6FckQDkB7C+qYWDTYT6yPkx4xX6ISYcfvQ5h7kmrRqOBcenqwLRd+d5zRkibCJeq+9zw7Z/U2hWN0wkf344pdy3VSgS3mh8nKuvmHruXcIuJM0YNAODdTbkcKFYHw0mAIoQQ/YsEKP2dvZmyta/zXtgjpBoq1MzJzcsheVSrQycOjANgZ1516/eZfCXMvl39/v1bYOndULgDvn4Mdr6P02DmZ7a7cWZM68m7AdDrULQ9hUanRpMYFdbj5xVCCBE80mbcg6rqbTTY1JoNoxEGRFsxGHpwh1unU93Zt64Eaovg4Few9S1Oqy8FA+TGnsTgmz5Ql2180Da425lX5fN5znsUSver77vpZfXL5c+RP2dNw0R+mhrT7bfV0jljUzAYwO5UJ99K9kQIIfofCVB6yLKdBdz2xmY8p8d3567BXuzNsPk1+PYZqGk5bQ1KDIm8YTuL6Rc+xuA2ghNwZ1B251fjdCoYjS2CKZMFFvwXjqyG7FfUpR6nnXcif8xzZSeTEGnh2tlDuvXWfEmKtjI9M0Ev/JUBbUII0f9IgNJDXvruCIoCRgMYDQbsToX3NuVy95zRDIjppp1uHTbY8R58s1jtstFEJELUAEgeRd24HzH7LXBgYtuQ1HbfbmRKNGFmIzVNdnIr6hmS5GM3YIMBhp8Jw8+kvjyfx9/4gjfzBhAXYeH1n85iaHJwdhCeMz5VD1BkQJsQQvQ/EqD0gKOldWw8WoHRAGt+dS5pceFctuR7tuZW8l52LrefNbJrJ7A1qBvurXnOHZhEp8IZ98G068ASrh+65UApDtYzJCmSuMj254RYTEbGpsWw/XgVO/OqfQcoLo02B7d8kMP3eSnEWM385+aZTMiI69p9BeDCiWn8+av9jEmLJTU2vOMXCCGE6FMkQOkB728+DsDpowaQFqd+eC6YlcnW3EreXJ/Dz84Y0Xr5xB+lB2DLf2DLG1Bfqj4WmQyn/Bxm3gphka1esj2vEoBJA/0LHiZkxKkBSn4V8yan+zymye7g//6TzfcHy4gMM/HqTTOZPCg+8PvpgiFJUXx1z5nEWGU4mxBC9EcSoHQzp1Phg815AMyfPkh//OLJGTy2dDfHKxpYfaCEs8ak+P+mOz+ADf+AnLXux+IycZ7yc15vOp0Jg1OZ7iM4AdhxXC14nTzIvwBl4kCt1dhHJw/qjsUL39jCqv0lhFuMvPKTk9W9fUJgUILvexZCCNH3SZtxN1t3uIy8ygZiws2cP95d8xERZtIDFq091m9Hv1WDE4MRRl+gDk67YzPLoy/l4c8Os+Bf69vsvNnhenyinxmUia5lml15VSieFb4uv/1kF1/tKSLMbORf15/MrOFSoCqEEKL7SYDSzf6brS7vXDIlQ99tV7NgViYAK/YWU1DV4P+bzrgZznkI7t4FP34Hxl0MJgufu/bNabQ5+b//ZFNW2+T1svK6Zo5XqOfxN0AZkxaDyWigrK6ZwupGr+ccToWPtqjZoeevmcZpo7p3jL0QQgihkQClG9U22fl8ZyEAP/RY3tGMTIlh5rBEHE6Fdzbm+v/GaRPhjHshNkN/qMnuYMWeYgASIi3kVTZw+xubsWn76ODOngxPjvJ7I71wi4lRKdFA64FtR8vqaLA5CLcYmTOu/Y4gIYQQoiskQOlGn+0ooMHmYHhyFNMGx/s8RsuivLfpuM8lFH+tOVhGTZOd1Fgr7/xfFlFhJtYfKef3/9ujH7PjeCUAk/ysP9Fo3TgtR97vKVADlrFpsZg6U+QrhBBC+EkClG70oUdxbFsTY+dOSCPcYiSvsoF9RTWdPtfnOwv09xudGsOfr1ZHzL+65ij7Xe+73VUg628Hj0YrlG2ZQdntKpwd75o4K4QQQvQUCVD8oCgKS1Ye5Jkv91HdaPN5TFF1I+uOlAFw6ZQMn8eAuoQy21VY+s2+kk5dj93hZPnuIgAumJgGwHnjU7nQ9f1fvz4IuJd4Am0B1upVth+v9Mry7HZlUManS4AihBCiZ0mA4ofNOZX84Yt9PPf1Qeb8aRVLt+e3Wp5Zur0ARYGTMuMZnNh+++tZo9XdeL/ZV9yp61l/pJyKehuJUWHMHOqeorrw7JGua8lnw5FyCqoaMRjce+z4a9LAOMJMRoprmjhaVq8/rmVQxkmAIoQQoodJgOKHT7ep+9sYDVBc08SiN7dwy7830Wx3F6R+4jqmveyJRpuBsuloBTVtZGTaoy3vnD8+FbPJ/Z9w4sA4zh2bglOBe9/bBsDIAdFEWQMbdxNuMTEtMx6ANYfUgXAlNU0U1zRhMMDYtJ7fEFAIIcSJTQKUDtgdTpZuVwOCvy04ibvmjCLMZOSrPcW89N0RAI6V1bEttxKjAeZN7jhAGZocxbDkKOxOhe8PlgZ0PU6nwhe7vJd3PC06R82i5JSrmY9A6080p4xQW4jXHlKXrbQC2WFJUQEHPEIIIUSgJEDpwPoj5ZTWNhEfaeGcsancNWc0T85XdyR+bsUB8iob9AzLKSOS/d4I8Ex9mSewOpTsnApKapqICTfrQYSnaZkJnO4xnyTQDh5N1gi1TmbtoTIURdHrT8ZJgawQQoggkAClA59sVYOPCyemE2ZWf1yXTxvIzGGJNNgcPPrproCWdzRnjXEHKIG0G2tTaM8fn6ZfT0uLznZvRujviPuWpg6OJ9xipKyumf1Fte4OHqk/EUIIEQQSoLSjye7Q6z0umeLeOM9gMPDYDyZiNhr4YlcR+4tqCTMZmetjyaUts4cnYTUbKaxu9LvduKi6Uc/W3HDKkDaPmzU8iZ+cMpS5E1I7vYlfmNnIya4C3LWHSt0dPJJBEUIIEQQSoLRj9f5SqhvtpMRYmTXMe8+ZMWkx3HTaMP3vZ44ZQFyE/zvrhltM+jLKyr3+LfP8e+1R7E6FmUMTOww8fnfpBP5+3Qwsps7/J9au7+t9JRwuqQVggmRQhBBCBIEEKO3Qlm4unpzhc3LqneeOIj0uHFCXfQJ1tqubx59244ZmB2+4lnc8A6OelOWa17J6fwlOBZKiwvyusRFCCCG6Qtox2lDXZOcr1zC0S6f6ri2Jspp546ez2JpbqQ9JC4RWh5J9rIKqBptXBmZ3fjWfbs/nRzMGMzQ5ivc3H6ey3kZmYiTnjQ/OPjiTBsYRbTVT22QH1OWdtibkCiGEEN1JMig+KIrCQx/tpMHmYGhSJFPaKTQdPiCaK05qe7R9e4YkRTEyJRq7U+HrvUVez/3ivW288M0hzv/zap5bcYCXv1dbmn9yytCg7YNjNhmZOcw9CE4KZIUQQgSLBCg+vPTdET7YkofJaOCJyyf1aNZAy7x8vqNQf+xAUY0+d6TZ7uSZ5fs5XFJHjNXMVScP7rFr8eWUEe7aGymQFUIIESwSoLTw7YESnvhM3RH4wXnjOGVk61kj3UkbtrZqfwl1rqUUrfblnLEpPHfNNJKj1bqPBbOHEB3kIWnavkEgGRQhhBDBIzUoHo6V1bHozS04Ffjh9EH85JShPX7O8emxZCZGklNezzf7SrhoUpreSnzplAwunZLBmaMHsCWngtN6OFhq6/pOHZmEw6kwfEB00M8vhBDixCQBiod/rz1GVYONKYPjefyyiUEpCDUYDFw4MY2/rz7M5zsLGJwYwdGyesItRr0YNi7Cou/fE2xGo4E3fjo7JOcWQghx4pIAxcNvLhpHYlQYP5w+iHCLKWjnvcAVoKzcW0xCZBgA545LlT1vhBBCnLDkE9CD0WhgoceY+GCZMiie9LhwCqoaeWP9MSCwsflCCCFEfyNFsr2A0Whg7gS1WNapQEy4WZ+RIoQQQpyIAg5QVq9ezSWXXEJGRgYGg4GPPvrI63lFUXj44YdJT08nIiKCOXPmcODAAa9jysvLWbBgAbGxscTHx3PzzTdTW1vbpRvp6zwHvV0wIQ2rOXhLTEIIIURvE3CAUldXx5QpU1iyZInP559++mmee+45XnzxRdavX09UVBRz586lsbFRP2bBggXs2rWL5cuXs3TpUlavXs2tt97a+bvoB2YMTSQ1Vm0nvqwTY/OFEEKI/sSgKIrS6RcbDHz44YdcdtllgJo9ycjI4Be/+AX33nsvAFVVVaSmpvLqq69y9dVXs2fPHsaPH8/GjRuZMWMGAMuWLeOiiy7i+PHjZGR0XHtRXV1NXFwcVVVVxMb2n9kcO/OqOFJaxyVSfyKEEKIfCuTzu1trUI4cOUJhYSFz5szRH4uLi2PWrFmsXbsWgLVr1xIfH68HJwBz5szBaDSyfv16n+/b1NREdXW111d/NHFgnAQnQgghBN0coBQWquPaU1O9N7NLTU3VnyssLCQlxXumh9lsJjExUT+mpcWLFxMXF6d/DR4c3HHvQgghhAiuPtHF88ADD1BVVaV/5ebmhvqShBBCCNGDujVASUtTO1GKirx35i0qKtKfS0tLo7i42Ot5u91OeXm5fkxLVquV2NhYry8hhBBC9F/dGqAMGzaMtLQ0VqxYoT9WXV3N+vXrycrKAiArK4vKykqys7P1Y77++mucTiezZs3qzssRQgghRB8V8CTZ2tpaDh48qP/9yJEjbN26lcTERDIzM7nrrrt4/PHHGTVqFMOGDeOhhx4iIyND7/QZN24cF1xwAbfccgsvvvgiNpuNRYsWcfXVV/vVwSOEEEKI/i/gAGXTpk2cffbZ+t/vueceAG644QZeffVVfvnLX1JXV8ett95KZWUlp512GsuWLSM8PFx/zRtvvMGiRYs499xzMRqNzJ8/n+eee64bbkcIIYQQ/UGX5qCESn+dgyKEEEL0ZyGbgyKEEEII0R0kQBFCCCFEryMBihBCCCF6HQlQhBBCCNHrSIAihBBCiF5HAhQhhBBC9DoBz0HpDbTO6P66q7EQQgjRH2mf2/5MOOmTAUpNTQ2A7GoshBBC9EE1NTXExcW1e0yfHNTmdDrJz88nJiYGg8HQre9dXV3N4MGDyc3NPeGGwMm9y73LvZ845N7l3kNx74qiUFNTQ0ZGBkZj+1UmfTKDYjQaGTRoUI+e40TeNVnuXe79RCP3Lvd+ognlvXeUOdFIkawQQggheh0JUIQQQgjR60iA0oLVauW3v/0tVqs11JcSdHLvcu8nGrl3ufcTTV+69z5ZJCuEEEKI/k0yKEIIIYTodSRAEUIIIUSvIwGKEEIIIXodCVCEEEII0etIgOJhyZIlDB06lPDwcGbNmsWGDRtCfUndbvHixZx88snExMSQkpLCZZddxr59+7yOaWxsZOHChSQlJREdHc38+fMpKioK0RX3nCeffBKDwcBdd92lP9af7z0vL49rr72WpKQkIiIimDRpEps2bdKfVxSFhx9+mPT0dCIiIpgzZw4HDhwI4RV3D4fDwUMPPcSwYcOIiIhgxIgRPPbYY157gfSXe1+9ejWXXHIJGRkZGAwGPvroI6/n/bnP8vJyFixYQGxsLPHx8dx8883U1tYG8S46p717t9ls3H///UyaNImoqCgyMjK4/vrryc/P93qP/njvLf3sZz/DYDDw5z//2evx3njvEqC4vPPOO9xzzz389re/ZfPmzUyZMoW5c+dSXFwc6kvrVqtWrWLhwoWsW7eO5cuXY7PZOP/886mrq9OPufvuu/n000957733WLVqFfn5+VxxxRUhvOrut3HjRv7+978zefJkr8f7671XVFRw6qmnYrFY+Pzzz9m9ezd/+tOfSEhI0I95+umnee6553jxxRdZv349UVFRzJ07l8bGxhBeedc99dRTvPDCC/z1r39lz549PPXUUzz99NM8//zz+jH95d7r6uqYMmUKS5Ys8fm8P/e5YMECdu3axfLly1m6dCmrV6/m1ltvDdYtdFp7915fX8/mzZt56KGH2Lx5Mx988AH79u3j0ksv9TquP967pw8//JB169aRkZHR6rleee+KUBRFUWbOnKksXLhQ/7vD4VAyMjKUxYsXh/Cqel5xcbECKKtWrVIURVEqKysVi8WivPfee/oxe/bsUQBl7dq1obrMblVTU6OMGjVKWb58uXLmmWcqd955p6Io/fve77//fuW0005r83mn06mkpaUpf/jDH/THKisrFavVqrz11lvBuMQeM2/ePOWmm27yeuyKK65QFixYoChK/713QPnwww/1v/tzn7t371YAZePGjfoxn3/+uWIwGJS8vLygXXtXtbx3XzZs2KAAyrFjxxRF6f/3fvz4cWXgwIHKzp07lSFDhijPPvus/lxvvXfJoADNzc1kZ2czZ84c/TGj0cicOXNYu3ZtCK+s51VVVQGQmJgIQHZ2NjabzetnMXbsWDIzM/vNz2LhwoXMmzfP6x6hf9/7J598wowZM7jyyitJSUlh2rRp/POf/9SfP3LkCIWFhV73HhcXx6xZs/r8vZ9yyimsWLGC/fv3A7Bt2za+++47LrzwQqB/37snf+5z7dq1xMfHM2PGDP2YOXPmYDQaWb9+fdCvuSdVVVVhMBiIj48H+ve9O51OrrvuOu677z4mTJjQ6vneeu99crPA7lZaWorD4SA1NdXr8dTUVPbu3Ruiq+p5TqeTu+66i1NPPZWJEycCUFhYSFhYmP5/Wk1qaiqFhYUhuMru9fbbb7N582Y2btzY6rn+fO+HDx/mhRde4J577uHXv/41Gzdu5I477iAsLIwbbrhBvz9f/x/o6/f+q1/9iurqasaOHYvJZMLhcPD73/+eBQsWAPTre/fkz30WFhaSkpLi9bzZbCYxMbFf/SwaGxu5//77ueaaa/QN8/rzvT/11FOYzWbuuOMOn8/31nuXAOUEtnDhQnbu3Ml3330X6ksJitzcXO68806WL19OeHh4qC8nqJxOJzNmzOCJJ54AYNq0aezcuZMXX3yRG264IcRX17Peffdd3njjDd58800mTJjA1q1bueuuu8jIyOj39y5as9lsXHXVVSiKwgsvvBDqy+lx2dnZ/OUvf2Hz5s0YDIZQX05AZIkHSE5OxmQyterWKCoqIi0tLURX1bMWLVrE0qVLWblyJYMGDdIfT0tLo7m5mcrKSq/j+8PPIjs7m+LiYk466STMZjNms5lVq1bx3HPPYTabSU1N7bf3np6ezvjx470eGzduHDk5OQD6/fXH/w/cd999/OpXv+Lqq69m0qRJXHfdddx9990sXrwY6N/37smf+0xLS2vVGGC32ykvL+8XPwstODl27BjLly/XsyfQf+/922+/pbi4mMzMTP3fvWPHjvGLX/yCoUOHAr333iVAAcLCwpg+fTorVqzQH3M6naxYsYKsrKwQXln3UxSFRYsW8eGHH/L1118zbNgwr+enT5+OxWLx+lns27ePnJycPv+zOPfcc9mxYwdbt27Vv2bMmMGCBQv07/vrvZ966qmt2sn379/PkCFDABg2bBhpaWle915dXc369ev7/L3X19djNHr/U2cymXA6nUD/vndP/txnVlYWlZWVZGdn68d8/fXXOJ1OZs2aFfRr7k5acHLgwAG++uorkpKSvJ7vr/d+3XXXsX37dq9/9zIyMrjvvvv44osvgF587yErz+1l3n77bcVqtSqvvvqqsnv3buXWW29V4uPjlcLCwlBfWre67bbblLi4OOWbb75RCgoK9K/6+nr9mJ/97GdKZmam8vXXXyubNm1SsrKylKysrBBedc/x7OJRlP577xs2bFDMZrPy+9//Xjlw4IDyxhtvKJGRkcrrr7+uH/Pkk08q8fHxyscff6xs375d+cEPfqAMGzZMaWhoCOGVd90NN9ygDBw4UFm6dKly5MgR5YMPPlCSk5OVX/7yl/ox/eXea2pqlC1btihbtmxRAOWZZ55RtmzZoneq+HOfF1xwgTJt2jRl/fr1ynfffaeMGjVKueaaa0J1S35r796bm5uVSy+9VBk0aJCydetWr3/7mpqa9Pfoj/fuS8suHkXpnfcuAYqH559/XsnMzFTCwsKUmTNnKuvWrQv1JXU7wOfXK6+8oh/T0NCg3H777UpCQoISGRmpXH755UpBQUHoLroHtQxQ+vO9f/rpp8rEiRMVq9WqjB07VvnHP/7h9bzT6VQeeughJTU1VbFarcq5556r7Nu3L0RX232qq6uVO++8U8nMzFTCw8OV4cOHK7/5zW+8Ppj6y72vXLnS5/+/b7jhBkVR/LvPsrIy5ZprrlGio6OV2NhY5cYbb1RqampCcDeBae/ejxw50ua/fStXrtTfoz/euy++ApTeeO8GRfEYpyiEEEII0QtIDYoQQggheh0JUIQQQgjR60iAIoQQQoheRwIUIYQQQvQ6EqAIIYQQoteRAEUIIYQQvY4EKEIIIYTodSRAEUIIIUSvIwGKEEIIIXodCVCEEEII0etIgCKEEEKIXkcCFCGEEEL0Ov8PxeX3yqUqsZoAAAAASUVORK5CYII=\n",
|
| 592 |
"text/plain": [
|
| 593 |
"<Figure size 640x480 with 1 Axes>"
|
| 594 |
]
|
benchmark/numpy_12/numpy_12_reproduced.ipynb
CHANGED
|
@@ -561,29 +561,29 @@
|
|
| 561 |
"name": "stdout",
|
| 562 |
"output_type": "stream",
|
| 563 |
"text": [
|
| 564 |
-
"84/84 - 2s -
|
| 565 |
"Epoch 2/10\n",
|
| 566 |
-
"84/84 - 0s - 2ms/step - loss: 0.
|
| 567 |
"Epoch 3/10\n",
|
| 568 |
-
"84/84 - 0s -
|
| 569 |
"Epoch 4/10\n",
|
| 570 |
-
"84/84 - 0s -
|
| 571 |
"Epoch 5/10\n",
|
| 572 |
-
"84/84 - 0s -
|
| 573 |
"Epoch 6/10\n",
|
| 574 |
-
"84/84 - 0s -
|
| 575 |
"Epoch 7/10\n",
|
| 576 |
-
"84/84 - 0s -
|
| 577 |
"Epoch 8/10\n",
|
| 578 |
-
"84/84 - 0s -
|
| 579 |
"Epoch 9/10\n",
|
| 580 |
-
"84/84 - 0s -
|
| 581 |
"Epoch 10/10\n",
|
| 582 |
-
"84/84 - 0s -
|
| 583 |
-
"\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m
|
| 584 |
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m
|
| 585 |
-
"Train Score:
|
| 586 |
-
"Test Score:
|
| 587 |
]
|
| 588 |
},
|
| 589 |
{
|
|
|
|
| 561 |
"name": "stdout",
|
| 562 |
"output_type": "stream",
|
| 563 |
"text": [
|
| 564 |
+
"84/84 - 2s - 25ms/step - loss: 0.0641\n",
|
| 565 |
"Epoch 2/10\n",
|
| 566 |
+
"84/84 - 0s - 2ms/step - loss: 0.0434\n",
|
| 567 |
"Epoch 3/10\n",
|
| 568 |
+
"84/84 - 0s - 2ms/step - loss: 0.0277\n",
|
| 569 |
"Epoch 4/10\n",
|
| 570 |
+
"84/84 - 0s - 2ms/step - loss: 0.0210\n",
|
| 571 |
"Epoch 5/10\n",
|
| 572 |
+
"84/84 - 0s - 2ms/step - loss: 0.0153\n",
|
| 573 |
"Epoch 6/10\n",
|
| 574 |
+
"84/84 - 0s - 2ms/step - loss: 0.0109\n",
|
| 575 |
"Epoch 7/10\n",
|
| 576 |
+
"84/84 - 0s - 2ms/step - loss: 0.0082\n",
|
| 577 |
"Epoch 8/10\n",
|
| 578 |
+
"84/84 - 0s - 2ms/step - loss: 0.0068\n",
|
| 579 |
"Epoch 9/10\n",
|
| 580 |
+
"84/84 - 0s - 2ms/step - loss: 0.0061\n",
|
| 581 |
"Epoch 10/10\n",
|
| 582 |
+
"84/84 - 0s - 2ms/step - loss: 0.0056\n",
|
| 583 |
+
"\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step\n",
|
| 584 |
+
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
|
| 585 |
+
"Train Score: 32.59 RMSE\n",
|
| 586 |
+
"Test Score: 119.71 RMSE\n"
|
| 587 |
]
|
| 588 |
},
|
| 589 |
{
|
benchmark/numpy_13/numpy_13_fixed.ipynb
CHANGED
|
@@ -1138,7 +1138,7 @@
|
|
| 1138 |
},
|
| 1139 |
{
|
| 1140 |
"cell_type": "code",
|
| 1141 |
-
"execution_count":
|
| 1142 |
"metadata": {
|
| 1143 |
"execution": {
|
| 1144 |
"iopub.status.busy": "2023-04-24T20:38:49.427002Z",
|
|
@@ -1154,7 +1154,7 @@
|
|
| 1154 |
"21"
|
| 1155 |
]
|
| 1156 |
},
|
| 1157 |
-
"execution_count":
|
| 1158 |
"metadata": {},
|
| 1159 |
"output_type": "execute_result"
|
| 1160 |
}
|
|
@@ -1165,7 +1165,7 @@
|
|
| 1165 |
},
|
| 1166 |
{
|
| 1167 |
"cell_type": "code",
|
| 1168 |
-
"execution_count":
|
| 1169 |
"metadata": {
|
| 1170 |
"execution": {
|
| 1171 |
"iopub.status.busy": "2023-04-24T20:38:49.435465Z",
|
|
@@ -1174,357 +1174,7 @@
|
|
| 1174 |
"shell.execute_reply.started": "2023-04-24T20:38:49.436224Z"
|
| 1175 |
}
|
| 1176 |
},
|
| 1177 |
-
"outputs": [
|
| 1178 |
-
{
|
| 1179 |
-
"data": {
|
| 1180 |
-
"text/plain": [
|
| 1181 |
-
"array([[ 1.01888657e+01, 1.40744915e+01, 1.53015804e+01,\n",
|
| 1182 |
-
" 1.69883270e+01, 1.79913826e+01, 1.94246330e+01,\n",
|
| 1183 |
-
" 1.98932781e+01, 2.04561520e+01, 2.02658005e+01,\n",
|
| 1184 |
-
" 2.03706818e+01, 2.03248425e+01, 2.00651283e+01,\n",
|
| 1185 |
-
" 1.97179489e+01, 1.94197636e+01, 1.90902290e+01,\n",
|
| 1186 |
-
" 1.87754097e+01, 1.84560223e+01, 1.81027870e+01,\n",
|
| 1187 |
-
" 1.77419052e+01, 1.74265709e+01, 1.70849838e+01,\n",
|
| 1188 |
-
" 1.66889610e+01, 1.63420506e+01, 1.60019569e+01,\n",
|
| 1189 |
-
" 1.56386471e+01, 1.53164568e+01, 1.49773331e+01,\n",
|
| 1190 |
-
" 1.46322441e+01, 1.43458939e+01, 1.41092834e+01,\n",
|
| 1191 |
-
" 1.38384533e+01, 1.36113443e+01, 1.34287310e+01,\n",
|
| 1192 |
-
" 1.32114973e+01, 1.30269136e+01, 1.29250002e+01,\n",
|
| 1193 |
-
" 1.27954731e+01, 1.26697016e+01, 1.26255112e+01,\n",
|
| 1194 |
-
" 1.25520210e+01, 1.24851942e+01, 1.25027733e+01,\n",
|
| 1195 |
-
" 1.24987555e+01, 1.24756374e+01, 1.25169353e+01,\n",
|
| 1196 |
-
" 1.25185127e+01, 1.24872456e+01, 1.25043535e+01,\n",
|
| 1197 |
-
" 1.25091982e+01, 1.24725971e+01, 1.24721727e+01,\n",
|
| 1198 |
-
" 1.24763222e+01, 1.24215298e+01, 1.24119368e+01,\n",
|
| 1199 |
-
" 1.24076853e+01, 1.23385925e+01, 1.23023148e+01,\n",
|
| 1200 |
-
" 1.22786026e+01, 1.21931877e+01, 1.21307907e+01,\n",
|
| 1201 |
-
" 1.20862465e+01, 1.19996881e+01, 1.19003668e+01,\n",
|
| 1202 |
-
" 1.18415909e+01, 1.17285137e+01, 1.16176882e+01,\n",
|
| 1203 |
-
" 1.15458822e+01, 1.14389811e+01, 1.13321571e+01,\n",
|
| 1204 |
-
" 1.12423553e+01, 1.11230259e+01, 1.09634695e+01,\n",
|
| 1205 |
-
" 1.08554096e+01, 1.07379007e+01, 1.05781832e+01,\n",
|
| 1206 |
-
" 1.04543819e+01, 1.03210201e+01, 1.01582136e+01,\n",
|
| 1207 |
-
" 1.00070715e+01, 9.86433411e+00, 9.68832397e+00,\n",
|
| 1208 |
-
" 9.52177143e+00, 9.37512970e+00, 9.18315792e+00,\n",
|
| 1209 |
-
" 8.99584961e+00, 8.81194496e+00, 8.43224525e+00,\n",
|
| 1210 |
-
" 8.08387756e+00, 6.84546852e+00, 3.94873166e+00,\n",
|
| 1211 |
-
" 3.31797314e+00, 2.23117352e+00, 1.10668910e+00,\n",
|
| 1212 |
-
" -2.39318657e+00, -6.92998171e+00, -1.16794224e+01,\n",
|
| 1213 |
-
" -2.78078232e+01, 0.00000000e+00, 0.00000000e+00,\n",
|
| 1214 |
-
" 0.00000000e+00],\n",
|
| 1215 |
-
" [ 3.01074004e+00, 6.11349106e+00, 7.73904228e+00,\n",
|
| 1216 |
-
" 9.72276306e+00, 1.10097752e+01, 1.26054907e+01,\n",
|
| 1217 |
-
" 1.31289253e+01, 1.41204700e+01, 1.43812990e+01,\n",
|
| 1218 |
-
" 1.52180967e+01, 1.54238081e+01, 1.52002831e+01,\n",
|
| 1219 |
-
" 1.47777100e+01, 1.43574238e+01, 1.39618826e+01,\n",
|
| 1220 |
-
" 1.35559034e+01, 1.31390572e+01, 1.26838684e+01,\n",
|
| 1221 |
-
" 1.23002605e+01, 1.20348110e+01, 1.18351603e+01,\n",
|
| 1222 |
-
" 1.16997452e+01, 1.16072197e+01, 1.13868914e+01,\n",
|
| 1223 |
-
" 1.11970997e+01, 1.12450180e+01, 1.12997389e+01,\n",
|
| 1224 |
-
" 1.12621670e+01, 1.12580872e+01, 1.12645330e+01,\n",
|
| 1225 |
-
" 1.11430912e+01, 1.09494448e+01, 1.06788082e+01,\n",
|
| 1226 |
-
" 1.02687025e+01, 9.81913948e+00, 9.44066525e+00,\n",
|
| 1227 |
-
" 9.04532623e+00, 8.73695850e+00, 8.57397079e+00,\n",
|
| 1228 |
-
" 8.36707115e+00, 8.21316242e+00, 8.28380108e+00,\n",
|
| 1229 |
-
" 8.33050346e+00, 8.28111362e+00, 8.27320194e+00,\n",
|
| 1230 |
-
" 8.20922756e+00, 8.03923512e+00, 7.95190859e+00,\n",
|
| 1231 |
-
" 7.82323456e+00, 7.59732246e+00, 7.42746067e+00,\n",
|
| 1232 |
-
" 7.23386192e+00, 6.99167252e+00, 6.85488176e+00,\n",
|
| 1233 |
-
" 6.78496933e+00, 6.55285597e+00, 6.37411165e+00,\n",
|
| 1234 |
-
" 6.33270741e+00, 6.24374437e+00, 6.18140984e+00,\n",
|
| 1235 |
-
" 6.17513227e+00, 6.07502699e+00, 5.91751623e+00,\n",
|
| 1236 |
-
" 5.84895039e+00, 5.67733240e+00, 5.47281790e+00,\n",
|
| 1237 |
-
" 5.31465626e+00, 5.05827665e+00, 4.76700687e+00,\n",
|
| 1238 |
-
" 4.62267399e+00, 4.48621655e+00, 4.24291849e+00,\n",
|
| 1239 |
-
" 4.13335514e+00, 4.10794163e+00, 3.97628021e+00,\n",
|
| 1240 |
-
" 3.98118949e+00, 4.02658844e+00, 3.94336748e+00,\n",
|
| 1241 |
-
" 3.91218424e+00, 3.91197252e+00, 3.79983401e+00,\n",
|
| 1242 |
-
" 3.68756413e+00, 3.62856030e+00, 3.41248560e+00,\n",
|
| 1243 |
-
" 3.14818978e+00, 2.96790791e+00, 2.64239573e+00,\n",
|
| 1244 |
-
" 2.47776008e+00, 2.38704228e+00, 9.36083198e-01,\n",
|
| 1245 |
-
" 4.24734771e-01, -6.00885868e-01, -1.64771426e+00,\n",
|
| 1246 |
-
" -4.55647373e+00, -7.64790916e+00, -1.23490438e+01,\n",
|
| 1247 |
-
" -2.85187645e+01, 0.00000000e+00, 0.00000000e+00,\n",
|
| 1248 |
-
" 0.00000000e+00],\n",
|
| 1249 |
-
" [-4.46939468e+00, -7.44427085e-01, 2.89417982e+00,\n",
|
| 1250 |
-
" 5.58005285e+00, 5.07509661e+00, 5.35288429e+00,\n",
|
| 1251 |
-
" 6.77775574e+00, 7.30620480e+00, 8.06819344e+00,\n",
|
| 1252 |
-
" 9.70282459e+00, 1.04861317e+01, 9.92398167e+00,\n",
|
| 1253 |
-
" 9.14956760e+00, 8.06106949e+00, 7.50688934e+00,\n",
|
| 1254 |
-
" 6.45209742e+00, 5.34645987e+00, 4.32287502e+00,\n",
|
| 1255 |
-
" 3.99511051e+00, 4.22994471e+00, 5.36414719e+00,\n",
|
| 1256 |
-
" 6.50703716e+00, 6.61905766e+00, 6.01780176e+00,\n",
|
| 1257 |
-
" 5.46775293e+00, 5.80717611e+00, 5.92236757e+00,\n",
|
| 1258 |
-
" 5.35475254e+00, 4.07601643e+00, 3.04957581e+00,\n",
|
| 1259 |
-
" 2.30980778e+00, 2.13592911e+00, 1.92506027e+00,\n",
|
| 1260 |
-
" 1.91557455e+00, 1.61111975e+00, 1.63920116e+00,\n",
|
| 1261 |
-
" 2.13526702e+00, 2.82580829e+00, 3.06623602e+00,\n",
|
| 1262 |
-
" 2.74226546e+00, 2.28612709e+00, 1.96336412e+00,\n",
|
| 1263 |
-
" 1.74322724e+00, 1.03760338e+00, 2.04400107e-01,\n",
|
| 1264 |
-
" -5.59956014e-01, -7.31985807e-01, -9.77722168e-01,\n",
|
| 1265 |
-
" -8.24099779e-01, -6.82159364e-01, -6.11014426e-01,\n",
|
| 1266 |
-
" -8.33487153e-01, -4.88178581e-01, -1.07996926e-01,\n",
|
| 1267 |
-
" -1.16812691e-01, -9.82535958e-01, -2.17990708e+00,\n",
|
| 1268 |
-
" -2.90122032e+00, -2.92245245e+00, -3.06018615e+00,\n",
|
| 1269 |
-
" -3.56854725e+00, -4.23682117e+00, -4.65872717e+00,\n",
|
| 1270 |
-
" -4.31434822e+00, -3.48576307e+00, -2.78466225e+00,\n",
|
| 1271 |
-
" -2.80251312e+00, -3.43427420e+00, -4.11815977e+00,\n",
|
| 1272 |
-
" -4.26303768e+00, -4.32020235e+00, -4.83410263e+00,\n",
|
| 1273 |
-
" -5.98176575e+00, -7.21281958e+00, -8.06995392e+00,\n",
|
| 1274 |
-
" -7.99802113e+00, -7.50389528e+00, -6.88377333e+00,\n",
|
| 1275 |
-
" -6.64828968e+00, -6.61739445e+00, -6.51794434e+00,\n",
|
| 1276 |
-
" -6.22075462e+00, -6.17577600e+00, -6.63541746e+00,\n",
|
| 1277 |
-
" -7.42775965e+00, -8.09867668e+00, -8.70824909e+00,\n",
|
| 1278 |
-
" -9.39949226e+00, -1.01055183e+01, -1.03120518e+01,\n",
|
| 1279 |
-
" -1.04368448e+01, -1.01606369e+01, -1.04803982e+01,\n",
|
| 1280 |
-
" -1.23420143e+01, -1.40644026e+01, -1.84830246e+01,\n",
|
| 1281 |
-
" -3.36416245e+01, 0.00000000e+00, 0.00000000e+00,\n",
|
| 1282 |
-
" 0.00000000e+00],\n",
|
| 1283 |
-
" [-2.14686356e+01, -1.81019402e+01, -9.17781448e+00,\n",
|
| 1284 |
-
" -5.47212029e+00, -3.37602258e+00, -2.15333998e-01,\n",
|
| 1285 |
-
" 2.00787807e+00, 4.78621578e+00, 5.38119078e+00,\n",
|
| 1286 |
-
" 4.97749519e+00, 4.21468401e+00, 3.43627167e+00,\n",
|
| 1287 |
-
" 3.03390169e+00, 2.89241099e+00, 2.81493521e+00,\n",
|
| 1288 |
-
" 1.99400568e+00, 8.78437996e-01, -1.03454456e-01,\n",
|
| 1289 |
-
" -6.01366580e-01, -5.26525140e-01, -7.10627995e-04,\n",
|
| 1290 |
-
" 2.39340663e-01, -3.07293534e-01, -1.03750086e+00,\n",
|
| 1291 |
-
" -1.42412770e+00, -1.20261395e+00, -8.79762530e-01,\n",
|
| 1292 |
-
" -6.14373744e-01, -6.88580394e-01, -1.00914824e+00,\n",
|
| 1293 |
-
" -1.48737884e+00, -1.65116572e+00, -1.73504305e+00,\n",
|
| 1294 |
-
" -1.90966845e+00, -2.43898201e+00, -3.13756418e+00,\n",
|
| 1295 |
-
" -3.89738679e+00, -4.32267475e+00, -4.20310211e+00,\n",
|
| 1296 |
-
" -4.18282604e+00, -4.61294222e+00, -5.54191351e+00,\n",
|
| 1297 |
-
" -6.58179951e+00, -7.54207039e+00, -7.48669529e+00,\n",
|
| 1298 |
-
" -7.08280754e+00, -6.78436232e+00, -7.30234098e+00,\n",
|
| 1299 |
-
" -8.13576794e+00, -8.78987217e+00, -8.51680374e+00,\n",
|
| 1300 |
-
" -7.99865532e+00, -7.57879829e+00, -7.72790432e+00,\n",
|
| 1301 |
-
" -8.16351318e+00, -8.82076263e+00, -9.16791439e+00,\n",
|
| 1302 |
-
" -9.01955795e+00, -8.77470207e+00, -8.86903000e+00,\n",
|
| 1303 |
-
" -9.43041515e+00, -1.03248997e+01, -1.12044563e+01,\n",
|
| 1304 |
-
" -1.13955927e+01, -1.13477125e+01, -1.14725866e+01,\n",
|
| 1305 |
-
" -1.20633869e+01, -1.30037079e+01, -1.40522480e+01,\n",
|
| 1306 |
-
" -1.44598398e+01, -1.40218430e+01, -1.34976196e+01,\n",
|
| 1307 |
-
" -1.34907227e+01, -1.39915123e+01, -1.46838875e+01,\n",
|
| 1308 |
-
" -1.49092693e+01, -1.44578848e+01, -1.37594261e+01,\n",
|
| 1309 |
-
" -1.33319092e+01, -1.33425798e+01, -1.36120367e+01,\n",
|
| 1310 |
-
" -1.38493748e+01, -1.39605904e+01, -1.37805519e+01,\n",
|
| 1311 |
-
" -1.34922638e+01, -1.35230055e+01, -1.39112272e+01,\n",
|
| 1312 |
-
" -1.46840973e+01, -1.53619528e+01, -1.56042337e+01,\n",
|
| 1313 |
-
" -1.58942432e+01, -1.67987576e+01, -1.80057983e+01,\n",
|
| 1314 |
-
" -2.26904964e+01, -2.84262695e+01, -3.10425110e+01,\n",
|
| 1315 |
-
" -4.32107239e+01, 0.00000000e+00, 0.00000000e+00,\n",
|
| 1316 |
-
" 0.00000000e+00],\n",
|
| 1317 |
-
" [-2.51704559e+01, -2.33415337e+01, -2.12942295e+01,\n",
|
| 1318 |
-
" -1.91613770e+01, -1.82538681e+01, -1.58235559e+01,\n",
|
| 1319 |
-
" -9.56780529e+00, -3.95626068e+00, -2.81549406e+00,\n",
|
| 1320 |
-
" -2.08263516e+00, -1.93331146e+00, -2.24358535e+00,\n",
|
| 1321 |
-
" -2.99216890e+00, -3.67665434e+00, -3.95369720e+00,\n",
|
| 1322 |
-
" -4.23921824e+00, -4.79363012e+00, -5.26105356e+00,\n",
|
| 1323 |
-
" -5.73188591e+00, -6.13370848e+00, -6.34832001e+00,\n",
|
| 1324 |
-
" -6.65372610e+00, -7.22189903e+00, -7.66245556e+00,\n",
|
| 1325 |
-
" -7.91089153e+00, -8.12533092e+00, -8.45883656e+00,\n",
|
| 1326 |
-
" -8.85416985e+00, -9.26546860e+00, -9.59456825e+00,\n",
|
| 1327 |
-
" -9.73611927e+00, -1.01408176e+01, -1.07369289e+01,\n",
|
| 1328 |
-
" -1.11860094e+01, -1.14159660e+01, -1.16249075e+01,\n",
|
| 1329 |
-
" -1.19724064e+01, -1.24741926e+01, -1.29154320e+01,\n",
|
| 1330 |
-
" -1.31409035e+01, -1.33129864e+01, -1.35169239e+01,\n",
|
| 1331 |
-
" -1.38215876e+01, -1.42992258e+01, -1.45716658e+01,\n",
|
| 1332 |
-
" -1.47960138e+01, -1.51407995e+01, -1.55477962e+01,\n",
|
| 1333 |
-
" -1.58823252e+01, -1.61173019e+01, -1.62874680e+01,\n",
|
| 1334 |
-
" -1.64456196e+01, -1.68446808e+01, -1.71168251e+01,\n",
|
| 1335 |
-
" -1.73003635e+01, -1.75792599e+01, -1.78713818e+01,\n",
|
| 1336 |
-
" -1.82433872e+01, -1.85576248e+01, -1.88466148e+01,\n",
|
| 1337 |
-
" -1.90478821e+01, -1.93112602e+01, -1.97619190e+01,\n",
|
| 1338 |
-
" -2.00664921e+01, -2.03877239e+01, -2.06522942e+01,\n",
|
| 1339 |
-
" -2.09621086e+01, -2.13304710e+01, -2.16608906e+01,\n",
|
| 1340 |
-
" -2.19083519e+01, -2.20464306e+01, -2.23938484e+01,\n",
|
| 1341 |
-
" -2.27012024e+01, -2.30610008e+01, -2.33032570e+01,\n",
|
| 1342 |
-
" -2.35436745e+01, -2.37157936e+01, -2.38652725e+01,\n",
|
| 1343 |
-
" -2.40453243e+01, -2.42270012e+01, -2.44504566e+01,\n",
|
| 1344 |
-
" -2.46892586e+01, -2.50035706e+01, -2.53108826e+01,\n",
|
| 1345 |
-
" -2.55603447e+01, -2.55966663e+01, -2.56210308e+01,\n",
|
| 1346 |
-
" -2.61126919e+01, -2.59846859e+01, -2.66501617e+01,\n",
|
| 1347 |
-
" -2.75457020e+01, -2.77128067e+01, -2.78044739e+01,\n",
|
| 1348 |
-
" -3.04737835e+01, -3.61785660e+01, -3.89327087e+01,\n",
|
| 1349 |
-
" -5.09449158e+01, 0.00000000e+00, 0.00000000e+00,\n",
|
| 1350 |
-
" 0.00000000e+00],\n",
|
| 1351 |
-
" [-4.17105789e+01, -3.82715683e+01, -2.76002998e+01,\n",
|
| 1352 |
-
" -2.50012550e+01, -2.64659386e+01, -2.59999847e+01,\n",
|
| 1353 |
-
" -2.42761917e+01, -2.13912373e+01, -1.92112904e+01,\n",
|
| 1354 |
-
" -1.48223581e+01, -1.33410053e+01, -1.37072144e+01,\n",
|
| 1355 |
-
" -1.53694267e+01, -1.70824585e+01, -1.66919060e+01,\n",
|
| 1356 |
-
" -1.60313244e+01, -1.65798149e+01, -1.82566376e+01,\n",
|
| 1357 |
-
" -1.97831974e+01, -1.98105354e+01, -1.89822369e+01,\n",
|
| 1358 |
-
" -1.92174988e+01, -2.08514767e+01, -2.29335442e+01,\n",
|
| 1359 |
-
" -2.25243778e+01, -2.13771229e+01, -2.16911907e+01,\n",
|
| 1360 |
-
" -2.35160255e+01, -2.55416107e+01, -2.48523178e+01,\n",
|
| 1361 |
-
" -2.34854279e+01, -2.37574272e+01, -2.59476738e+01,\n",
|
| 1362 |
-
" -2.81671906e+01, -2.72811966e+01, -2.58501701e+01,\n",
|
| 1363 |
-
" -2.61735802e+01, -2.83872318e+01, -3.06040287e+01,\n",
|
| 1364 |
-
" -2.92055721e+01, -2.80634098e+01, -2.86194515e+01,\n",
|
| 1365 |
-
" -3.09342022e+01, -3.29330978e+01, -3.14468727e+01,\n",
|
| 1366 |
-
" -3.02484207e+01, -3.07132816e+01, -3.31218834e+01,\n",
|
| 1367 |
-
" -3.54673424e+01, -3.40546150e+01, -3.24520836e+01,\n",
|
| 1368 |
-
" -3.26931458e+01, -3.50026550e+01, -3.74581070e+01,\n",
|
| 1369 |
-
" -3.60558929e+01, -3.42909660e+01, -3.47009125e+01,\n",
|
| 1370 |
-
" -3.71770515e+01, -3.97747917e+01, -3.88364944e+01,\n",
|
| 1371 |
-
" -3.67555084e+01, -3.64430542e+01, -3.82951393e+01,\n",
|
| 1372 |
-
" -4.10801010e+01, -4.03779030e+01, -3.85511551e+01,\n",
|
| 1373 |
-
" -3.84572296e+01, -4.01537170e+01, -4.22351913e+01,\n",
|
| 1374 |
-
" -4.22064896e+01, -4.01134911e+01, -3.94348869e+01,\n",
|
| 1375 |
-
" -4.09195137e+01, -4.34479904e+01, -4.38560715e+01,\n",
|
| 1376 |
-
" -4.18160210e+01, -4.11151276e+01, -4.23535728e+01,\n",
|
| 1377 |
-
" -4.46820412e+01, -4.51738014e+01, -4.36769104e+01,\n",
|
| 1378 |
-
" -4.26923752e+01, -4.33242073e+01, -4.54632950e+01,\n",
|
| 1379 |
-
" -4.69995117e+01, -4.46836548e+01, -4.08021774e+01,\n",
|
| 1380 |
-
" -4.16627083e+01, -3.70827103e+01, -3.94314613e+01,\n",
|
| 1381 |
-
" -4.37367096e+01, -4.30103531e+01, -3.83998718e+01,\n",
|
| 1382 |
-
" -3.78501434e+01, -4.53038635e+01, -4.57638512e+01,\n",
|
| 1383 |
-
" -5.61272278e+01, 0.00000000e+00, 0.00000000e+00,\n",
|
| 1384 |
-
" 0.00000000e+00],\n",
|
| 1385 |
-
" [-5.69636154e+01, -5.59854584e+01, -4.53047142e+01,\n",
|
| 1386 |
-
" -4.40508728e+01, -3.88450012e+01, -3.50144043e+01,\n",
|
| 1387 |
-
" -3.07592220e+01, -2.59176350e+01, -2.52918587e+01,\n",
|
| 1388 |
-
" -2.55831509e+01, -2.66148071e+01, -2.76305180e+01,\n",
|
| 1389 |
-
" -2.81507950e+01, -2.88601990e+01, -2.96368446e+01,\n",
|
| 1390 |
-
" -2.97700920e+01, -3.01253147e+01, -3.10586147e+01,\n",
|
| 1391 |
-
" -3.17069836e+01, -3.16750069e+01, -3.23837242e+01,\n",
|
| 1392 |
-
" -3.31577759e+01, -3.43976479e+01, -3.52200928e+01,\n",
|
| 1393 |
-
" -3.57111320e+01, -3.67283287e+01, -3.76027260e+01,\n",
|
| 1394 |
-
" -3.78399963e+01, -3.86785736e+01, -3.92821541e+01,\n",
|
| 1395 |
-
" -3.91553383e+01, -3.99377098e+01, -4.05553513e+01,\n",
|
| 1396 |
-
" -4.06720657e+01, -4.13833466e+01, -4.23160324e+01,\n",
|
| 1397 |
-
" -4.30227280e+01, -4.33120537e+01, -4.36335335e+01,\n",
|
| 1398 |
-
" -4.48606186e+01, -4.56508331e+01, -4.61172714e+01,\n",
|
| 1399 |
-
" -4.63968048e+01, -4.68718109e+01, -4.72872124e+01,\n",
|
| 1400 |
-
" -4.73875198e+01, -4.78723831e+01, -4.89047318e+01,\n",
|
| 1401 |
-
" -4.95598145e+01, -5.05726929e+01, -5.07421036e+01,\n",
|
| 1402 |
-
" -5.10995102e+01, -5.18329430e+01, -5.23495178e+01,\n",
|
| 1403 |
-
" -5.22175179e+01, -5.24819641e+01, -5.31855202e+01,\n",
|
| 1404 |
-
" -5.35709381e+01, -5.37392502e+01, -5.43253632e+01,\n",
|
| 1405 |
-
" -5.47238350e+01, -5.50775185e+01, -5.63571014e+01,\n",
|
| 1406 |
-
" -5.69156952e+01, -5.76920853e+01, -5.83982620e+01,\n",
|
| 1407 |
-
" -5.82344589e+01, -5.79788971e+01, -5.81983414e+01,\n",
|
| 1408 |
-
" -5.85936928e+01, -5.82228661e+01, -5.85783615e+01,\n",
|
| 1409 |
-
" -5.90478325e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1410 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1411 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1412 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1413 |
-
" -5.95438461e+01, -5.30496674e+01, -4.57618561e+01,\n",
|
| 1414 |
-
" -4.76204147e+01, -4.09168930e+01, -4.32969589e+01,\n",
|
| 1415 |
-
" -4.85493469e+01, -4.89892426e+01, -4.26883774e+01,\n",
|
| 1416 |
-
" -4.16727905e+01, -5.00218010e+01, -4.90996628e+01,\n",
|
| 1417 |
-
" -5.90736694e+01, 0.00000000e+00, 0.00000000e+00,\n",
|
| 1418 |
-
" 0.00000000e+00],\n",
|
| 1419 |
-
" [-5.95438461e+01, -5.95438461e+01, -5.62709732e+01,\n",
|
| 1420 |
-
" -5.84066696e+01, -5.38127060e+01, -5.33450699e+01,\n",
|
| 1421 |
-
" -4.50783920e+01, -3.96379814e+01, -3.81974525e+01,\n",
|
| 1422 |
-
" -3.56916275e+01, -3.62519188e+01, -3.76968842e+01,\n",
|
| 1423 |
-
" -3.80021439e+01, -3.91526985e+01, -4.10718842e+01,\n",
|
| 1424 |
-
" -4.20187187e+01, -4.24683189e+01, -4.35174713e+01,\n",
|
| 1425 |
-
" -4.52799225e+01, -4.55131073e+01, -4.59457397e+01,\n",
|
| 1426 |
-
" -4.83226013e+01, -4.91745338e+01, -4.87478256e+01,\n",
|
| 1427 |
-
" -4.98099670e+01, -5.22401199e+01, -5.31218147e+01,\n",
|
| 1428 |
-
" -5.21232605e+01, -5.28583565e+01, -5.48640251e+01,\n",
|
| 1429 |
-
" -5.51272354e+01, -5.51506386e+01, -5.59671822e+01,\n",
|
| 1430 |
-
" -5.70622025e+01, -5.67112389e+01, -5.73474464e+01,\n",
|
| 1431 |
-
" -5.80157394e+01, -5.77941208e+01, -5.75015221e+01,\n",
|
| 1432 |
-
" -5.78952446e+01, -5.89627075e+01, -5.91342163e+01,\n",
|
| 1433 |
-
" -5.92885056e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1434 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1435 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1436 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1437 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1438 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1439 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1440 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1441 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1442 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1443 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1444 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1445 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1446 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1447 |
-
" -5.95438461e+01, -5.58305550e+01, -4.87435074e+01,\n",
|
| 1448 |
-
" -5.04989777e+01, -4.38534966e+01, -4.62269745e+01,\n",
|
| 1449 |
-
" -5.16816635e+01, -5.21152039e+01, -4.58611145e+01,\n",
|
| 1450 |
-
" -4.48530502e+01, -5.29586945e+01, -5.19915962e+01,\n",
|
| 1451 |
-
" -5.95438461e+01, 0.00000000e+00, 0.00000000e+00,\n",
|
| 1452 |
-
" 0.00000000e+00],\n",
|
| 1453 |
-
" [-5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1454 |
-
" -5.95438461e+01, -5.86796761e+01, -5.93088951e+01,\n",
|
| 1455 |
-
" -5.66783752e+01, -5.26259232e+01, -5.21361122e+01,\n",
|
| 1456 |
-
" -5.02394676e+01, -5.05689964e+01, -5.22689590e+01,\n",
|
| 1457 |
-
" -5.33883820e+01, -5.47763596e+01, -5.56139908e+01,\n",
|
| 1458 |
-
" -5.71624184e+01, -5.92938156e+01, -5.95438461e+01,\n",
|
| 1459 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1460 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1461 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1462 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1463 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1464 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1465 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1466 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1467 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1468 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1469 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1470 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1471 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1472 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1473 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1474 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1475 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1476 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1477 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1478 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1479 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1480 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1481 |
-
" -5.95438461e+01, -5.93147278e+01, -5.27222252e+01,\n",
|
| 1482 |
-
" -5.45519066e+01, -4.80988159e+01, -5.04605522e+01,\n",
|
| 1483 |
-
" -5.55792198e+01, -5.60769615e+01, -5.01643410e+01,\n",
|
| 1484 |
-
" -4.91602745e+01, -5.71313820e+01, -5.61772919e+01,\n",
|
| 1485 |
-
" -5.95438461e+01, 0.00000000e+00, 0.00000000e+00,\n",
|
| 1486 |
-
" 0.00000000e+00],\n",
|
| 1487 |
-
" [-5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1488 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1489 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1490 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1491 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1492 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1493 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1494 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1495 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1496 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1497 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1498 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1499 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1500 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1501 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1502 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1503 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1504 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1505 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1506 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1507 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1508 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1509 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1510 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1511 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1512 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1513 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1514 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1515 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1516 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1517 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1518 |
-
" -5.95438461e+01, -5.95438461e+01, -5.95438461e+01,\n",
|
| 1519 |
-
" -5.95438461e+01, 0.00000000e+00, 0.00000000e+00,\n",
|
| 1520 |
-
" 0.00000000e+00]], dtype=float32)"
|
| 1521 |
-
]
|
| 1522 |
-
},
|
| 1523 |
-
"execution_count": 7,
|
| 1524 |
-
"metadata": {},
|
| 1525 |
-
"output_type": "execute_result"
|
| 1526 |
-
}
|
| 1527 |
-
],
|
| 1528 |
"source": [
|
| 1529 |
"NX[0]"
|
| 1530 |
]
|
|
|
|
| 1138 |
},
|
| 1139 |
{
|
| 1140 |
"cell_type": "code",
|
| 1141 |
+
"execution_count": 5,
|
| 1142 |
"metadata": {
|
| 1143 |
"execution": {
|
| 1144 |
"iopub.status.busy": "2023-04-24T20:38:49.427002Z",
|
|
|
|
| 1154 |
"21"
|
| 1155 |
]
|
| 1156 |
},
|
| 1157 |
+
"execution_count": 5,
|
| 1158 |
"metadata": {},
|
| 1159 |
"output_type": "execute_result"
|
| 1160 |
}
|
|
|
|
| 1165 |
},
|
| 1166 |
{
|
| 1167 |
"cell_type": "code",
|
| 1168 |
+
"execution_count": null,
|
| 1169 |
"metadata": {
|
| 1170 |
"execution": {
|
| 1171 |
"iopub.status.busy": "2023-04-24T20:38:49.435465Z",
|
|
|
|
| 1174 |
"shell.execute_reply.started": "2023-04-24T20:38:49.436224Z"
|
| 1175 |
}
|
| 1176 |
},
|
| 1177 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1178 |
"source": [
|
| 1179 |
"NX[0]"
|
| 1180 |
]
|
benchmark/numpy_14/numpy_14_fixed.ipynb
CHANGED
|
@@ -250,13 +250,6 @@
|
|
| 250 |
}
|
| 251 |
},
|
| 252 |
"outputs": [
|
| 253 |
-
{
|
| 254 |
-
"name": "stdout",
|
| 255 |
-
"output_type": "stream",
|
| 256 |
-
"text": [
|
| 257 |
-
"Epoch 1/2\n"
|
| 258 |
-
]
|
| 259 |
-
},
|
| 260 |
{
|
| 261 |
"name": "stderr",
|
| 262 |
"output_type": "stream",
|
|
@@ -269,20 +262,16 @@
|
|
| 269 |
"name": "stdout",
|
| 270 |
"output_type": "stream",
|
| 271 |
"text": [
|
| 272 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m
|
| 273 |
"Epoch 1: val_accuracy improved from -inf to 0.50000, saving model to data_small/best_weights_V19-01-0.5000.keras\n",
|
| 274 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[
|
| 275 |
-
"Epoch 2/2\n",
|
| 276 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 1.0000 - loss: 0.6814\n",
|
| 277 |
-
"Epoch 2: val_accuracy improved from 0.50000 to 0.83333, saving model to data_small/best_weights_V19-02-0.8333.keras\n",
|
| 278 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m27s\u001b[0m 27s/step - accuracy: 1.0000 - loss: 0.6814 - val_accuracy: 0.8333 - val_loss: 0.6884\n"
|
| 279 |
]
|
| 280 |
}
|
| 281 |
],
|
| 282 |
"source": [
|
| 283 |
"# Dont run again model is saved @ /kaggle/working/save_weights/best_weights_V19-47-0.9566.hdf5\n",
|
| 284 |
"\n",
|
| 285 |
-
"history_V19 = modelV19.fit(train_generator, epochs=
|
| 286 |
]
|
| 287 |
},
|
| 288 |
{
|
|
@@ -348,20 +337,15 @@
|
|
| 348 |
"name": "stdout",
|
| 349 |
"output_type": "stream",
|
| 350 |
"text": [
|
| 351 |
-
"
|
| 352 |
-
"
|
| 353 |
-
"
|
| 354 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m52s\u001b[0m 52s/step - accuracy: 0.6667 - loss: 1.1260 - val_accuracy: 0.5000 - val_loss: 0.6371\n",
|
| 355 |
-
"Epoch 2/2\n",
|
| 356 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 672ms/step - accuracy: 0.8333 - loss: 0.8860\n",
|
| 357 |
-
"Epoch 2: val_accuracy improved from 0.50000 to 0.83333, saving model to data_small/best_weights_M2-02-0.8333.keras\n",
|
| 358 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m44s\u001b[0m 44s/step - accuracy: 0.8333 - loss: 0.8860 - val_accuracy: 0.8333 - val_loss: 0.4877\n"
|
| 359 |
]
|
| 360 |
}
|
| 361 |
],
|
| 362 |
"source": [
|
| 363 |
"# Dont run again model is saved @ /kaggle/working/save_weights/best_weights_M2-49-0.9681.hdf5\n",
|
| 364 |
-
"history_M2 = modelM2.fit(train_generator, epochs=
|
| 365 |
]
|
| 366 |
},
|
| 367 |
{
|
|
@@ -472,7 +456,7 @@
|
|
| 472 |
},
|
| 473 |
{
|
| 474 |
"cell_type": "code",
|
| 475 |
-
"execution_count":
|
| 476 |
"metadata": {
|
| 477 |
"execution": {
|
| 478 |
"iopub.execute_input": "2023-04-17T12:07:00.234155Z",
|
|
@@ -497,27 +481,22 @@
|
|
| 497 |
},
|
| 498 |
{
|
| 499 |
"cell_type": "code",
|
| 500 |
-
"execution_count":
|
| 501 |
"metadata": {},
|
| 502 |
"outputs": [
|
| 503 |
{
|
| 504 |
"name": "stdout",
|
| 505 |
"output_type": "stream",
|
| 506 |
"text": [
|
| 507 |
-
"
|
| 508 |
-
"
|
| 509 |
-
"
|
| 510 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m112s\u001b[0m 112s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
|
| 511 |
-
"Epoch 2/2\n",
|
| 512 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 1.0000 - loss: 0.0000e+00\n",
|
| 513 |
-
"Epoch 2: val_accuracy did not improve from 1.00000\n",
|
| 514 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 0.8333 - val_loss: 0.0000e+00\n"
|
| 515 |
]
|
| 516 |
}
|
| 517 |
],
|
| 518 |
"source": [
|
| 519 |
"# only fit when there are trainable parameters\n",
|
| 520 |
-
"history_ensemble = ensemble_model.fit(train_generator, epochs=
|
| 521 |
]
|
| 522 |
},
|
| 523 |
{
|
|
@@ -560,7 +539,7 @@
|
|
| 560 |
},
|
| 561 |
{
|
| 562 |
"cell_type": "code",
|
| 563 |
-
"execution_count":
|
| 564 |
"metadata": {
|
| 565 |
"execution": {
|
| 566 |
"iopub.execute_input": "2023-04-17T12:14:59.727959Z",
|
|
@@ -575,7 +554,7 @@
|
|
| 575 |
"name": "stdout",
|
| 576 |
"output_type": "stream",
|
| 577 |
"text": [
|
| 578 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m
|
| 579 |
]
|
| 580 |
},
|
| 581 |
{
|
|
@@ -584,7 +563,7 @@
|
|
| 584 |
"[0.0, 0.0, 1.0, 0.0, 1.0, 1.0]"
|
| 585 |
]
|
| 586 |
},
|
| 587 |
-
"execution_count":
|
| 588 |
"metadata": {},
|
| 589 |
"output_type": "execute_result"
|
| 590 |
}
|
|
@@ -598,7 +577,7 @@
|
|
| 598 |
},
|
| 599 |
{
|
| 600 |
"cell_type": "code",
|
| 601 |
-
"execution_count":
|
| 602 |
"metadata": {
|
| 603 |
"execution": {
|
| 604 |
"iopub.execute_input": "2023-04-17T12:20:24.753793Z",
|
|
@@ -615,13 +594,13 @@
|
|
| 615 |
"text": [
|
| 616 |
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step\n",
|
| 617 |
"One-hot encoded predicted labels:\n",
|
| 618 |
-
"[[0.
|
| 619 |
-
" [0.
|
| 620 |
-
" [0.
|
| 621 |
-
" [0.
|
| 622 |
-
" [0.
|
| 623 |
-
" [0.
|
| 624 |
-
"[0 1
|
| 625 |
]
|
| 626 |
}
|
| 627 |
],
|
|
@@ -649,7 +628,7 @@
|
|
| 649 |
},
|
| 650 |
{
|
| 651 |
"cell_type": "code",
|
| 652 |
-
"execution_count":
|
| 653 |
"metadata": {
|
| 654 |
"execution": {
|
| 655 |
"iopub.execute_input": "2023-04-17T12:16:41.235043Z",
|
|
@@ -664,7 +643,7 @@
|
|
| 664 |
"name": "stdout",
|
| 665 |
"output_type": "stream",
|
| 666 |
"text": [
|
| 667 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m
|
| 668 |
]
|
| 669 |
}
|
| 670 |
],
|
|
@@ -689,7 +668,7 @@
|
|
| 689 |
},
|
| 690 |
{
|
| 691 |
"cell_type": "code",
|
| 692 |
-
"execution_count":
|
| 693 |
"metadata": {
|
| 694 |
"execution": {
|
| 695 |
"iopub.execute_input": "2023-04-16T20:46:57.948345Z",
|
|
|
|
| 250 |
}
|
| 251 |
},
|
| 252 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
{
|
| 254 |
"name": "stderr",
|
| 255 |
"output_type": "stream",
|
|
|
|
| 262 |
"name": "stdout",
|
| 263 |
"output_type": "stream",
|
| 264 |
"text": [
|
| 265 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3s/step - accuracy: 0.6667 - loss: 0.5391\n",
|
| 266 |
"Epoch 1: val_accuracy improved from -inf to 0.50000, saving model to data_small/best_weights_V19-01-0.5000.keras\n",
|
| 267 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m17s\u001b[0m 17s/step - accuracy: 0.6667 - loss: 0.5391 - val_accuracy: 0.5000 - val_loss: 0.6312\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
]
|
| 269 |
}
|
| 270 |
],
|
| 271 |
"source": [
|
| 272 |
"# Dont run again model is saved @ /kaggle/working/save_weights/best_weights_V19-47-0.9566.hdf5\n",
|
| 273 |
"\n",
|
| 274 |
+
"history_V19 = modelV19.fit(train_generator, epochs=1, validation_data=validation_generator, callbacks=[early_stop, checkpoint_V19])"
|
| 275 |
]
|
| 276 |
},
|
| 277 |
{
|
|
|
|
| 337 |
"name": "stdout",
|
| 338 |
"output_type": "stream",
|
| 339 |
"text": [
|
| 340 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7s/step - accuracy: 0.6667 - loss: 0.9756\n",
|
| 341 |
+
"Epoch 1: val_accuracy improved from -inf to 0.83333, saving model to data_small/best_weights_M2-01-0.8333.keras\n",
|
| 342 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 30s/step - accuracy: 0.6667 - loss: 0.9756 - val_accuracy: 0.8333 - val_loss: 0.5959\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
]
|
| 344 |
}
|
| 345 |
],
|
| 346 |
"source": [
|
| 347 |
"# Dont run again model is saved @ /kaggle/working/save_weights/best_weights_M2-49-0.9681.hdf5\n",
|
| 348 |
+
"history_M2 = modelM2.fit(train_generator, epochs=1, validation_data=validation_generator, callbacks=[early_stop, checkpoint_M2])"
|
| 349 |
]
|
| 350 |
},
|
| 351 |
{
|
|
|
|
| 456 |
},
|
| 457 |
{
|
| 458 |
"cell_type": "code",
|
| 459 |
+
"execution_count": 12,
|
| 460 |
"metadata": {
|
| 461 |
"execution": {
|
| 462 |
"iopub.execute_input": "2023-04-17T12:07:00.234155Z",
|
|
|
|
| 481 |
},
|
| 482 |
{
|
| 483 |
"cell_type": "code",
|
| 484 |
+
"execution_count": 13,
|
| 485 |
"metadata": {},
|
| 486 |
"outputs": [
|
| 487 |
{
|
| 488 |
"name": "stdout",
|
| 489 |
"output_type": "stream",
|
| 490 |
"text": [
|
| 491 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7s/step - accuracy: 0.6667 - loss: 0.0000e+00\n",
|
| 492 |
+
"Epoch 1: val_accuracy improved from -inf to 0.83333, saving model to data_small/best_weights_ensemble-01-0.8333.keras\n",
|
| 493 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m64s\u001b[0m 64s/step - accuracy: 0.6667 - loss: 0.0000e+00 - val_accuracy: 0.8333 - val_loss: 0.0000e+00\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 494 |
]
|
| 495 |
}
|
| 496 |
],
|
| 497 |
"source": [
|
| 498 |
"# only fit when there are trainable parameters\n",
|
| 499 |
+
"history_ensemble = ensemble_model.fit(train_generator, epochs=1, validation_data=validation_generator, callbacks=[early_stop, checkpoint_ensemble])"
|
| 500 |
]
|
| 501 |
},
|
| 502 |
{
|
|
|
|
| 539 |
},
|
| 540 |
{
|
| 541 |
"cell_type": "code",
|
| 542 |
+
"execution_count": 14,
|
| 543 |
"metadata": {
|
| 544 |
"execution": {
|
| 545 |
"iopub.execute_input": "2023-04-17T12:14:59.727959Z",
|
|
|
|
| 554 |
"name": "stdout",
|
| 555 |
"output_type": "stream",
|
| 556 |
"text": [
|
| 557 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 912ms/step - accuracy: 1.0000 - loss: 0.0000e+00\n"
|
| 558 |
]
|
| 559 |
},
|
| 560 |
{
|
|
|
|
| 563 |
"[0.0, 0.0, 1.0, 0.0, 1.0, 1.0]"
|
| 564 |
]
|
| 565 |
},
|
| 566 |
+
"execution_count": 14,
|
| 567 |
"metadata": {},
|
| 568 |
"output_type": "execute_result"
|
| 569 |
}
|
|
|
|
| 577 |
},
|
| 578 |
{
|
| 579 |
"cell_type": "code",
|
| 580 |
+
"execution_count": 15,
|
| 581 |
"metadata": {
|
| 582 |
"execution": {
|
| 583 |
"iopub.execute_input": "2023-04-17T12:20:24.753793Z",
|
|
|
|
| 594 |
"text": [
|
| 595 |
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step\n",
|
| 596 |
"One-hot encoded predicted labels:\n",
|
| 597 |
+
"[[0.6766326 0.32336748]\n",
|
| 598 |
+
" [0.13196638 0.8680336 ]\n",
|
| 599 |
+
" [0.61891085 0.38108918]\n",
|
| 600 |
+
" [0.07593525 0.92406476]\n",
|
| 601 |
+
" [0.11446559 0.88553447]\n",
|
| 602 |
+
" [0.7296946 0.27030542]]\n",
|
| 603 |
+
"[0 1 0 1 1 0]\n"
|
| 604 |
]
|
| 605 |
}
|
| 606 |
],
|
|
|
|
| 628 |
},
|
| 629 |
{
|
| 630 |
"cell_type": "code",
|
| 631 |
+
"execution_count": 16,
|
| 632 |
"metadata": {
|
| 633 |
"execution": {
|
| 634 |
"iopub.execute_input": "2023-04-17T12:16:41.235043Z",
|
|
|
|
| 643 |
"name": "stdout",
|
| 644 |
"output_type": "stream",
|
| 645 |
"text": [
|
| 646 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 850ms/step\n"
|
| 647 |
]
|
| 648 |
}
|
| 649 |
],
|
|
|
|
| 668 |
},
|
| 669 |
{
|
| 670 |
"cell_type": "code",
|
| 671 |
+
"execution_count": 17,
|
| 672 |
"metadata": {
|
| 673 |
"execution": {
|
| 674 |
"iopub.execute_input": "2023-04-16T20:46:57.948345Z",
|
benchmark/numpy_14/numpy_14_reproduced.ipynb
CHANGED
|
@@ -269,13 +269,13 @@
|
|
| 269 |
"name": "stdout",
|
| 270 |
"output_type": "stream",
|
| 271 |
"text": [
|
| 272 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m
|
| 273 |
"Epoch 1: val_accuracy improved from -inf to 0.50000, saving model to data_small/best_weights_V19-01-0.5000.keras\n",
|
| 274 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[
|
| 275 |
"Epoch 2/2\n",
|
| 276 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m
|
| 277 |
-
"Epoch 2: val_accuracy improved from 0.50000 to
|
| 278 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[
|
| 279 |
]
|
| 280 |
}
|
| 281 |
],
|
|
@@ -349,13 +349,13 @@
|
|
| 349 |
"output_type": "stream",
|
| 350 |
"text": [
|
| 351 |
"Epoch 1/2\n",
|
| 352 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m
|
| 353 |
"Epoch 1: val_accuracy improved from -inf to 0.50000, saving model to data_small/best_weights_M2-01-0.5000.keras\n",
|
| 354 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[
|
| 355 |
"Epoch 2/2\n",
|
| 356 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m
|
| 357 |
"Epoch 2: val_accuracy improved from 0.50000 to 0.83333, saving model to data_small/best_weights_M2-02-0.8333.keras\n",
|
| 358 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[
|
| 359 |
]
|
| 360 |
}
|
| 361 |
],
|
|
@@ -472,7 +472,7 @@
|
|
| 472 |
},
|
| 473 |
{
|
| 474 |
"cell_type": "code",
|
| 475 |
-
"execution_count":
|
| 476 |
"metadata": {
|
| 477 |
"execution": {
|
| 478 |
"iopub.execute_input": "2023-04-17T12:07:00.234155Z",
|
|
@@ -497,7 +497,7 @@
|
|
| 497 |
},
|
| 498 |
{
|
| 499 |
"cell_type": "code",
|
| 500 |
-
"execution_count":
|
| 501 |
"metadata": {},
|
| 502 |
"outputs": [
|
| 503 |
{
|
|
@@ -505,13 +505,13 @@
|
|
| 505 |
"output_type": "stream",
|
| 506 |
"text": [
|
| 507 |
"Epoch 1/2\n",
|
| 508 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m
|
| 509 |
"Epoch 1: val_accuracy improved from -inf to 1.00000, saving model to data_small/best_weights_ensemble-01-1.0000.keras\n",
|
| 510 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[
|
| 511 |
"Epoch 2/2\n",
|
| 512 |
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 1.0000 - loss: 0.0000e+00\n",
|
| 513 |
"Epoch 2: val_accuracy did not improve from 1.00000\n",
|
| 514 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy:
|
| 515 |
]
|
| 516 |
}
|
| 517 |
],
|
|
@@ -560,7 +560,7 @@
|
|
| 560 |
},
|
| 561 |
{
|
| 562 |
"cell_type": "code",
|
| 563 |
-
"execution_count":
|
| 564 |
"metadata": {
|
| 565 |
"execution": {
|
| 566 |
"iopub.execute_input": "2023-04-17T12:14:59.727959Z",
|
|
@@ -575,7 +575,7 @@
|
|
| 575 |
"name": "stdout",
|
| 576 |
"output_type": "stream",
|
| 577 |
"text": [
|
| 578 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m
|
| 579 |
]
|
| 580 |
},
|
| 581 |
{
|
|
@@ -584,7 +584,7 @@
|
|
| 584 |
"[0.0, 0.0, 1.0, 0.0, 1.0, 1.0]"
|
| 585 |
]
|
| 586 |
},
|
| 587 |
-
"execution_count":
|
| 588 |
"metadata": {},
|
| 589 |
"output_type": "execute_result"
|
| 590 |
}
|
|
@@ -598,7 +598,7 @@
|
|
| 598 |
},
|
| 599 |
{
|
| 600 |
"cell_type": "code",
|
| 601 |
-
"execution_count":
|
| 602 |
"metadata": {
|
| 603 |
"execution": {
|
| 604 |
"iopub.execute_input": "2023-04-17T12:20:24.753793Z",
|
|
@@ -615,13 +615,13 @@
|
|
| 615 |
"text": [
|
| 616 |
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step\n",
|
| 617 |
"One-hot encoded predicted labels:\n",
|
| 618 |
-
"[[0.
|
| 619 |
-
" [0.
|
| 620 |
-
" [0.
|
| 621 |
-
" [0.
|
| 622 |
-
" [0.
|
| 623 |
-
" [0.
|
| 624 |
-
"[
|
| 625 |
]
|
| 626 |
}
|
| 627 |
],
|
|
@@ -649,7 +649,7 @@
|
|
| 649 |
},
|
| 650 |
{
|
| 651 |
"cell_type": "code",
|
| 652 |
-
"execution_count":
|
| 653 |
"metadata": {
|
| 654 |
"execution": {
|
| 655 |
"iopub.execute_input": "2023-04-17T12:16:41.235043Z",
|
|
@@ -664,7 +664,7 @@
|
|
| 664 |
"name": "stdout",
|
| 665 |
"output_type": "stream",
|
| 666 |
"text": [
|
| 667 |
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m
|
| 668 |
]
|
| 669 |
},
|
| 670 |
{
|
|
@@ -674,7 +674,7 @@
|
|
| 674 |
"traceback": [
|
| 675 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 676 |
"\u001b[0;31mAxisError\u001b[0m Traceback (most recent call last)",
|
| 677 |
-
"\u001b[0;32m<ipython-input-
|
| 678 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/fromnumeric.py\u001b[0m in \u001b[0;36margmax\u001b[0;34m(a, axis, out, keepdims)\u001b[0m\n\u001b[1;32m 1227\u001b[0m \"\"\"\n\u001b[1;32m 1228\u001b[0m \u001b[0mkwds\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m'keepdims'\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mkeepdims\u001b[0m\u001b[0;34m}\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkeepdims\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_NoValue\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1229\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_wrapfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'argmax'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1230\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 679 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/fromnumeric.py\u001b[0m in \u001b[0;36m_wrapfunc\u001b[0;34m(obj, method, *args, **kwds)\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 59\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mbound\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 60\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;31m# A TypeError occurs if the object does have such a method in its\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 680 |
"\u001b[0;31mAxisError\u001b[0m: axis 1 is out of bounds for array of dimension 1"
|
|
|
|
| 269 |
"name": "stdout",
|
| 270 |
"output_type": "stream",
|
| 271 |
"text": [
|
| 272 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3s/step - accuracy: 0.3333 - loss: 0.7429\n",
|
| 273 |
"Epoch 1: val_accuracy improved from -inf to 0.50000, saving model to data_small/best_weights_V19-01-0.5000.keras\n",
|
| 274 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m16s\u001b[0m 16s/step - accuracy: 0.3333 - loss: 0.7429 - val_accuracy: 0.5000 - val_loss: 0.7080\n",
|
| 275 |
"Epoch 2/2\n",
|
| 276 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 927ms/step - accuracy: 0.5000 - loss: 0.7603\n",
|
| 277 |
+
"Epoch 2: val_accuracy improved from 0.50000 to 1.00000, saving model to data_small/best_weights_V19-02-1.0000.keras\n",
|
| 278 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m13s\u001b[0m 13s/step - accuracy: 0.5000 - loss: 0.7603 - val_accuracy: 1.0000 - val_loss: 0.6773\n"
|
| 279 |
]
|
| 280 |
}
|
| 281 |
],
|
|
|
|
| 349 |
"output_type": "stream",
|
| 350 |
"text": [
|
| 351 |
"Epoch 1/2\n",
|
| 352 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7s/step - accuracy: 0.3333 - loss: 1.3967\n",
|
| 353 |
"Epoch 1: val_accuracy improved from -inf to 0.50000, saving model to data_small/best_weights_M2-01-0.5000.keras\n",
|
| 354 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 28s/step - accuracy: 0.3333 - loss: 1.3967 - val_accuracy: 0.5000 - val_loss: 0.8811\n",
|
| 355 |
"Epoch 2/2\n",
|
| 356 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 631ms/step - accuracy: 0.5000 - loss: 1.0401\n",
|
| 357 |
"Epoch 2: val_accuracy improved from 0.50000 to 0.83333, saving model to data_small/best_weights_M2-02-0.8333.keras\n",
|
| 358 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 7s/step - accuracy: 0.5000 - loss: 1.0401 - val_accuracy: 0.8333 - val_loss: 0.3798\n"
|
| 359 |
]
|
| 360 |
}
|
| 361 |
],
|
|
|
|
| 472 |
},
|
| 473 |
{
|
| 474 |
"cell_type": "code",
|
| 475 |
+
"execution_count": 12,
|
| 476 |
"metadata": {
|
| 477 |
"execution": {
|
| 478 |
"iopub.execute_input": "2023-04-17T12:07:00.234155Z",
|
|
|
|
| 497 |
},
|
| 498 |
{
|
| 499 |
"cell_type": "code",
|
| 500 |
+
"execution_count": 13,
|
| 501 |
"metadata": {},
|
| 502 |
"outputs": [
|
| 503 |
{
|
|
|
|
| 505 |
"output_type": "stream",
|
| 506 |
"text": [
|
| 507 |
"Epoch 1/2\n",
|
| 508 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━���━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7s/step - accuracy: 0.8333 - loss: 0.0000e+00\n",
|
| 509 |
"Epoch 1: val_accuracy improved from -inf to 1.00000, saving model to data_small/best_weights_ensemble-01-1.0000.keras\n",
|
| 510 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m59s\u001b[0m 59s/step - accuracy: 0.8333 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
|
| 511 |
"Epoch 2/2\n",
|
| 512 |
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 1.0000 - loss: 0.0000e+00\n",
|
| 513 |
"Epoch 2: val_accuracy did not improve from 1.00000\n",
|
| 514 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n"
|
| 515 |
]
|
| 516 |
}
|
| 517 |
],
|
|
|
|
| 560 |
},
|
| 561 |
{
|
| 562 |
"cell_type": "code",
|
| 563 |
+
"execution_count": 14,
|
| 564 |
"metadata": {
|
| 565 |
"execution": {
|
| 566 |
"iopub.execute_input": "2023-04-17T12:14:59.727959Z",
|
|
|
|
| 575 |
"name": "stdout",
|
| 576 |
"output_type": "stream",
|
| 577 |
"text": [
|
| 578 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 814ms/step - accuracy: 1.0000 - loss: 0.0000e+00\n"
|
| 579 |
]
|
| 580 |
},
|
| 581 |
{
|
|
|
|
| 584 |
"[0.0, 0.0, 1.0, 0.0, 1.0, 1.0]"
|
| 585 |
]
|
| 586 |
},
|
| 587 |
+
"execution_count": 14,
|
| 588 |
"metadata": {},
|
| 589 |
"output_type": "execute_result"
|
| 590 |
}
|
|
|
|
| 598 |
},
|
| 599 |
{
|
| 600 |
"cell_type": "code",
|
| 601 |
+
"execution_count": 15,
|
| 602 |
"metadata": {
|
| 603 |
"execution": {
|
| 604 |
"iopub.execute_input": "2023-04-17T12:20:24.753793Z",
|
|
|
|
| 615 |
"text": [
|
| 616 |
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step\n",
|
| 617 |
"One-hot encoded predicted labels:\n",
|
| 618 |
+
"[[0.31029052 0.6897094 ]\n",
|
| 619 |
+
" [0.835801 0.16419895]\n",
|
| 620 |
+
" [0.8169173 0.1830827 ]\n",
|
| 621 |
+
" [0.23521721 0.76478285]\n",
|
| 622 |
+
" [0.26234603 0.737654 ]\n",
|
| 623 |
+
" [0.6919892 0.30801076]]\n",
|
| 624 |
+
"[1 0 0 1 1 0]\n"
|
| 625 |
]
|
| 626 |
}
|
| 627 |
],
|
|
|
|
| 649 |
},
|
| 650 |
{
|
| 651 |
"cell_type": "code",
|
| 652 |
+
"execution_count": 16,
|
| 653 |
"metadata": {
|
| 654 |
"execution": {
|
| 655 |
"iopub.execute_input": "2023-04-17T12:16:41.235043Z",
|
|
|
|
| 664 |
"name": "stdout",
|
| 665 |
"output_type": "stream",
|
| 666 |
"text": [
|
| 667 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 889ms/step\n"
|
| 668 |
]
|
| 669 |
},
|
| 670 |
{
|
|
|
|
| 674 |
"traceback": [
|
| 675 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 676 |
"\u001b[0;31mAxisError\u001b[0m Traceback (most recent call last)",
|
| 677 |
+
"\u001b[0;32m<ipython-input-16-e36d626cb2d3>\u001b[0m in \u001b[0;36m<cell line: 13>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;31m# Convert one-hot encoded labels to integer labels\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0my_true_onehot\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtest_generator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclasses\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0my_true_classes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_true_onehot\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
| 678 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/fromnumeric.py\u001b[0m in \u001b[0;36margmax\u001b[0;34m(a, axis, out, keepdims)\u001b[0m\n\u001b[1;32m 1227\u001b[0m \"\"\"\n\u001b[1;32m 1228\u001b[0m \u001b[0mkwds\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m'keepdims'\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mkeepdims\u001b[0m\u001b[0;34m}\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkeepdims\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_NoValue\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1229\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_wrapfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'argmax'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1230\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 679 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/fromnumeric.py\u001b[0m in \u001b[0;36m_wrapfunc\u001b[0;34m(obj, method, *args, **kwds)\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 59\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mbound\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 60\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;31m# A TypeError occurs if the object does have such a method in its\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 680 |
"\u001b[0;31mAxisError\u001b[0m: axis 1 is out of bounds for array of dimension 1"
|
benchmark/numpy_15/numpy_15_fixed.ipynb
CHANGED
|
@@ -531,7 +531,7 @@
|
|
| 531 |
},
|
| 532 |
{
|
| 533 |
"cell_type": "code",
|
| 534 |
-
"execution_count":
|
| 535 |
"metadata": {
|
| 536 |
"execution": {
|
| 537 |
"iopub.execute_input": "2023-04-30T09:07:23.138154Z",
|
|
@@ -541,16 +541,7 @@
|
|
| 541 |
"shell.execute_reply.started": "2023-04-30T09:07:23.138117Z"
|
| 542 |
}
|
| 543 |
},
|
| 544 |
-
"outputs": [
|
| 545 |
-
{
|
| 546 |
-
"name": "stdout",
|
| 547 |
-
"output_type": "stream",
|
| 548 |
-
"text": [
|
| 549 |
-
"Input Shape (75, 4)\n",
|
| 550 |
-
"Output Shape (19, 4)\n"
|
| 551 |
-
]
|
| 552 |
-
}
|
| 553 |
-
],
|
| 554 |
"source": [
|
| 555 |
"print('Input Shape', (X_tr_arr.shape))\n",
|
| 556 |
"print('Output Shape', X_test.shape)"
|
|
@@ -558,7 +549,7 @@
|
|
| 558 |
},
|
| 559 |
{
|
| 560 |
"cell_type": "code",
|
| 561 |
-
"execution_count":
|
| 562 |
"metadata": {
|
| 563 |
"execution": {
|
| 564 |
"iopub.execute_input": "2023-04-30T09:34:17.065851Z",
|
|
@@ -578,7 +569,7 @@
|
|
| 578 |
},
|
| 579 |
{
|
| 580 |
"cell_type": "code",
|
| 581 |
-
"execution_count":
|
| 582 |
"metadata": {
|
| 583 |
"execution": {
|
| 584 |
"iopub.execute_input": "2023-04-30T09:34:20.799015Z",
|
|
@@ -597,7 +588,7 @@
|
|
| 597 |
},
|
| 598 |
{
|
| 599 |
"cell_type": "code",
|
| 600 |
-
"execution_count":
|
| 601 |
"metadata": {
|
| 602 |
"execution": {
|
| 603 |
"iopub.execute_input": "2023-04-30T09:34:23.422913Z",
|
|
@@ -630,7 +621,7 @@
|
|
| 630 |
},
|
| 631 |
{
|
| 632 |
"cell_type": "code",
|
| 633 |
-
"execution_count":
|
| 634 |
"metadata": {
|
| 635 |
"execution": {
|
| 636 |
"iopub.execute_input": "2023-04-30T09:37:06.380805Z",
|
|
@@ -700,7 +691,7 @@
|
|
| 700 |
},
|
| 701 |
{
|
| 702 |
"cell_type": "code",
|
| 703 |
-
"execution_count":
|
| 704 |
"metadata": {
|
| 705 |
"execution": {
|
| 706 |
"iopub.execute_input": "2023-04-30T09:33:59.300321Z",
|
|
@@ -738,7 +729,7 @@
|
|
| 738 |
},
|
| 739 |
{
|
| 740 |
"cell_type": "code",
|
| 741 |
-
"execution_count":
|
| 742 |
"metadata": {
|
| 743 |
"execution": {
|
| 744 |
"iopub.execute_input": "2023-04-30T09:37:08.958874Z",
|
|
@@ -760,7 +751,7 @@
|
|
| 760 |
},
|
| 761 |
{
|
| 762 |
"cell_type": "code",
|
| 763 |
-
"execution_count":
|
| 764 |
"metadata": {
|
| 765 |
"execution": {
|
| 766 |
"iopub.execute_input": "2023-04-30T09:37:11.076162Z",
|
|
@@ -811,7 +802,7 @@
|
|
| 811 |
},
|
| 812 |
{
|
| 813 |
"cell_type": "code",
|
| 814 |
-
"execution_count":
|
| 815 |
"metadata": {
|
| 816 |
"execution": {
|
| 817 |
"iopub.execute_input": "2023-04-30T09:35:38.572927Z",
|
|
|
|
| 531 |
},
|
| 532 |
{
|
| 533 |
"cell_type": "code",
|
| 534 |
+
"execution_count": null,
|
| 535 |
"metadata": {
|
| 536 |
"execution": {
|
| 537 |
"iopub.execute_input": "2023-04-30T09:07:23.138154Z",
|
|
|
|
| 541 |
"shell.execute_reply.started": "2023-04-30T09:07:23.138117Z"
|
| 542 |
}
|
| 543 |
},
|
| 544 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 545 |
"source": [
|
| 546 |
"print('Input Shape', (X_tr_arr.shape))\n",
|
| 547 |
"print('Output Shape', X_test.shape)"
|
|
|
|
| 549 |
},
|
| 550 |
{
|
| 551 |
"cell_type": "code",
|
| 552 |
+
"execution_count": 11,
|
| 553 |
"metadata": {
|
| 554 |
"execution": {
|
| 555 |
"iopub.execute_input": "2023-04-30T09:34:17.065851Z",
|
|
|
|
| 569 |
},
|
| 570 |
{
|
| 571 |
"cell_type": "code",
|
| 572 |
+
"execution_count": 12,
|
| 573 |
"metadata": {
|
| 574 |
"execution": {
|
| 575 |
"iopub.execute_input": "2023-04-30T09:34:20.799015Z",
|
|
|
|
| 588 |
},
|
| 589 |
{
|
| 590 |
"cell_type": "code",
|
| 591 |
+
"execution_count": 13,
|
| 592 |
"metadata": {
|
| 593 |
"execution": {
|
| 594 |
"iopub.execute_input": "2023-04-30T09:34:23.422913Z",
|
|
|
|
| 621 |
},
|
| 622 |
{
|
| 623 |
"cell_type": "code",
|
| 624 |
+
"execution_count": 14,
|
| 625 |
"metadata": {
|
| 626 |
"execution": {
|
| 627 |
"iopub.execute_input": "2023-04-30T09:37:06.380805Z",
|
|
|
|
| 691 |
},
|
| 692 |
{
|
| 693 |
"cell_type": "code",
|
| 694 |
+
"execution_count": 15,
|
| 695 |
"metadata": {
|
| 696 |
"execution": {
|
| 697 |
"iopub.execute_input": "2023-04-30T09:33:59.300321Z",
|
|
|
|
| 729 |
},
|
| 730 |
{
|
| 731 |
"cell_type": "code",
|
| 732 |
+
"execution_count": 16,
|
| 733 |
"metadata": {
|
| 734 |
"execution": {
|
| 735 |
"iopub.execute_input": "2023-04-30T09:37:08.958874Z",
|
|
|
|
| 751 |
},
|
| 752 |
{
|
| 753 |
"cell_type": "code",
|
| 754 |
+
"execution_count": 17,
|
| 755 |
"metadata": {
|
| 756 |
"execution": {
|
| 757 |
"iopub.execute_input": "2023-04-30T09:37:11.076162Z",
|
|
|
|
| 802 |
},
|
| 803 |
{
|
| 804 |
"cell_type": "code",
|
| 805 |
+
"execution_count": 18,
|
| 806 |
"metadata": {
|
| 807 |
"execution": {
|
| 808 |
"iopub.execute_input": "2023-04-30T09:35:38.572927Z",
|
benchmark/numpy_15/numpy_15_reproduced.ipynb
CHANGED
|
@@ -36,7 +36,7 @@
|
|
| 36 |
},
|
| 37 |
{
|
| 38 |
"cell_type": "code",
|
| 39 |
-
"execution_count":
|
| 40 |
"metadata": {
|
| 41 |
"execution": {
|
| 42 |
"iopub.execute_input": "2023-04-30T15:07:54.776437Z",
|
|
@@ -104,7 +104,7 @@
|
|
| 104 |
},
|
| 105 |
{
|
| 106 |
"cell_type": "code",
|
| 107 |
-
"execution_count":
|
| 108 |
"metadata": {
|
| 109 |
"execution": {
|
| 110 |
"iopub.execute_input": "2023-04-30T09:07:06.608808Z",
|
|
@@ -209,7 +209,7 @@
|
|
| 209 |
},
|
| 210 |
{
|
| 211 |
"cell_type": "code",
|
| 212 |
-
"execution_count":
|
| 213 |
"metadata": {
|
| 214 |
"execution": {
|
| 215 |
"iopub.execute_input": "2023-04-30T09:07:13.136214Z",
|
|
@@ -230,7 +230,7 @@
|
|
| 230 |
"Name: count, dtype: int64"
|
| 231 |
]
|
| 232 |
},
|
| 233 |
-
"execution_count":
|
| 234 |
"metadata": {},
|
| 235 |
"output_type": "execute_result"
|
| 236 |
}
|
|
@@ -256,7 +256,7 @@
|
|
| 256 |
},
|
| 257 |
{
|
| 258 |
"cell_type": "code",
|
| 259 |
-
"execution_count":
|
| 260 |
"metadata": {
|
| 261 |
"execution": {
|
| 262 |
"iopub.execute_input": "2023-04-30T09:07:13.153535Z",
|
|
@@ -353,7 +353,7 @@
|
|
| 353 |
},
|
| 354 |
{
|
| 355 |
"cell_type": "code",
|
| 356 |
-
"execution_count":
|
| 357 |
"metadata": {
|
| 358 |
"execution": {
|
| 359 |
"iopub.execute_input": "2023-04-30T09:07:17.991761Z",
|
|
@@ -370,7 +370,7 @@
|
|
| 370 |
"array([[<Axes: title={'center': 'sepal_length_cm'}>]], dtype=object)"
|
| 371 |
]
|
| 372 |
},
|
| 373 |
-
"execution_count":
|
| 374 |
"metadata": {},
|
| 375 |
"output_type": "execute_result"
|
| 376 |
},
|
|
@@ -399,7 +399,7 @@
|
|
| 399 |
},
|
| 400 |
{
|
| 401 |
"cell_type": "code",
|
| 402 |
-
"execution_count":
|
| 403 |
"metadata": {
|
| 404 |
"execution": {
|
| 405 |
"iopub.execute_input": "2023-04-30T09:07:18.456682Z",
|
|
@@ -447,7 +447,7 @@
|
|
| 447 |
},
|
| 448 |
{
|
| 449 |
"cell_type": "code",
|
| 450 |
-
"execution_count":
|
| 451 |
"metadata": {
|
| 452 |
"execution": {
|
| 453 |
"iopub.execute_input": "2023-04-30T09:07:23.074983Z",
|
|
@@ -488,7 +488,7 @@
|
|
| 488 |
},
|
| 489 |
{
|
| 490 |
"cell_type": "code",
|
| 491 |
-
"execution_count":
|
| 492 |
"metadata": {
|
| 493 |
"execution": {
|
| 494 |
"iopub.execute_input": "2023-04-30T09:07:23.108304Z",
|
|
@@ -511,7 +511,7 @@
|
|
| 511 |
},
|
| 512 |
{
|
| 513 |
"cell_type": "code",
|
| 514 |
-
"execution_count":
|
| 515 |
"metadata": {
|
| 516 |
"execution": {
|
| 517 |
"iopub.execute_input": "2023-04-30T09:07:23.128879Z",
|
|
@@ -531,7 +531,7 @@
|
|
| 531 |
},
|
| 532 |
{
|
| 533 |
"cell_type": "code",
|
| 534 |
-
"execution_count":
|
| 535 |
"metadata": {
|
| 536 |
"execution": {
|
| 537 |
"iopub.execute_input": "2023-04-30T09:07:23.138154Z",
|
|
@@ -541,16 +541,7 @@
|
|
| 541 |
"shell.execute_reply.started": "2023-04-30T09:07:23.138117Z"
|
| 542 |
}
|
| 543 |
},
|
| 544 |
-
"outputs": [
|
| 545 |
-
{
|
| 546 |
-
"name": "stdout",
|
| 547 |
-
"output_type": "stream",
|
| 548 |
-
"text": [
|
| 549 |
-
"Input Shape (75, 4)\n",
|
| 550 |
-
"Output Shape (19, 4)\n"
|
| 551 |
-
]
|
| 552 |
-
}
|
| 553 |
-
],
|
| 554 |
"source": [
|
| 555 |
"print('Input Shape', (X_tr_arr.shape))\n",
|
| 556 |
"print('Output Shape', X_test.shape)"
|
|
@@ -558,7 +549,7 @@
|
|
| 558 |
},
|
| 559 |
{
|
| 560 |
"cell_type": "code",
|
| 561 |
-
"execution_count":
|
| 562 |
"metadata": {
|
| 563 |
"execution": {
|
| 564 |
"iopub.execute_input": "2023-04-30T09:34:17.065851Z",
|
|
@@ -578,7 +569,7 @@
|
|
| 578 |
},
|
| 579 |
{
|
| 580 |
"cell_type": "code",
|
| 581 |
-
"execution_count":
|
| 582 |
"metadata": {
|
| 583 |
"execution": {
|
| 584 |
"iopub.execute_input": "2023-04-30T09:34:20.799015Z",
|
|
@@ -597,7 +588,7 @@
|
|
| 597 |
},
|
| 598 |
{
|
| 599 |
"cell_type": "code",
|
| 600 |
-
"execution_count":
|
| 601 |
"metadata": {
|
| 602 |
"execution": {
|
| 603 |
"iopub.execute_input": "2023-04-30T09:34:23.422913Z",
|
|
@@ -630,7 +621,7 @@
|
|
| 630 |
},
|
| 631 |
{
|
| 632 |
"cell_type": "code",
|
| 633 |
-
"execution_count":
|
| 634 |
"metadata": {
|
| 635 |
"execution": {
|
| 636 |
"iopub.execute_input": "2023-04-30T09:37:06.380805Z",
|
|
@@ -690,7 +681,7 @@
|
|
| 690 |
},
|
| 691 |
{
|
| 692 |
"cell_type": "code",
|
| 693 |
-
"execution_count":
|
| 694 |
"metadata": {
|
| 695 |
"execution": {
|
| 696 |
"iopub.execute_input": "2023-04-30T09:33:59.300321Z",
|
|
@@ -728,7 +719,7 @@
|
|
| 728 |
},
|
| 729 |
{
|
| 730 |
"cell_type": "code",
|
| 731 |
-
"execution_count":
|
| 732 |
"metadata": {
|
| 733 |
"execution": {
|
| 734 |
"iopub.execute_input": "2023-04-30T09:37:08.958874Z",
|
|
@@ -750,7 +741,7 @@
|
|
| 750 |
},
|
| 751 |
{
|
| 752 |
"cell_type": "code",
|
| 753 |
-
"execution_count":
|
| 754 |
"metadata": {
|
| 755 |
"execution": {
|
| 756 |
"iopub.execute_input": "2023-04-30T09:37:11.076162Z",
|
|
@@ -775,9 +766,9 @@
|
|
| 775 |
"traceback": [
|
| 776 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 777 |
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
| 778 |
-
"\u001b[0;32m<ipython-input-
|
| 779 |
-
"\u001b[0;32m<ipython-input-
|
| 780 |
-
"\u001b[0;32m<ipython-input-
|
| 781 |
"\u001b[0;31mValueError\u001b[0m: shapes (75,4) and (1,4) not aligned: 4 (dim 1) != 1 (dim 0)"
|
| 782 |
]
|
| 783 |
}
|
|
|
|
| 36 |
},
|
| 37 |
{
|
| 38 |
"cell_type": "code",
|
| 39 |
+
"execution_count": 2,
|
| 40 |
"metadata": {
|
| 41 |
"execution": {
|
| 42 |
"iopub.execute_input": "2023-04-30T15:07:54.776437Z",
|
|
|
|
| 104 |
},
|
| 105 |
{
|
| 106 |
"cell_type": "code",
|
| 107 |
+
"execution_count": 3,
|
| 108 |
"metadata": {
|
| 109 |
"execution": {
|
| 110 |
"iopub.execute_input": "2023-04-30T09:07:06.608808Z",
|
|
|
|
| 209 |
},
|
| 210 |
{
|
| 211 |
"cell_type": "code",
|
| 212 |
+
"execution_count": 4,
|
| 213 |
"metadata": {
|
| 214 |
"execution": {
|
| 215 |
"iopub.execute_input": "2023-04-30T09:07:13.136214Z",
|
|
|
|
| 230 |
"Name: count, dtype: int64"
|
| 231 |
]
|
| 232 |
},
|
| 233 |
+
"execution_count": 4,
|
| 234 |
"metadata": {},
|
| 235 |
"output_type": "execute_result"
|
| 236 |
}
|
|
|
|
| 256 |
},
|
| 257 |
{
|
| 258 |
"cell_type": "code",
|
| 259 |
+
"execution_count": 5,
|
| 260 |
"metadata": {
|
| 261 |
"execution": {
|
| 262 |
"iopub.execute_input": "2023-04-30T09:07:13.153535Z",
|
|
|
|
| 353 |
},
|
| 354 |
{
|
| 355 |
"cell_type": "code",
|
| 356 |
+
"execution_count": 6,
|
| 357 |
"metadata": {
|
| 358 |
"execution": {
|
| 359 |
"iopub.execute_input": "2023-04-30T09:07:17.991761Z",
|
|
|
|
| 370 |
"array([[<Axes: title={'center': 'sepal_length_cm'}>]], dtype=object)"
|
| 371 |
]
|
| 372 |
},
|
| 373 |
+
"execution_count": 6,
|
| 374 |
"metadata": {},
|
| 375 |
"output_type": "execute_result"
|
| 376 |
},
|
|
|
|
| 399 |
},
|
| 400 |
{
|
| 401 |
"cell_type": "code",
|
| 402 |
+
"execution_count": 7,
|
| 403 |
"metadata": {
|
| 404 |
"execution": {
|
| 405 |
"iopub.execute_input": "2023-04-30T09:07:18.456682Z",
|
|
|
|
| 447 |
},
|
| 448 |
{
|
| 449 |
"cell_type": "code",
|
| 450 |
+
"execution_count": 8,
|
| 451 |
"metadata": {
|
| 452 |
"execution": {
|
| 453 |
"iopub.execute_input": "2023-04-30T09:07:23.074983Z",
|
|
|
|
| 488 |
},
|
| 489 |
{
|
| 490 |
"cell_type": "code",
|
| 491 |
+
"execution_count": 9,
|
| 492 |
"metadata": {
|
| 493 |
"execution": {
|
| 494 |
"iopub.execute_input": "2023-04-30T09:07:23.108304Z",
|
|
|
|
| 511 |
},
|
| 512 |
{
|
| 513 |
"cell_type": "code",
|
| 514 |
+
"execution_count": 10,
|
| 515 |
"metadata": {
|
| 516 |
"execution": {
|
| 517 |
"iopub.execute_input": "2023-04-30T09:07:23.128879Z",
|
|
|
|
| 531 |
},
|
| 532 |
{
|
| 533 |
"cell_type": "code",
|
| 534 |
+
"execution_count": null,
|
| 535 |
"metadata": {
|
| 536 |
"execution": {
|
| 537 |
"iopub.execute_input": "2023-04-30T09:07:23.138154Z",
|
|
|
|
| 541 |
"shell.execute_reply.started": "2023-04-30T09:07:23.138117Z"
|
| 542 |
}
|
| 543 |
},
|
| 544 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 545 |
"source": [
|
| 546 |
"print('Input Shape', (X_tr_arr.shape))\n",
|
| 547 |
"print('Output Shape', X_test.shape)"
|
|
|
|
| 549 |
},
|
| 550 |
{
|
| 551 |
"cell_type": "code",
|
| 552 |
+
"execution_count": 11,
|
| 553 |
"metadata": {
|
| 554 |
"execution": {
|
| 555 |
"iopub.execute_input": "2023-04-30T09:34:17.065851Z",
|
|
|
|
| 569 |
},
|
| 570 |
{
|
| 571 |
"cell_type": "code",
|
| 572 |
+
"execution_count": 12,
|
| 573 |
"metadata": {
|
| 574 |
"execution": {
|
| 575 |
"iopub.execute_input": "2023-04-30T09:34:20.799015Z",
|
|
|
|
| 588 |
},
|
| 589 |
{
|
| 590 |
"cell_type": "code",
|
| 591 |
+
"execution_count": 13,
|
| 592 |
"metadata": {
|
| 593 |
"execution": {
|
| 594 |
"iopub.execute_input": "2023-04-30T09:34:23.422913Z",
|
|
|
|
| 621 |
},
|
| 622 |
{
|
| 623 |
"cell_type": "code",
|
| 624 |
+
"execution_count": 14,
|
| 625 |
"metadata": {
|
| 626 |
"execution": {
|
| 627 |
"iopub.execute_input": "2023-04-30T09:37:06.380805Z",
|
|
|
|
| 681 |
},
|
| 682 |
{
|
| 683 |
"cell_type": "code",
|
| 684 |
+
"execution_count": 15,
|
| 685 |
"metadata": {
|
| 686 |
"execution": {
|
| 687 |
"iopub.execute_input": "2023-04-30T09:33:59.300321Z",
|
|
|
|
| 719 |
},
|
| 720 |
{
|
| 721 |
"cell_type": "code",
|
| 722 |
+
"execution_count": 16,
|
| 723 |
"metadata": {
|
| 724 |
"execution": {
|
| 725 |
"iopub.execute_input": "2023-04-30T09:37:08.958874Z",
|
|
|
|
| 741 |
},
|
| 742 |
{
|
| 743 |
"cell_type": "code",
|
| 744 |
+
"execution_count": 17,
|
| 745 |
"metadata": {
|
| 746 |
"execution": {
|
| 747 |
"iopub.execute_input": "2023-04-30T09:37:11.076162Z",
|
|
|
|
| 766 |
"traceback": [
|
| 767 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 768 |
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
| 769 |
+
"\u001b[0;32m<ipython-input-17-2e390b463717>\u001b[0m in \u001b[0;36m<cell line: 6>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mweightInitialization\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_features\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m#Gradient Descent\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mcoeff\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgradient\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcosts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel_predict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX_tr_arr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_tr_arr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlearning_rate\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.0001\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mno_iterations\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m4500\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0;31m#Final prediction\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcoeff\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"w\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 770 |
+
"\u001b[0;32m<ipython-input-15-f28af5fdf927>\u001b[0m in \u001b[0;36mmodel_predict\u001b[0;34m(w, b, X, Y, learning_rate, no_iterations)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mno_iterations\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m#\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mgrads\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcost\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel_optimize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mY\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;31m#\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mdw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgrads\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"dw\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 771 |
+
"\u001b[0;32m<ipython-input-14-654cc97431c9>\u001b[0m in \u001b[0;36mmodel_optimize\u001b[0;34m(w, b, X, Y)\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;31m# Prediction\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0mfinal_result\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msigmoid\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0mcost\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mY\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlog\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfinal_result\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlog\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mfinal_result\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 772 |
"\u001b[0;31mValueError\u001b[0m: shapes (75,4) and (1,4) not aligned: 4 (dim 1) != 1 (dim 0)"
|
| 773 |
]
|
| 774 |
}
|
benchmark/numpy_2/numpy_2_fixed.ipynb
CHANGED
|
@@ -91,7 +91,7 @@
|
|
| 91 |
},
|
| 92 |
{
|
| 93 |
"cell_type": "code",
|
| 94 |
-
"execution_count":
|
| 95 |
"metadata": {
|
| 96 |
"execution": {
|
| 97 |
"iopub.execute_input": "2023-05-23T19:58:29.534349Z",
|
|
@@ -177,7 +177,7 @@
|
|
| 177 |
},
|
| 178 |
{
|
| 179 |
"cell_type": "code",
|
| 180 |
-
"execution_count":
|
| 181 |
"metadata": {
|
| 182 |
"execution": {
|
| 183 |
"iopub.execute_input": "2023-05-23T19:58:29.718801Z",
|
|
@@ -253,7 +253,7 @@
|
|
| 253 |
},
|
| 254 |
{
|
| 255 |
"cell_type": "code",
|
| 256 |
-
"execution_count":
|
| 257 |
"metadata": {
|
| 258 |
"execution": {
|
| 259 |
"iopub.execute_input": "2023-05-23T19:58:29.809363Z",
|
|
@@ -339,7 +339,7 @@
|
|
| 339 |
},
|
| 340 |
{
|
| 341 |
"cell_type": "code",
|
| 342 |
-
"execution_count":
|
| 343 |
"metadata": {
|
| 344 |
"execution": {
|
| 345 |
"iopub.execute_input": "2023-05-23T19:58:29.913294Z",
|
|
@@ -349,22 +349,14 @@
|
|
| 349 |
"shell.execute_reply.started": "2023-05-23T19:58:29.913261Z"
|
| 350 |
}
|
| 351 |
},
|
| 352 |
-
"outputs": [
|
| 353 |
-
{
|
| 354 |
-
"name": "stdout",
|
| 355 |
-
"output_type": "stream",
|
| 356 |
-
"text": [
|
| 357 |
-
"<class 'numpy.ndarray'> <class 'numpy.ndarray'> <class 'numpy.ndarray'> <class 'numpy.ndarray'>\n"
|
| 358 |
-
]
|
| 359 |
-
}
|
| 360 |
-
],
|
| 361 |
"source": [
|
| 362 |
"print(type(X_train),type(Y_train),type(X_test),type(Y_test))\n"
|
| 363 |
]
|
| 364 |
},
|
| 365 |
{
|
| 366 |
"cell_type": "code",
|
| 367 |
-
"execution_count":
|
| 368 |
"metadata": {
|
| 369 |
"execution": {
|
| 370 |
"iopub.execute_input": "2023-05-23T19:58:29.921946Z",
|
|
@@ -383,7 +375,7 @@
|
|
| 383 |
},
|
| 384 |
{
|
| 385 |
"cell_type": "code",
|
| 386 |
-
"execution_count":
|
| 387 |
"metadata": {
|
| 388 |
"execution": {
|
| 389 |
"iopub.status.busy": "2023-05-23T19:58:29.966294Z",
|
|
@@ -392,260 +384,7 @@
|
|
| 392 |
"shell.execute_reply.started": "2023-05-23T19:58:29.966531Z"
|
| 393 |
}
|
| 394 |
},
|
| 395 |
-
"outputs": [
|
| 396 |
-
{
|
| 397 |
-
"data": {
|
| 398 |
-
"text/html": [
|
| 399 |
-
"<div>\n",
|
| 400 |
-
"<style scoped>\n",
|
| 401 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 402 |
-
" vertical-align: middle;\n",
|
| 403 |
-
" }\n",
|
| 404 |
-
"\n",
|
| 405 |
-
" .dataframe tbody tr th {\n",
|
| 406 |
-
" vertical-align: top;\n",
|
| 407 |
-
" }\n",
|
| 408 |
-
"\n",
|
| 409 |
-
" .dataframe thead th {\n",
|
| 410 |
-
" text-align: right;\n",
|
| 411 |
-
" }\n",
|
| 412 |
-
"</style>\n",
|
| 413 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 414 |
-
" <thead>\n",
|
| 415 |
-
" <tr style=\"text-align: right;\">\n",
|
| 416 |
-
" <th></th>\n",
|
| 417 |
-
" <th>bedrooms</th>\n",
|
| 418 |
-
" <th>bathrooms</th>\n",
|
| 419 |
-
" <th>sqft_living</th>\n",
|
| 420 |
-
" <th>sqft_lot</th>\n",
|
| 421 |
-
" <th>floors</th>\n",
|
| 422 |
-
" <th>waterfront</th>\n",
|
| 423 |
-
" <th>view</th>\n",
|
| 424 |
-
" <th>sqft_above</th>\n",
|
| 425 |
-
" <th>sqft_basement</th>\n",
|
| 426 |
-
" <th>yr_built</th>\n",
|
| 427 |
-
" <th>yr_renovated</th>\n",
|
| 428 |
-
" <th>country</th>\n",
|
| 429 |
-
" <th>price</th>\n",
|
| 430 |
-
" </tr>\n",
|
| 431 |
-
" </thead>\n",
|
| 432 |
-
" <tbody>\n",
|
| 433 |
-
" <tr>\n",
|
| 434 |
-
" <th>0</th>\n",
|
| 435 |
-
" <td>4.000</td>\n",
|
| 436 |
-
" <td>2.500</td>\n",
|
| 437 |
-
" <td>2510</td>\n",
|
| 438 |
-
" <td>7992</td>\n",
|
| 439 |
-
" <td>1.000</td>\n",
|
| 440 |
-
" <td>0</td>\n",
|
| 441 |
-
" <td>0</td>\n",
|
| 442 |
-
" <td>1610</td>\n",
|
| 443 |
-
" <td>900</td>\n",
|
| 444 |
-
" <td>1978</td>\n",
|
| 445 |
-
" <td>0</td>\n",
|
| 446 |
-
" <td>USA</td>\n",
|
| 447 |
-
" <td>319000.000</td>\n",
|
| 448 |
-
" </tr>\n",
|
| 449 |
-
" <tr>\n",
|
| 450 |
-
" <th>1</th>\n",
|
| 451 |
-
" <td>2.000</td>\n",
|
| 452 |
-
" <td>1.000</td>\n",
|
| 453 |
-
" <td>700</td>\n",
|
| 454 |
-
" <td>4800</td>\n",
|
| 455 |
-
" <td>1.000</td>\n",
|
| 456 |
-
" <td>0</td>\n",
|
| 457 |
-
" <td>0</td>\n",
|
| 458 |
-
" <td>700</td>\n",
|
| 459 |
-
" <td>0</td>\n",
|
| 460 |
-
" <td>1922</td>\n",
|
| 461 |
-
" <td>2008</td>\n",
|
| 462 |
-
" <td>USA</td>\n",
|
| 463 |
-
" <td>260000.000</td>\n",
|
| 464 |
-
" </tr>\n",
|
| 465 |
-
" <tr>\n",
|
| 466 |
-
" <th>2</th>\n",
|
| 467 |
-
" <td>4.000</td>\n",
|
| 468 |
-
" <td>2.250</td>\n",
|
| 469 |
-
" <td>2750</td>\n",
|
| 470 |
-
" <td>6180</td>\n",
|
| 471 |
-
" <td>1.000</td>\n",
|
| 472 |
-
" <td>0</td>\n",
|
| 473 |
-
" <td>0</td>\n",
|
| 474 |
-
" <td>1500</td>\n",
|
| 475 |
-
" <td>1250</td>\n",
|
| 476 |
-
" <td>1948</td>\n",
|
| 477 |
-
" <td>0</td>\n",
|
| 478 |
-
" <td>USA</td>\n",
|
| 479 |
-
" <td>635000.000</td>\n",
|
| 480 |
-
" </tr>\n",
|
| 481 |
-
" <tr>\n",
|
| 482 |
-
" <th>3</th>\n",
|
| 483 |
-
" <td>3.000</td>\n",
|
| 484 |
-
" <td>2.750</td>\n",
|
| 485 |
-
" <td>2820</td>\n",
|
| 486 |
-
" <td>5348</td>\n",
|
| 487 |
-
" <td>2.000</td>\n",
|
| 488 |
-
" <td>0</td>\n",
|
| 489 |
-
" <td>0</td>\n",
|
| 490 |
-
" <td>2820</td>\n",
|
| 491 |
-
" <td>0</td>\n",
|
| 492 |
-
" <td>2008</td>\n",
|
| 493 |
-
" <td>0</td>\n",
|
| 494 |
-
" <td>USA</td>\n",
|
| 495 |
-
" <td>749000.000</td>\n",
|
| 496 |
-
" </tr>\n",
|
| 497 |
-
" <tr>\n",
|
| 498 |
-
" <th>4</th>\n",
|
| 499 |
-
" <td>3.000</td>\n",
|
| 500 |
-
" <td>1.000</td>\n",
|
| 501 |
-
" <td>910</td>\n",
|
| 502 |
-
" <td>4500</td>\n",
|
| 503 |
-
" <td>1.000</td>\n",
|
| 504 |
-
" <td>0</td>\n",
|
| 505 |
-
" <td>0</td>\n",
|
| 506 |
-
" <td>910</td>\n",
|
| 507 |
-
" <td>0</td>\n",
|
| 508 |
-
" <td>1948</td>\n",
|
| 509 |
-
" <td>1994</td>\n",
|
| 510 |
-
" <td>USA</td>\n",
|
| 511 |
-
" <td>465000.000</td>\n",
|
| 512 |
-
" </tr>\n",
|
| 513 |
-
" <tr>\n",
|
| 514 |
-
" <th>...</th>\n",
|
| 515 |
-
" <td>...</td>\n",
|
| 516 |
-
" <td>...</td>\n",
|
| 517 |
-
" <td>...</td>\n",
|
| 518 |
-
" <td>...</td>\n",
|
| 519 |
-
" <td>...</td>\n",
|
| 520 |
-
" <td>...</td>\n",
|
| 521 |
-
" <td>...</td>\n",
|
| 522 |
-
" <td>...</td>\n",
|
| 523 |
-
" <td>...</td>\n",
|
| 524 |
-
" <td>...</td>\n",
|
| 525 |
-
" <td>...</td>\n",
|
| 526 |
-
" <td>...</td>\n",
|
| 527 |
-
" <td>...</td>\n",
|
| 528 |
-
" </tr>\n",
|
| 529 |
-
" <tr>\n",
|
| 530 |
-
" <th>3675</th>\n",
|
| 531 |
-
" <td>3.000</td>\n",
|
| 532 |
-
" <td>2.500</td>\n",
|
| 533 |
-
" <td>1840</td>\n",
|
| 534 |
-
" <td>3035</td>\n",
|
| 535 |
-
" <td>1.000</td>\n",
|
| 536 |
-
" <td>0</td>\n",
|
| 537 |
-
" <td>0</td>\n",
|
| 538 |
-
" <td>920</td>\n",
|
| 539 |
-
" <td>920</td>\n",
|
| 540 |
-
" <td>1926</td>\n",
|
| 541 |
-
" <td>2003</td>\n",
|
| 542 |
-
" <td>USA</td>\n",
|
| 543 |
-
" <td>678333.333</td>\n",
|
| 544 |
-
" </tr>\n",
|
| 545 |
-
" <tr>\n",
|
| 546 |
-
" <th>3676</th>\n",
|
| 547 |
-
" <td>3.000</td>\n",
|
| 548 |
-
" <td>2.500</td>\n",
|
| 549 |
-
" <td>1880</td>\n",
|
| 550 |
-
" <td>7000</td>\n",
|
| 551 |
-
" <td>2.000</td>\n",
|
| 552 |
-
" <td>0</td>\n",
|
| 553 |
-
" <td>0</td>\n",
|
| 554 |
-
" <td>1880</td>\n",
|
| 555 |
-
" <td>0</td>\n",
|
| 556 |
-
" <td>1993</td>\n",
|
| 557 |
-
" <td>0</td>\n",
|
| 558 |
-
" <td>USA</td>\n",
|
| 559 |
-
" <td>315000.000</td>\n",
|
| 560 |
-
" </tr>\n",
|
| 561 |
-
" <tr>\n",
|
| 562 |
-
" <th>3677</th>\n",
|
| 563 |
-
" <td>3.000</td>\n",
|
| 564 |
-
" <td>2.000</td>\n",
|
| 565 |
-
" <td>1170</td>\n",
|
| 566 |
-
" <td>5360</td>\n",
|
| 567 |
-
" <td>1.000</td>\n",
|
| 568 |
-
" <td>0</td>\n",
|
| 569 |
-
" <td>0</td>\n",
|
| 570 |
-
" <td>1170</td>\n",
|
| 571 |
-
" <td>0</td>\n",
|
| 572 |
-
" <td>1919</td>\n",
|
| 573 |
-
" <td>2001</td>\n",
|
| 574 |
-
" <td>USA</td>\n",
|
| 575 |
-
" <td>335000.000</td>\n",
|
| 576 |
-
" </tr>\n",
|
| 577 |
-
" <tr>\n",
|
| 578 |
-
" <th>3678</th>\n",
|
| 579 |
-
" <td>3.000</td>\n",
|
| 580 |
-
" <td>2.500</td>\n",
|
| 581 |
-
" <td>1620</td>\n",
|
| 582 |
-
" <td>7686</td>\n",
|
| 583 |
-
" <td>2.000</td>\n",
|
| 584 |
-
" <td>0</td>\n",
|
| 585 |
-
" <td>0</td>\n",
|
| 586 |
-
" <td>1620</td>\n",
|
| 587 |
-
" <td>0</td>\n",
|
| 588 |
-
" <td>1989</td>\n",
|
| 589 |
-
" <td>0</td>\n",
|
| 590 |
-
" <td>USA</td>\n",
|
| 591 |
-
" <td>246500.000</td>\n",
|
| 592 |
-
" </tr>\n",
|
| 593 |
-
" <tr>\n",
|
| 594 |
-
" <th>3679</th>\n",
|
| 595 |
-
" <td>7.000</td>\n",
|
| 596 |
-
" <td>4.000</td>\n",
|
| 597 |
-
" <td>3150</td>\n",
|
| 598 |
-
" <td>34830</td>\n",
|
| 599 |
-
" <td>1.000</td>\n",
|
| 600 |
-
" <td>0</td>\n",
|
| 601 |
-
" <td>0</td>\n",
|
| 602 |
-
" <td>3150</td>\n",
|
| 603 |
-
" <td>0</td>\n",
|
| 604 |
-
" <td>1957</td>\n",
|
| 605 |
-
" <td>2005</td>\n",
|
| 606 |
-
" <td>USA</td>\n",
|
| 607 |
-
" <td>999000.000</td>\n",
|
| 608 |
-
" </tr>\n",
|
| 609 |
-
" </tbody>\n",
|
| 610 |
-
"</table>\n",
|
| 611 |
-
"<p>3680 rows × 13 columns</p>\n",
|
| 612 |
-
"</div>"
|
| 613 |
-
],
|
| 614 |
-
"text/plain": [
|
| 615 |
-
" bedrooms bathrooms sqft_living sqft_lot floors waterfront view \\\n",
|
| 616 |
-
"0 4.000 2.500 2510 7992 1.000 0 0 \n",
|
| 617 |
-
"1 2.000 1.000 700 4800 1.000 0 0 \n",
|
| 618 |
-
"2 4.000 2.250 2750 6180 1.000 0 0 \n",
|
| 619 |
-
"3 3.000 2.750 2820 5348 2.000 0 0 \n",
|
| 620 |
-
"4 3.000 1.000 910 4500 1.000 0 0 \n",
|
| 621 |
-
"... ... ... ... ... ... ... ... \n",
|
| 622 |
-
"3675 3.000 2.500 1840 3035 1.000 0 0 \n",
|
| 623 |
-
"3676 3.000 2.500 1880 7000 2.000 0 0 \n",
|
| 624 |
-
"3677 3.000 2.000 1170 5360 1.000 0 0 \n",
|
| 625 |
-
"3678 3.000 2.500 1620 7686 2.000 0 0 \n",
|
| 626 |
-
"3679 7.000 4.000 3150 34830 1.000 0 0 \n",
|
| 627 |
-
"\n",
|
| 628 |
-
" sqft_above sqft_basement yr_built yr_renovated country price \n",
|
| 629 |
-
"0 1610 900 1978 0 USA 319000.000 \n",
|
| 630 |
-
"1 700 0 1922 2008 USA 260000.000 \n",
|
| 631 |
-
"2 1500 1250 1948 0 USA 635000.000 \n",
|
| 632 |
-
"3 2820 0 2008 0 USA 749000.000 \n",
|
| 633 |
-
"4 910 0 1948 1994 USA 465000.000 \n",
|
| 634 |
-
"... ... ... ... ... ... ... \n",
|
| 635 |
-
"3675 920 920 1926 2003 USA 678333.333 \n",
|
| 636 |
-
"3676 1880 0 1993 0 USA 315000.000 \n",
|
| 637 |
-
"3677 1170 0 1919 2001 USA 335000.000 \n",
|
| 638 |
-
"3678 1620 0 1989 0 USA 246500.000 \n",
|
| 639 |
-
"3679 3150 0 1957 2005 USA 999000.000 \n",
|
| 640 |
-
"\n",
|
| 641 |
-
"[3680 rows x 13 columns]"
|
| 642 |
-
]
|
| 643 |
-
},
|
| 644 |
-
"execution_count": 18,
|
| 645 |
-
"metadata": {},
|
| 646 |
-
"output_type": "execute_result"
|
| 647 |
-
}
|
| 648 |
-
],
|
| 649 |
"source": [
|
| 650 |
"train_houseprice"
|
| 651 |
]
|
|
|
|
| 91 |
},
|
| 92 |
{
|
| 93 |
"cell_type": "code",
|
| 94 |
+
"execution_count": null,
|
| 95 |
"metadata": {
|
| 96 |
"execution": {
|
| 97 |
"iopub.execute_input": "2023-05-23T19:58:29.534349Z",
|
|
|
|
| 177 |
},
|
| 178 |
{
|
| 179 |
"cell_type": "code",
|
| 180 |
+
"execution_count": 3,
|
| 181 |
"metadata": {
|
| 182 |
"execution": {
|
| 183 |
"iopub.execute_input": "2023-05-23T19:58:29.718801Z",
|
|
|
|
| 253 |
},
|
| 254 |
{
|
| 255 |
"cell_type": "code",
|
| 256 |
+
"execution_count": 4,
|
| 257 |
"metadata": {
|
| 258 |
"execution": {
|
| 259 |
"iopub.execute_input": "2023-05-23T19:58:29.809363Z",
|
|
|
|
| 339 |
},
|
| 340 |
{
|
| 341 |
"cell_type": "code",
|
| 342 |
+
"execution_count": null,
|
| 343 |
"metadata": {
|
| 344 |
"execution": {
|
| 345 |
"iopub.execute_input": "2023-05-23T19:58:29.913294Z",
|
|
|
|
| 349 |
"shell.execute_reply.started": "2023-05-23T19:58:29.913261Z"
|
| 350 |
}
|
| 351 |
},
|
| 352 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
"source": [
|
| 354 |
"print(type(X_train),type(Y_train),type(X_test),type(Y_test))\n"
|
| 355 |
]
|
| 356 |
},
|
| 357 |
{
|
| 358 |
"cell_type": "code",
|
| 359 |
+
"execution_count": 5,
|
| 360 |
"metadata": {
|
| 361 |
"execution": {
|
| 362 |
"iopub.execute_input": "2023-05-23T19:58:29.921946Z",
|
|
|
|
| 375 |
},
|
| 376 |
{
|
| 377 |
"cell_type": "code",
|
| 378 |
+
"execution_count": null,
|
| 379 |
"metadata": {
|
| 380 |
"execution": {
|
| 381 |
"iopub.status.busy": "2023-05-23T19:58:29.966294Z",
|
|
|
|
| 384 |
"shell.execute_reply.started": "2023-05-23T19:58:29.966531Z"
|
| 385 |
}
|
| 386 |
},
|
| 387 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
"source": [
|
| 389 |
"train_houseprice"
|
| 390 |
]
|
benchmark/numpy_2/numpy_2_reproduced.ipynb
CHANGED
|
@@ -91,7 +91,7 @@
|
|
| 91 |
},
|
| 92 |
{
|
| 93 |
"cell_type": "code",
|
| 94 |
-
"execution_count":
|
| 95 |
"metadata": {
|
| 96 |
"execution": {
|
| 97 |
"iopub.execute_input": "2023-05-23T19:58:29.534349Z",
|
|
@@ -177,7 +177,7 @@
|
|
| 177 |
},
|
| 178 |
{
|
| 179 |
"cell_type": "code",
|
| 180 |
-
"execution_count":
|
| 181 |
"metadata": {
|
| 182 |
"execution": {
|
| 183 |
"iopub.execute_input": "2023-05-23T19:58:29.718801Z",
|
|
@@ -253,7 +253,7 @@
|
|
| 253 |
},
|
| 254 |
{
|
| 255 |
"cell_type": "code",
|
| 256 |
-
"execution_count":
|
| 257 |
"metadata": {
|
| 258 |
"execution": {
|
| 259 |
"iopub.execute_input": "2023-05-23T19:58:29.809363Z",
|
|
@@ -339,7 +339,7 @@
|
|
| 339 |
},
|
| 340 |
{
|
| 341 |
"cell_type": "code",
|
| 342 |
-
"execution_count":
|
| 343 |
"metadata": {
|
| 344 |
"execution": {
|
| 345 |
"iopub.execute_input": "2023-05-23T19:58:29.913294Z",
|
|
@@ -349,22 +349,14 @@
|
|
| 349 |
"shell.execute_reply.started": "2023-05-23T19:58:29.913261Z"
|
| 350 |
}
|
| 351 |
},
|
| 352 |
-
"outputs": [
|
| 353 |
-
{
|
| 354 |
-
"name": "stdout",
|
| 355 |
-
"output_type": "stream",
|
| 356 |
-
"text": [
|
| 357 |
-
"<class 'numpy.ndarray'> <class 'numpy.ndarray'> <class 'numpy.ndarray'> <class 'numpy.ndarray'>\n"
|
| 358 |
-
]
|
| 359 |
-
}
|
| 360 |
-
],
|
| 361 |
"source": [
|
| 362 |
"print(type(X_train),type(Y_train),type(X_test),type(Y_test))\n"
|
| 363 |
]
|
| 364 |
},
|
| 365 |
{
|
| 366 |
"cell_type": "code",
|
| 367 |
-
"execution_count":
|
| 368 |
"metadata": {
|
| 369 |
"execution": {
|
| 370 |
"iopub.execute_input": "2023-05-23T19:58:29.921946Z",
|
|
@@ -382,7 +374,7 @@
|
|
| 382 |
"traceback": [
|
| 383 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 384 |
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
| 385 |
-
"\u001b[0;32m<ipython-input-
|
| 386 |
"\u001b[0;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'join'"
|
| 387 |
]
|
| 388 |
}
|
|
|
|
| 91 |
},
|
| 92 |
{
|
| 93 |
"cell_type": "code",
|
| 94 |
+
"execution_count": null,
|
| 95 |
"metadata": {
|
| 96 |
"execution": {
|
| 97 |
"iopub.execute_input": "2023-05-23T19:58:29.534349Z",
|
|
|
|
| 177 |
},
|
| 178 |
{
|
| 179 |
"cell_type": "code",
|
| 180 |
+
"execution_count": 3,
|
| 181 |
"metadata": {
|
| 182 |
"execution": {
|
| 183 |
"iopub.execute_input": "2023-05-23T19:58:29.718801Z",
|
|
|
|
| 253 |
},
|
| 254 |
{
|
| 255 |
"cell_type": "code",
|
| 256 |
+
"execution_count": 4,
|
| 257 |
"metadata": {
|
| 258 |
"execution": {
|
| 259 |
"iopub.execute_input": "2023-05-23T19:58:29.809363Z",
|
|
|
|
| 339 |
},
|
| 340 |
{
|
| 341 |
"cell_type": "code",
|
| 342 |
+
"execution_count": null,
|
| 343 |
"metadata": {
|
| 344 |
"execution": {
|
| 345 |
"iopub.execute_input": "2023-05-23T19:58:29.913294Z",
|
|
|
|
| 349 |
"shell.execute_reply.started": "2023-05-23T19:58:29.913261Z"
|
| 350 |
}
|
| 351 |
},
|
| 352 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
"source": [
|
| 354 |
"print(type(X_train),type(Y_train),type(X_test),type(Y_test))\n"
|
| 355 |
]
|
| 356 |
},
|
| 357 |
{
|
| 358 |
"cell_type": "code",
|
| 359 |
+
"execution_count": 5,
|
| 360 |
"metadata": {
|
| 361 |
"execution": {
|
| 362 |
"iopub.execute_input": "2023-05-23T19:58:29.921946Z",
|
|
|
|
| 374 |
"traceback": [
|
| 375 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 376 |
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
| 377 |
+
"\u001b[0;32m<ipython-input-5-54bcb5c62015>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtrain_houseprice\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mX_train\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mY_train\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
| 378 |
"\u001b[0;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'join'"
|
| 379 |
]
|
| 380 |
}
|
benchmark/numpy_3/numpy_3_fixed.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
benchmark/numpy_3/numpy_3_reproduced.ipynb
CHANGED
|
@@ -534,11 +534,11 @@
|
|
| 534 |
"application/vnd.holoviews_exec.v0+json": "",
|
| 535 |
"text/html": [
|
| 536 |
"<div id='p1002'>\n",
|
| 537 |
-
" <div id=\"
|
| 538 |
"</div>\n",
|
| 539 |
"<script type=\"application/javascript\">(function(root) {\n",
|
| 540 |
-
" var docs_json = {\"
|
| 541 |
-
" var render_items = [{\"docid\":\"
|
| 542 |
" var docs = Object.values(docs_json)\n",
|
| 543 |
" if (!docs) {\n",
|
| 544 |
" return\n",
|
|
@@ -1070,7 +1070,7 @@
|
|
| 1070 |
"traceback": [
|
| 1071 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 1072 |
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
| 1073 |
-
"\u001b[0;32m<ipython-input-4-
|
| 1074 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/lib/histograms.py\u001b[0m in \u001b[0;36mhistogram\u001b[0;34m(a, bins, range, density, weights)\u001b[0m\n\u001b[1;32m 778\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweights\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_ravel_and_check_weights\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweights\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 779\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 780\u001b[0;31m \u001b[0mbin_edges\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0muniform_bins\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_get_bin_edges\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbins\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweights\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 781\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 782\u001b[0m \u001b[0;31m# Histogram is an integer or a float array depending on the weights.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 1075 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/lib/histograms.py\u001b[0m in \u001b[0;36m_get_bin_edges\u001b[0;34m(a, bins, range, weights)\u001b[0m\n\u001b[1;32m 424\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'`bins` must be positive, when an integer'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 425\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 426\u001b[0;31m \u001b[0mfirst_edge\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlast_edge\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_get_outer_edges\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 427\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 428\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbins\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 1076 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/lib/histograms.py\u001b[0m in \u001b[0;36m_get_outer_edges\u001b[0;34m(a, range)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[0mfirst_edge\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlast_edge\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 322\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfinite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfirst_edge\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfinite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlast_edge\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 323\u001b[0;31m raise ValueError(\n\u001b[0m\u001b[1;32m 324\u001b[0m \"autodetected range of [{}, {}] is not finite\".format(first_edge, last_edge))\n\u001b[1;32m 325\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
|
@@ -1079,7 +1079,7 @@
|
|
| 1079 |
}
|
| 1080 |
],
|
| 1081 |
"source": [
|
| 1082 |
-
"%%opts Histogram[width=700 height=400 tools=['hover'] xrotation=0]{+axiswise +framewise}\n",
|
| 1083 |
"\n",
|
| 1084 |
"g = df.groupby('STATUS')\n",
|
| 1085 |
"\n",
|
|
|
|
| 534 |
"application/vnd.holoviews_exec.v0+json": "",
|
| 535 |
"text/html": [
|
| 536 |
"<div id='p1002'>\n",
|
| 537 |
+
" <div id=\"e3338bff-f56c-496b-bcfd-1b9add1b31a8\" data-root-id=\"p1002\" style=\"display: contents;\"></div>\n",
|
| 538 |
"</div>\n",
|
| 539 |
"<script type=\"application/javascript\">(function(root) {\n",
|
| 540 |
+
" var docs_json = {\"3ac6855c-36e5-4df8-b07b-6956602cec8e\":{\"version\":\"3.4.3\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"panel.models.browser.BrowserInfo\",\"id\":\"p1002\"},{\"type\":\"object\",\"name\":\"panel.models.comm_manager.CommManager\",\"id\":\"p1003\",\"attributes\":{\"plot_id\":\"p1002\",\"comm_id\":\"39fbdea63f5f4ae98de8533cd32f4dcf\",\"client_comm_id\":\"cf5ee6fce66a4a6795359cc0cbf4157f\"}}],\"defs\":[{\"type\":\"model\",\"name\":\"ReactiveHTML1\"},{\"type\":\"model\",\"name\":\"FlexBox1\",\"properties\":[{\"name\":\"align_content\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"align_items\",\"kind\":\"Any\",\"default\":\"flex-start\"},{\"name\":\"flex_direction\",\"kind\":\"Any\",\"default\":\"row\"},{\"name\":\"flex_wrap\",\"kind\":\"Any\",\"default\":\"wrap\"},{\"name\":\"gap\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"justify_content\",\"kind\":\"Any\",\"default\":\"flex-start\"}]},{\"type\":\"model\",\"name\":\"FloatPanel1\",\"properties\":[{\"name\":\"config\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"contained\",\"kind\":\"Any\",\"default\":true},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"right-top\"},{\"name\":\"offsetx\",\"kind\":\"Any\",\"default\":null},{\"name\":\"offsety\",\"kind\":\"Any\",\"default\":null},{\"name\":\"theme\",\"kind\":\"Any\",\"default\":\"primary\"},{\"name\":\"status\",\"kind\":\"Any\",\"default\":\"normalized\"}]},{\"type\":\"model\",\"name\":\"GridStack1\",\"properties\":[{\"name\":\"mode\",\"kind\":\"Any\",\"default\":\"warn\"},{\"name\":\"ncols\",\"kind\":\"Any\",\"default\":null},{\"name\":\"nrows\",\"kind\":\"Any\",\"default\":null},{\"name\":\"allow_resize\",\"kind\":\"Any\",\"default\":true},{\"name\":\"allow_drag\",\"kind\":\"Any\",\"default\":true},{\"name\":\"state\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"drag1\",\"properties\":[{\"name\":\"slider_width\",\"kind\":\"Any\",\"default\":5},{\"name\":\"slider_color\",\"kind\":\"Any\",\"default\":\"black\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":50}]},{\"type\":\"model\",\"name\":\"click1\",\"properties\":[{\"name\":\"terminal_output\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"debug_name\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"clears\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"FastWrapper1\",\"properties\":[{\"name\":\"object\",\"kind\":\"Any\",\"default\":null},{\"name\":\"style\",\"kind\":\"Any\",\"default\":null}]},{\"type\":\"model\",\"name\":\"NotificationAreaBase1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"NotificationArea1\",\"properties\":[{\"name\":\"js_events\",\"kind\":\"Any\",\"default\":{\"type\":\"map\"}},{\"name\":\"notifications\",\"kind\":\"Any\",\"default\":[]},{\"name\":\"position\",\"kind\":\"Any\",\"default\":\"bottom-right\"},{\"name\":\"_clear\",\"kind\":\"Any\",\"default\":0},{\"name\":\"types\",\"kind\":\"Any\",\"default\":[{\"type\":\"map\",\"entries\":[[\"type\",\"warning\"],[\"background\",\"#ffc107\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-exclamation-triangle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]},{\"type\":\"map\",\"entries\":[[\"type\",\"info\"],[\"background\",\"#007bff\"],[\"icon\",{\"type\":\"map\",\"entries\":[[\"className\",\"fas fa-info-circle\"],[\"tagName\",\"i\"],[\"color\",\"white\"]]}]]}]}]},{\"type\":\"model\",\"name\":\"Notification\",\"properties\":[{\"name\":\"background\",\"kind\":\"Any\",\"default\":null},{\"name\":\"duration\",\"kind\":\"Any\",\"default\":3000},{\"name\":\"icon\",\"kind\":\"Any\",\"default\":null},{\"name\":\"message\",\"kind\":\"Any\",\"default\":\"\"},{\"name\":\"notification_type\",\"kind\":\"Any\",\"default\":null},{\"name\":\"_destroyed\",\"kind\":\"Any\",\"default\":false}]},{\"type\":\"model\",\"name\":\"TemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"BootstrapTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"TemplateEditor1\",\"properties\":[{\"name\":\"layout\",\"kind\":\"Any\",\"default\":[]}]},{\"type\":\"model\",\"name\":\"MaterialTemplateActions1\",\"properties\":[{\"name\":\"open_modal\",\"kind\":\"Any\",\"default\":0},{\"name\":\"close_modal\",\"kind\":\"Any\",\"default\":0}]},{\"type\":\"model\",\"name\":\"copy_to_clipboard1\",\"properties\":[{\"name\":\"fill\",\"kind\":\"Any\",\"default\":\"none\"},{\"name\":\"value\",\"kind\":\"Any\",\"default\":null}]}]}};\n",
|
| 541 |
+
" var render_items = [{\"docid\":\"3ac6855c-36e5-4df8-b07b-6956602cec8e\",\"roots\":{\"p1002\":\"e3338bff-f56c-496b-bcfd-1b9add1b31a8\"},\"root_ids\":[\"p1002\"]}];\n",
|
| 542 |
" var docs = Object.values(docs_json)\n",
|
| 543 |
" if (!docs) {\n",
|
| 544 |
" return\n",
|
|
|
|
| 1070 |
"traceback": [
|
| 1071 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 1072 |
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
| 1073 |
+
"\u001b[0;32m<ipython-input-4-f80eddf9cd65>\u001b[0m in \u001b[0;36m<cell line: 17>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mcol\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mcols\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 19\u001b[0;31m \u001b[0mfreq\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0medges\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhistogram\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 20\u001b[0m \u001b[0mdd\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mhv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mHistogram\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0medges\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfreq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'ALL Loans'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mredim\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m' '\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 1074 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/lib/histograms.py\u001b[0m in \u001b[0;36mhistogram\u001b[0;34m(a, bins, range, density, weights)\u001b[0m\n\u001b[1;32m 778\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweights\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_ravel_and_check_weights\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweights\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 779\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 780\u001b[0;31m \u001b[0mbin_edges\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0muniform_bins\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_get_bin_edges\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbins\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweights\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 781\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 782\u001b[0m \u001b[0;31m# Histogram is an integer or a float array depending on the weights.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 1075 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/lib/histograms.py\u001b[0m in \u001b[0;36m_get_bin_edges\u001b[0;34m(a, bins, range, weights)\u001b[0m\n\u001b[1;32m 424\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'`bins` must be positive, when an integer'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 425\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 426\u001b[0;31m \u001b[0mfirst_edge\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlast_edge\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_get_outer_edges\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 427\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 428\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbins\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 1076 |
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/lib/histograms.py\u001b[0m in \u001b[0;36m_get_outer_edges\u001b[0;34m(a, range)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[0mfirst_edge\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlast_edge\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 322\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfinite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfirst_edge\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfinite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlast_edge\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 323\u001b[0;31m raise ValueError(\n\u001b[0m\u001b[1;32m 324\u001b[0m \"autodetected range of [{}, {}] is not finite\".format(first_edge, last_edge))\n\u001b[1;32m 325\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
|
|
|
| 1079 |
}
|
| 1080 |
],
|
| 1081 |
"source": [
|
| 1082 |
+
"# %%opts Histogram[width=700 height=400 tools=['hover'] xrotation=0]{+axiswise +framewise}\n",
|
| 1083 |
"\n",
|
| 1084 |
"g = df.groupby('STATUS')\n",
|
| 1085 |
"\n",
|
benchmark/numpy_4/data_small/best_weights.keras
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 380748006
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:716ba04094387dc1a4fa49f2e93d61c81e52f13dd4aa4d754f80f5fc72c84982
|
| 3 |
size 380748006
|
benchmark/numpy_4/numpy_4_fixed.ipynb
CHANGED
|
@@ -43,7 +43,7 @@
|
|
| 43 |
},
|
| 44 |
{
|
| 45 |
"cell_type": "code",
|
| 46 |
-
"execution_count":
|
| 47 |
"metadata": {
|
| 48 |
"execution": {
|
| 49 |
"iopub.execute_input": "2023-04-05T10:18:17.445317Z",
|
|
@@ -53,18 +53,7 @@
|
|
| 53 |
"shell.execute_reply.started": "2023-04-05T10:18:17.445259Z"
|
| 54 |
}
|
| 55 |
},
|
| 56 |
-
"outputs": [
|
| 57 |
-
{
|
| 58 |
-
"data": {
|
| 59 |
-
"text/plain": [
|
| 60 |
-
"125"
|
| 61 |
-
]
|
| 62 |
-
},
|
| 63 |
-
"execution_count": 3,
|
| 64 |
-
"metadata": {},
|
| 65 |
-
"output_type": "execute_result"
|
| 66 |
-
}
|
| 67 |
-
],
|
| 68 |
"source": [
|
| 69 |
"train_normal = glob.glob('data_small/chest-xray-pneumonia/chest_xray/train/NORMAL/*.jpeg')\n",
|
| 70 |
"a = len(train_normal)\n",
|
|
@@ -80,7 +69,7 @@
|
|
| 80 |
},
|
| 81 |
{
|
| 82 |
"cell_type": "code",
|
| 83 |
-
"execution_count":
|
| 84 |
"metadata": {
|
| 85 |
"execution": {
|
| 86 |
"iopub.execute_input": "2023-04-05T10:18:17.820239Z",
|
|
@@ -98,7 +87,7 @@
|
|
| 98 |
},
|
| 99 |
{
|
| 100 |
"cell_type": "code",
|
| 101 |
-
"execution_count":
|
| 102 |
"metadata": {
|
| 103 |
"execution": {
|
| 104 |
"iopub.execute_input": "2023-04-05T10:18:18.108254Z",
|
|
@@ -108,22 +97,14 @@
|
|
| 108 |
"shell.execute_reply.started": "2023-04-05T10:18:18.108213Z"
|
| 109 |
}
|
| 110 |
},
|
| 111 |
-
"outputs": [
|
| 112 |
-
{
|
| 113 |
-
"name": "stdout",
|
| 114 |
-
"output_type": "stream",
|
| 115 |
-
"text": [
|
| 116 |
-
"Total nos. of training images are: 527\n"
|
| 117 |
-
]
|
| 118 |
-
}
|
| 119 |
-
],
|
| 120 |
"source": [
|
| 121 |
"print(\"Total nos. of training images are: {}\".format(a + b))"
|
| 122 |
]
|
| 123 |
},
|
| 124 |
{
|
| 125 |
"cell_type": "code",
|
| 126 |
-
"execution_count":
|
| 127 |
"metadata": {
|
| 128 |
"execution": {
|
| 129 |
"iopub.execute_input": "2023-04-05T10:18:18.120784Z",
|
|
@@ -147,7 +128,7 @@
|
|
| 147 |
},
|
| 148 |
{
|
| 149 |
"cell_type": "code",
|
| 150 |
-
"execution_count":
|
| 151 |
"metadata": {
|
| 152 |
"execution": {
|
| 153 |
"iopub.execute_input": "2023-04-05T10:18:18.129958Z",
|
|
@@ -176,7 +157,7 @@
|
|
| 176 |
},
|
| 177 |
{
|
| 178 |
"cell_type": "code",
|
| 179 |
-
"execution_count":
|
| 180 |
"metadata": {
|
| 181 |
"execution": {
|
| 182 |
"iopub.execute_input": "2023-04-05T10:18:22.576329Z",
|
|
@@ -205,7 +186,7 @@
|
|
| 205 |
},
|
| 206 |
{
|
| 207 |
"cell_type": "code",
|
| 208 |
-
"execution_count":
|
| 209 |
"metadata": {
|
| 210 |
"execution": {
|
| 211 |
"iopub.execute_input": "2023-04-05T10:18:23.629025Z",
|
|
@@ -215,25 +196,14 @@
|
|
| 215 |
"shell.execute_reply.started": "2023-04-05T10:18:23.628982Z"
|
| 216 |
}
|
| 217 |
},
|
| 218 |
-
"outputs": [
|
| 219 |
-
{
|
| 220 |
-
"data": {
|
| 221 |
-
"text/plain": [
|
| 222 |
-
"{'NORMAL': 0, 'PNEUMONIA': 1}"
|
| 223 |
-
]
|
| 224 |
-
},
|
| 225 |
-
"execution_count": 9,
|
| 226 |
-
"metadata": {},
|
| 227 |
-
"output_type": "execute_result"
|
| 228 |
-
}
|
| 229 |
-
],
|
| 230 |
"source": [
|
| 231 |
"train_dataset.class_indices"
|
| 232 |
]
|
| 233 |
},
|
| 234 |
{
|
| 235 |
"cell_type": "code",
|
| 236 |
-
"execution_count":
|
| 237 |
"metadata": {
|
| 238 |
"execution": {
|
| 239 |
"iopub.execute_input": "2023-04-05T10:18:23.639332Z",
|
|
@@ -250,7 +220,7 @@
|
|
| 250 |
},
|
| 251 |
{
|
| 252 |
"cell_type": "code",
|
| 253 |
-
"execution_count":
|
| 254 |
"metadata": {
|
| 255 |
"execution": {
|
| 256 |
"iopub.execute_input": "2023-04-05T10:18:23.648339Z",
|
|
@@ -268,7 +238,7 @@
|
|
| 268 |
},
|
| 269 |
{
|
| 270 |
"cell_type": "code",
|
| 271 |
-
"execution_count":
|
| 272 |
"metadata": {
|
| 273 |
"execution": {
|
| 274 |
"iopub.execute_input": "2023-04-05T10:18:23.659988Z",
|
|
@@ -304,7 +274,7 @@
|
|
| 304 |
},
|
| 305 |
{
|
| 306 |
"cell_type": "code",
|
| 307 |
-
"execution_count":
|
| 308 |
"metadata": {
|
| 309 |
"execution": {
|
| 310 |
"iopub.execute_input": "2023-04-05T10:18:23.671809Z",
|
|
@@ -325,7 +295,7 @@
|
|
| 325 |
},
|
| 326 |
{
|
| 327 |
"cell_type": "code",
|
| 328 |
-
"execution_count":
|
| 329 |
"metadata": {
|
| 330 |
"execution": {
|
| 331 |
"iopub.execute_input": "2023-04-05T10:18:32.061048Z",
|
|
@@ -360,7 +330,7 @@
|
|
| 360 |
},
|
| 361 |
{
|
| 362 |
"cell_type": "code",
|
| 363 |
-
"execution_count":
|
| 364 |
"metadata": {
|
| 365 |
"execution": {
|
| 366 |
"iopub.execute_input": "2023-04-05T10:18:32.087621Z",
|
|
@@ -410,7 +380,7 @@
|
|
| 410 |
},
|
| 411 |
{
|
| 412 |
"cell_type": "code",
|
| 413 |
-
"execution_count":
|
| 414 |
"metadata": {
|
| 415 |
"execution": {
|
| 416 |
"iopub.execute_input": "2023-04-05T10:18:32.239629Z",
|
|
@@ -433,7 +403,7 @@
|
|
| 433 |
},
|
| 434 |
{
|
| 435 |
"cell_type": "code",
|
| 436 |
-
"execution_count":
|
| 437 |
"metadata": {
|
| 438 |
"execution": {
|
| 439 |
"iopub.execute_input": "2023-04-05T10:18:32.262881Z",
|
|
@@ -480,7 +450,7 @@
|
|
| 480 |
},
|
| 481 |
{
|
| 482 |
"cell_type": "code",
|
| 483 |
-
"execution_count":
|
| 484 |
"metadata": {
|
| 485 |
"execution": {
|
| 486 |
"iopub.execute_input": "2023-04-05T10:18:32.271157Z",
|
|
@@ -503,9 +473,9 @@
|
|
| 503 |
"name": "stdout",
|
| 504 |
"output_type": "stream",
|
| 505 |
"text": [
|
| 506 |
-
"\u001b[1m7/7\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6s/step - auc: 0.
|
| 507 |
-
"Epoch 1: val_auc improved from -inf to 0.
|
| 508 |
-
"\u001b[1m7/7\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[
|
| 509 |
]
|
| 510 |
}
|
| 511 |
],
|
|
@@ -520,7 +490,7 @@
|
|
| 520 |
},
|
| 521 |
{
|
| 522 |
"cell_type": "code",
|
| 523 |
-
"execution_count":
|
| 524 |
"metadata": {
|
| 525 |
"execution": {
|
| 526 |
"iopub.execute_input": "2023-04-05T10:21:23.875033Z",
|
|
@@ -537,7 +507,7 @@
|
|
| 537 |
},
|
| 538 |
{
|
| 539 |
"cell_type": "code",
|
| 540 |
-
"execution_count":
|
| 541 |
"metadata": {
|
| 542 |
"execution": {
|
| 543 |
"iopub.execute_input": "2023-04-05T10:32:34.305363Z",
|
|
@@ -552,15 +522,15 @@
|
|
| 552 |
"name": "stdout",
|
| 553 |
"output_type": "stream",
|
| 554 |
"text": [
|
| 555 |
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[
|
| 556 |
" precision recall f1-score support\n",
|
| 557 |
"\n",
|
| 558 |
-
" PNEUMONIA 0.
|
| 559 |
-
" NORMAL 0.0000 0.0000 0.0000
|
| 560 |
"\n",
|
| 561 |
-
" accuracy 0.
|
| 562 |
-
" macro avg 0.
|
| 563 |
-
"weighted avg 0.
|
| 564 |
"\n"
|
| 565 |
]
|
| 566 |
},
|
|
|
|
| 43 |
},
|
| 44 |
{
|
| 45 |
"cell_type": "code",
|
| 46 |
+
"execution_count": null,
|
| 47 |
"metadata": {
|
| 48 |
"execution": {
|
| 49 |
"iopub.execute_input": "2023-04-05T10:18:17.445317Z",
|
|
|
|
| 53 |
"shell.execute_reply.started": "2023-04-05T10:18:17.445259Z"
|
| 54 |
}
|
| 55 |
},
|
| 56 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
"source": [
|
| 58 |
"train_normal = glob.glob('data_small/chest-xray-pneumonia/chest_xray/train/NORMAL/*.jpeg')\n",
|
| 59 |
"a = len(train_normal)\n",
|
|
|
|
| 69 |
},
|
| 70 |
{
|
| 71 |
"cell_type": "code",
|
| 72 |
+
"execution_count": null,
|
| 73 |
"metadata": {
|
| 74 |
"execution": {
|
| 75 |
"iopub.execute_input": "2023-04-05T10:18:17.820239Z",
|
|
|
|
| 87 |
},
|
| 88 |
{
|
| 89 |
"cell_type": "code",
|
| 90 |
+
"execution_count": null,
|
| 91 |
"metadata": {
|
| 92 |
"execution": {
|
| 93 |
"iopub.execute_input": "2023-04-05T10:18:18.108254Z",
|
|
|
|
| 97 |
"shell.execute_reply.started": "2023-04-05T10:18:18.108213Z"
|
| 98 |
}
|
| 99 |
},
|
| 100 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
"source": [
|
| 102 |
"print(\"Total nos. of training images are: {}\".format(a + b))"
|
| 103 |
]
|
| 104 |
},
|
| 105 |
{
|
| 106 |
"cell_type": "code",
|
| 107 |
+
"execution_count": 2,
|
| 108 |
"metadata": {
|
| 109 |
"execution": {
|
| 110 |
"iopub.execute_input": "2023-04-05T10:18:18.120784Z",
|
|
|
|
| 128 |
},
|
| 129 |
{
|
| 130 |
"cell_type": "code",
|
| 131 |
+
"execution_count": 3,
|
| 132 |
"metadata": {
|
| 133 |
"execution": {
|
| 134 |
"iopub.execute_input": "2023-04-05T10:18:18.129958Z",
|
|
|
|
| 157 |
},
|
| 158 |
{
|
| 159 |
"cell_type": "code",
|
| 160 |
+
"execution_count": 4,
|
| 161 |
"metadata": {
|
| 162 |
"execution": {
|
| 163 |
"iopub.execute_input": "2023-04-05T10:18:22.576329Z",
|
|
|
|
| 186 |
},
|
| 187 |
{
|
| 188 |
"cell_type": "code",
|
| 189 |
+
"execution_count": null,
|
| 190 |
"metadata": {
|
| 191 |
"execution": {
|
| 192 |
"iopub.execute_input": "2023-04-05T10:18:23.629025Z",
|
|
|
|
| 196 |
"shell.execute_reply.started": "2023-04-05T10:18:23.628982Z"
|
| 197 |
}
|
| 198 |
},
|
| 199 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
"source": [
|
| 201 |
"train_dataset.class_indices"
|
| 202 |
]
|
| 203 |
},
|
| 204 |
{
|
| 205 |
"cell_type": "code",
|
| 206 |
+
"execution_count": null,
|
| 207 |
"metadata": {
|
| 208 |
"execution": {
|
| 209 |
"iopub.execute_input": "2023-04-05T10:18:23.639332Z",
|
|
|
|
| 220 |
},
|
| 221 |
{
|
| 222 |
"cell_type": "code",
|
| 223 |
+
"execution_count": null,
|
| 224 |
"metadata": {
|
| 225 |
"execution": {
|
| 226 |
"iopub.execute_input": "2023-04-05T10:18:23.648339Z",
|
|
|
|
| 238 |
},
|
| 239 |
{
|
| 240 |
"cell_type": "code",
|
| 241 |
+
"execution_count": null,
|
| 242 |
"metadata": {
|
| 243 |
"execution": {
|
| 244 |
"iopub.execute_input": "2023-04-05T10:18:23.659988Z",
|
|
|
|
| 274 |
},
|
| 275 |
{
|
| 276 |
"cell_type": "code",
|
| 277 |
+
"execution_count": 5,
|
| 278 |
"metadata": {
|
| 279 |
"execution": {
|
| 280 |
"iopub.execute_input": "2023-04-05T10:18:23.671809Z",
|
|
|
|
| 295 |
},
|
| 296 |
{
|
| 297 |
"cell_type": "code",
|
| 298 |
+
"execution_count": 6,
|
| 299 |
"metadata": {
|
| 300 |
"execution": {
|
| 301 |
"iopub.execute_input": "2023-04-05T10:18:32.061048Z",
|
|
|
|
| 330 |
},
|
| 331 |
{
|
| 332 |
"cell_type": "code",
|
| 333 |
+
"execution_count": 7,
|
| 334 |
"metadata": {
|
| 335 |
"execution": {
|
| 336 |
"iopub.execute_input": "2023-04-05T10:18:32.087621Z",
|
|
|
|
| 380 |
},
|
| 381 |
{
|
| 382 |
"cell_type": "code",
|
| 383 |
+
"execution_count": 8,
|
| 384 |
"metadata": {
|
| 385 |
"execution": {
|
| 386 |
"iopub.execute_input": "2023-04-05T10:18:32.239629Z",
|
|
|
|
| 403 |
},
|
| 404 |
{
|
| 405 |
"cell_type": "code",
|
| 406 |
+
"execution_count": 9,
|
| 407 |
"metadata": {
|
| 408 |
"execution": {
|
| 409 |
"iopub.execute_input": "2023-04-05T10:18:32.262881Z",
|
|
|
|
| 450 |
},
|
| 451 |
{
|
| 452 |
"cell_type": "code",
|
| 453 |
+
"execution_count": 10,
|
| 454 |
"metadata": {
|
| 455 |
"execution": {
|
| 456 |
"iopub.execute_input": "2023-04-05T10:18:32.271157Z",
|
|
|
|
| 473 |
"name": "stdout",
|
| 474 |
"output_type": "stream",
|
| 475 |
"text": [
|
| 476 |
+
"\u001b[1m7/7\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6s/step - auc: 0.8211 - loss: 0.5703\n",
|
| 477 |
+
"Epoch 1: val_auc improved from -inf to 0.97200, saving model to data_small/best_weights.keras\n",
|
| 478 |
+
"\u001b[1m7/7\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m92s\u001b[0m 12s/step - auc: 0.8283 - loss: 0.5611 - val_auc: 0.9720 - val_loss: 0.5673\n"
|
| 479 |
]
|
| 480 |
}
|
| 481 |
],
|
|
|
|
| 490 |
},
|
| 491 |
{
|
| 492 |
"cell_type": "code",
|
| 493 |
+
"execution_count": 11,
|
| 494 |
"metadata": {
|
| 495 |
"execution": {
|
| 496 |
"iopub.execute_input": "2023-04-05T10:21:23.875033Z",
|
|
|
|
| 507 |
},
|
| 508 |
{
|
| 509 |
"cell_type": "code",
|
| 510 |
+
"execution_count": 12,
|
| 511 |
"metadata": {
|
| 512 |
"execution": {
|
| 513 |
"iopub.execute_input": "2023-04-05T10:32:34.305363Z",
|
|
|
|
| 522 |
"name": "stdout",
|
| 523 |
"output_type": "stream",
|
| 524 |
"text": [
|
| 525 |
+
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 3s/step\n",
|
| 526 |
" precision recall f1-score support\n",
|
| 527 |
"\n",
|
| 528 |
+
" PNEUMONIA 0.2656 1.0000 0.4198 17\n",
|
| 529 |
+
" NORMAL 0.0000 0.0000 0.0000 47\n",
|
| 530 |
"\n",
|
| 531 |
+
" accuracy 0.2656 64\n",
|
| 532 |
+
" macro avg 0.1328 0.5000 0.2099 64\n",
|
| 533 |
+
"weighted avg 0.0706 0.2656 0.1115 64\n",
|
| 534 |
"\n"
|
| 535 |
]
|
| 536 |
},
|
benchmark/numpy_4/numpy_4_reproduced.ipynb
CHANGED
|
@@ -43,7 +43,7 @@
|
|
| 43 |
},
|
| 44 |
{
|
| 45 |
"cell_type": "code",
|
| 46 |
-
"execution_count":
|
| 47 |
"metadata": {
|
| 48 |
"execution": {
|
| 49 |
"iopub.execute_input": "2023-04-05T10:18:17.445317Z",
|
|
@@ -53,18 +53,7 @@
|
|
| 53 |
"shell.execute_reply.started": "2023-04-05T10:18:17.445259Z"
|
| 54 |
}
|
| 55 |
},
|
| 56 |
-
"outputs": [
|
| 57 |
-
{
|
| 58 |
-
"data": {
|
| 59 |
-
"text/plain": [
|
| 60 |
-
"125"
|
| 61 |
-
]
|
| 62 |
-
},
|
| 63 |
-
"execution_count": 3,
|
| 64 |
-
"metadata": {},
|
| 65 |
-
"output_type": "execute_result"
|
| 66 |
-
}
|
| 67 |
-
],
|
| 68 |
"source": [
|
| 69 |
"train_normal = glob.glob('data_small/chest-xray-pneumonia/chest_xray/train/NORMAL/*.jpeg')\n",
|
| 70 |
"a = len(train_normal)\n",
|
|
@@ -80,7 +69,7 @@
|
|
| 80 |
},
|
| 81 |
{
|
| 82 |
"cell_type": "code",
|
| 83 |
-
"execution_count":
|
| 84 |
"metadata": {
|
| 85 |
"execution": {
|
| 86 |
"iopub.execute_input": "2023-04-05T10:18:17.820239Z",
|
|
@@ -98,7 +87,7 @@
|
|
| 98 |
},
|
| 99 |
{
|
| 100 |
"cell_type": "code",
|
| 101 |
-
"execution_count":
|
| 102 |
"metadata": {
|
| 103 |
"execution": {
|
| 104 |
"iopub.execute_input": "2023-04-05T10:18:18.108254Z",
|
|
@@ -108,22 +97,14 @@
|
|
| 108 |
"shell.execute_reply.started": "2023-04-05T10:18:18.108213Z"
|
| 109 |
}
|
| 110 |
},
|
| 111 |
-
"outputs": [
|
| 112 |
-
{
|
| 113 |
-
"name": "stdout",
|
| 114 |
-
"output_type": "stream",
|
| 115 |
-
"text": [
|
| 116 |
-
"Total nos. of training images are: 527\n"
|
| 117 |
-
]
|
| 118 |
-
}
|
| 119 |
-
],
|
| 120 |
"source": [
|
| 121 |
"print(\"Total nos. of training images are: {}\".format(a + b))"
|
| 122 |
]
|
| 123 |
},
|
| 124 |
{
|
| 125 |
"cell_type": "code",
|
| 126 |
-
"execution_count":
|
| 127 |
"metadata": {
|
| 128 |
"execution": {
|
| 129 |
"iopub.execute_input": "2023-04-05T10:18:18.120784Z",
|
|
@@ -147,7 +128,7 @@
|
|
| 147 |
},
|
| 148 |
{
|
| 149 |
"cell_type": "code",
|
| 150 |
-
"execution_count":
|
| 151 |
"metadata": {
|
| 152 |
"execution": {
|
| 153 |
"iopub.execute_input": "2023-04-05T10:18:18.129958Z",
|
|
@@ -176,7 +157,7 @@
|
|
| 176 |
},
|
| 177 |
{
|
| 178 |
"cell_type": "code",
|
| 179 |
-
"execution_count":
|
| 180 |
"metadata": {
|
| 181 |
"execution": {
|
| 182 |
"iopub.execute_input": "2023-04-05T10:18:22.576329Z",
|
|
@@ -205,7 +186,7 @@
|
|
| 205 |
},
|
| 206 |
{
|
| 207 |
"cell_type": "code",
|
| 208 |
-
"execution_count":
|
| 209 |
"metadata": {
|
| 210 |
"execution": {
|
| 211 |
"iopub.execute_input": "2023-04-05T10:18:23.629025Z",
|
|
@@ -215,25 +196,14 @@
|
|
| 215 |
"shell.execute_reply.started": "2023-04-05T10:18:23.628982Z"
|
| 216 |
}
|
| 217 |
},
|
| 218 |
-
"outputs": [
|
| 219 |
-
{
|
| 220 |
-
"data": {
|
| 221 |
-
"text/plain": [
|
| 222 |
-
"{'NORMAL': 0, 'PNEUMONIA': 1}"
|
| 223 |
-
]
|
| 224 |
-
},
|
| 225 |
-
"execution_count": 9,
|
| 226 |
-
"metadata": {},
|
| 227 |
-
"output_type": "execute_result"
|
| 228 |
-
}
|
| 229 |
-
],
|
| 230 |
"source": [
|
| 231 |
"train_dataset.class_indices"
|
| 232 |
]
|
| 233 |
},
|
| 234 |
{
|
| 235 |
"cell_type": "code",
|
| 236 |
-
"execution_count":
|
| 237 |
"metadata": {
|
| 238 |
"execution": {
|
| 239 |
"iopub.execute_input": "2023-04-05T10:18:23.639332Z",
|
|
@@ -250,7 +220,7 @@
|
|
| 250 |
},
|
| 251 |
{
|
| 252 |
"cell_type": "code",
|
| 253 |
-
"execution_count":
|
| 254 |
"metadata": {
|
| 255 |
"execution": {
|
| 256 |
"iopub.execute_input": "2023-04-05T10:18:23.648339Z",
|
|
@@ -268,7 +238,7 @@
|
|
| 268 |
},
|
| 269 |
{
|
| 270 |
"cell_type": "code",
|
| 271 |
-
"execution_count":
|
| 272 |
"metadata": {
|
| 273 |
"execution": {
|
| 274 |
"iopub.execute_input": "2023-04-05T10:18:23.659988Z",
|
|
@@ -304,7 +274,7 @@
|
|
| 304 |
},
|
| 305 |
{
|
| 306 |
"cell_type": "code",
|
| 307 |
-
"execution_count":
|
| 308 |
"metadata": {
|
| 309 |
"execution": {
|
| 310 |
"iopub.execute_input": "2023-04-05T10:18:23.671809Z",
|
|
@@ -325,7 +295,7 @@
|
|
| 325 |
},
|
| 326 |
{
|
| 327 |
"cell_type": "code",
|
| 328 |
-
"execution_count":
|
| 329 |
"metadata": {
|
| 330 |
"execution": {
|
| 331 |
"iopub.execute_input": "2023-04-05T10:18:32.061048Z",
|
|
@@ -360,7 +330,7 @@
|
|
| 360 |
},
|
| 361 |
{
|
| 362 |
"cell_type": "code",
|
| 363 |
-
"execution_count":
|
| 364 |
"metadata": {
|
| 365 |
"execution": {
|
| 366 |
"iopub.execute_input": "2023-04-05T10:18:32.087621Z",
|
|
@@ -410,7 +380,7 @@
|
|
| 410 |
},
|
| 411 |
{
|
| 412 |
"cell_type": "code",
|
| 413 |
-
"execution_count":
|
| 414 |
"metadata": {
|
| 415 |
"execution": {
|
| 416 |
"iopub.execute_input": "2023-04-05T10:18:32.239629Z",
|
|
@@ -433,7 +403,7 @@
|
|
| 433 |
},
|
| 434 |
{
|
| 435 |
"cell_type": "code",
|
| 436 |
-
"execution_count":
|
| 437 |
"metadata": {
|
| 438 |
"execution": {
|
| 439 |
"iopub.execute_input": "2023-04-05T10:18:32.262881Z",
|
|
@@ -480,7 +450,7 @@
|
|
| 480 |
},
|
| 481 |
{
|
| 482 |
"cell_type": "code",
|
| 483 |
-
"execution_count":
|
| 484 |
"metadata": {
|
| 485 |
"execution": {
|
| 486 |
"iopub.execute_input": "2023-04-05T10:18:32.271157Z",
|
|
@@ -503,9 +473,9 @@
|
|
| 503 |
"name": "stdout",
|
| 504 |
"output_type": "stream",
|
| 505 |
"text": [
|
| 506 |
-
"\u001b[1m7/7\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6s/step - auc: 0.
|
| 507 |
-
"Epoch 1: val_auc improved from -inf to 0.
|
| 508 |
-
"\u001b[1m7/7\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[
|
| 509 |
]
|
| 510 |
}
|
| 511 |
],
|
|
@@ -520,7 +490,7 @@
|
|
| 520 |
},
|
| 521 |
{
|
| 522 |
"cell_type": "code",
|
| 523 |
-
"execution_count":
|
| 524 |
"metadata": {
|
| 525 |
"execution": {
|
| 526 |
"iopub.execute_input": "2023-04-05T10:21:23.875033Z",
|
|
@@ -537,7 +507,7 @@
|
|
| 537 |
},
|
| 538 |
{
|
| 539 |
"cell_type": "code",
|
| 540 |
-
"execution_count":
|
| 541 |
"metadata": {
|
| 542 |
"execution": {
|
| 543 |
"iopub.execute_input": "2023-04-05T10:32:34.305363Z",
|
|
@@ -552,7 +522,7 @@
|
|
| 552 |
"name": "stdout",
|
| 553 |
"output_type": "stream",
|
| 554 |
"text": [
|
| 555 |
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[
|
| 556 |
]
|
| 557 |
},
|
| 558 |
{
|
|
@@ -562,7 +532,7 @@
|
|
| 562 |
"traceback": [
|
| 563 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 564 |
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
| 565 |
-
"\u001b[0;32m<ipython-input-
|
| 566 |
"\u001b[0;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'numpy'"
|
| 567 |
]
|
| 568 |
}
|
|
|
|
| 43 |
},
|
| 44 |
{
|
| 45 |
"cell_type": "code",
|
| 46 |
+
"execution_count": null,
|
| 47 |
"metadata": {
|
| 48 |
"execution": {
|
| 49 |
"iopub.execute_input": "2023-04-05T10:18:17.445317Z",
|
|
|
|
| 53 |
"shell.execute_reply.started": "2023-04-05T10:18:17.445259Z"
|
| 54 |
}
|
| 55 |
},
|
| 56 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
"source": [
|
| 58 |
"train_normal = glob.glob('data_small/chest-xray-pneumonia/chest_xray/train/NORMAL/*.jpeg')\n",
|
| 59 |
"a = len(train_normal)\n",
|
|
|
|
| 69 |
},
|
| 70 |
{
|
| 71 |
"cell_type": "code",
|
| 72 |
+
"execution_count": null,
|
| 73 |
"metadata": {
|
| 74 |
"execution": {
|
| 75 |
"iopub.execute_input": "2023-04-05T10:18:17.820239Z",
|
|
|
|
| 87 |
},
|
| 88 |
{
|
| 89 |
"cell_type": "code",
|
| 90 |
+
"execution_count": null,
|
| 91 |
"metadata": {
|
| 92 |
"execution": {
|
| 93 |
"iopub.execute_input": "2023-04-05T10:18:18.108254Z",
|
|
|
|
| 97 |
"shell.execute_reply.started": "2023-04-05T10:18:18.108213Z"
|
| 98 |
}
|
| 99 |
},
|
| 100 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
"source": [
|
| 102 |
"print(\"Total nos. of training images are: {}\".format(a + b))"
|
| 103 |
]
|
| 104 |
},
|
| 105 |
{
|
| 106 |
"cell_type": "code",
|
| 107 |
+
"execution_count": 2,
|
| 108 |
"metadata": {
|
| 109 |
"execution": {
|
| 110 |
"iopub.execute_input": "2023-04-05T10:18:18.120784Z",
|
|
|
|
| 128 |
},
|
| 129 |
{
|
| 130 |
"cell_type": "code",
|
| 131 |
+
"execution_count": 3,
|
| 132 |
"metadata": {
|
| 133 |
"execution": {
|
| 134 |
"iopub.execute_input": "2023-04-05T10:18:18.129958Z",
|
|
|
|
| 157 |
},
|
| 158 |
{
|
| 159 |
"cell_type": "code",
|
| 160 |
+
"execution_count": 4,
|
| 161 |
"metadata": {
|
| 162 |
"execution": {
|
| 163 |
"iopub.execute_input": "2023-04-05T10:18:22.576329Z",
|
|
|
|
| 186 |
},
|
| 187 |
{
|
| 188 |
"cell_type": "code",
|
| 189 |
+
"execution_count": null,
|
| 190 |
"metadata": {
|
| 191 |
"execution": {
|
| 192 |
"iopub.execute_input": "2023-04-05T10:18:23.629025Z",
|
|
|
|
| 196 |
"shell.execute_reply.started": "2023-04-05T10:18:23.628982Z"
|
| 197 |
}
|
| 198 |
},
|
| 199 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
"source": [
|
| 201 |
"train_dataset.class_indices"
|
| 202 |
]
|
| 203 |
},
|
| 204 |
{
|
| 205 |
"cell_type": "code",
|
| 206 |
+
"execution_count": null,
|
| 207 |
"metadata": {
|
| 208 |
"execution": {
|
| 209 |
"iopub.execute_input": "2023-04-05T10:18:23.639332Z",
|
|
|
|
| 220 |
},
|
| 221 |
{
|
| 222 |
"cell_type": "code",
|
| 223 |
+
"execution_count": null,
|
| 224 |
"metadata": {
|
| 225 |
"execution": {
|
| 226 |
"iopub.execute_input": "2023-04-05T10:18:23.648339Z",
|
|
|
|
| 238 |
},
|
| 239 |
{
|
| 240 |
"cell_type": "code",
|
| 241 |
+
"execution_count": null,
|
| 242 |
"metadata": {
|
| 243 |
"execution": {
|
| 244 |
"iopub.execute_input": "2023-04-05T10:18:23.659988Z",
|
|
|
|
| 274 |
},
|
| 275 |
{
|
| 276 |
"cell_type": "code",
|
| 277 |
+
"execution_count": 5,
|
| 278 |
"metadata": {
|
| 279 |
"execution": {
|
| 280 |
"iopub.execute_input": "2023-04-05T10:18:23.671809Z",
|
|
|
|
| 295 |
},
|
| 296 |
{
|
| 297 |
"cell_type": "code",
|
| 298 |
+
"execution_count": 6,
|
| 299 |
"metadata": {
|
| 300 |
"execution": {
|
| 301 |
"iopub.execute_input": "2023-04-05T10:18:32.061048Z",
|
|
|
|
| 330 |
},
|
| 331 |
{
|
| 332 |
"cell_type": "code",
|
| 333 |
+
"execution_count": 7,
|
| 334 |
"metadata": {
|
| 335 |
"execution": {
|
| 336 |
"iopub.execute_input": "2023-04-05T10:18:32.087621Z",
|
|
|
|
| 380 |
},
|
| 381 |
{
|
| 382 |
"cell_type": "code",
|
| 383 |
+
"execution_count": 8,
|
| 384 |
"metadata": {
|
| 385 |
"execution": {
|
| 386 |
"iopub.execute_input": "2023-04-05T10:18:32.239629Z",
|
|
|
|
| 403 |
},
|
| 404 |
{
|
| 405 |
"cell_type": "code",
|
| 406 |
+
"execution_count": 9,
|
| 407 |
"metadata": {
|
| 408 |
"execution": {
|
| 409 |
"iopub.execute_input": "2023-04-05T10:18:32.262881Z",
|
|
|
|
| 450 |
},
|
| 451 |
{
|
| 452 |
"cell_type": "code",
|
| 453 |
+
"execution_count": 10,
|
| 454 |
"metadata": {
|
| 455 |
"execution": {
|
| 456 |
"iopub.execute_input": "2023-04-05T10:18:32.271157Z",
|
|
|
|
| 473 |
"name": "stdout",
|
| 474 |
"output_type": "stream",
|
| 475 |
"text": [
|
| 476 |
+
"\u001b[1m7/7\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6s/step - auc: 0.8234 - loss: 0.5202\n",
|
| 477 |
+
"Epoch 1: val_auc improved from -inf to 0.95125, saving model to data_small/best_weights.keras\n",
|
| 478 |
+
"\u001b[1m7/7\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m96s\u001b[0m 12s/step - auc: 0.8311 - loss: 0.5095 - val_auc: 0.9512 - val_loss: 0.2403\n"
|
| 479 |
]
|
| 480 |
}
|
| 481 |
],
|
|
|
|
| 490 |
},
|
| 491 |
{
|
| 492 |
"cell_type": "code",
|
| 493 |
+
"execution_count": 11,
|
| 494 |
"metadata": {
|
| 495 |
"execution": {
|
| 496 |
"iopub.execute_input": "2023-04-05T10:21:23.875033Z",
|
|
|
|
| 507 |
},
|
| 508 |
{
|
| 509 |
"cell_type": "code",
|
| 510 |
+
"execution_count": 12,
|
| 511 |
"metadata": {
|
| 512 |
"execution": {
|
| 513 |
"iopub.execute_input": "2023-04-05T10:32:34.305363Z",
|
|
|
|
| 522 |
"name": "stdout",
|
| 523 |
"output_type": "stream",
|
| 524 |
"text": [
|
| 525 |
+
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m13s\u001b[0m 6s/step\n"
|
| 526 |
]
|
| 527 |
},
|
| 528 |
{
|
|
|
|
| 532 |
"traceback": [
|
| 533 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 534 |
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
| 535 |
+
"\u001b[0;32m<ipython-input-12-a341cad50e80>\u001b[0m in \u001b[0;36m<cell line: 7>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 8\u001b[0m prediction_classes = np.concatenate([prediction_classes,\n\u001b[1;32m 9\u001b[0m np.argmax(model.predict(x), axis = -1)])\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mtrue_classes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcatenate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtrue_classes\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 536 |
"\u001b[0;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'numpy'"
|
| 537 |
]
|
| 538 |
}
|
benchmark/numpy_5/all_images.npy
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 245888
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d7a73a15a7a77925c636c2ece7c6a549ae0afd3b62617145441c2cc6775309fd
|
| 3 |
size 245888
|
benchmark/numpy_5/checkpoints/ckpt_discriminator_epoch_0.weights.h5
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:1e8c1ac52b5821bfeff78c01da3bf3e1571bb76bff6eb4e05657a6d6b3ca6c73
|
| 3 |
-
size 1550704
|
|
|
|
|
|
|
|
|
|
|
|
benchmark/numpy_5/checkpoints/ckpt_generator_epoch_0.weights.h5
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:9200bba4060981efe07e6cac51505a1fcde074843a9d720e53e8878fa5d0235d
|
| 3 |
-
size 4670080
|
|
|
|
|
|
|
|
|
|
|
|
benchmark/numpy_5/images.npy
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 245888
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f974a3839173b15d8a307decd31e39f78933ebd5a402098fa66f4eff9c8914a7
|
| 3 |
size 245888
|
benchmark/numpy_5/images.txt
ADDED
|
File without changes
|
benchmark/numpy_5/numpy_5_fixed.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
benchmark/numpy_5/numpy_5_reproduced.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
benchmark/numpy_6/numpy_6_fixed.ipynb
CHANGED
|
@@ -165,7 +165,7 @@
|
|
| 165 |
},
|
| 166 |
{
|
| 167 |
"cell_type": "code",
|
| 168 |
-
"execution_count":
|
| 169 |
"metadata": {
|
| 170 |
"execution": {
|
| 171 |
"iopub.execute_input": "2023-05-31T11:55:45.863383Z",
|
|
@@ -175,24 +175,7 @@
|
|
| 175 |
"shell.execute_reply.started": "2023-05-31T11:55:45.863351Z"
|
| 176 |
}
|
| 177 |
},
|
| 178 |
-
"outputs": [
|
| 179 |
-
{
|
| 180 |
-
"data": {
|
| 181 |
-
"text/plain": [
|
| 182 |
-
"breed\n",
|
| 183 |
-
"scottish_deerhound 126\n",
|
| 184 |
-
"maltese_dog 117\n",
|
| 185 |
-
"afghan_hound 116\n",
|
| 186 |
-
"entlebucher 115\n",
|
| 187 |
-
"bernese_mountain_dog 114\n",
|
| 188 |
-
"Name: count, dtype: int64"
|
| 189 |
-
]
|
| 190 |
-
},
|
| 191 |
-
"execution_count": 5,
|
| 192 |
-
"metadata": {},
|
| 193 |
-
"output_type": "execute_result"
|
| 194 |
-
}
|
| 195 |
-
],
|
| 196 |
"source": [
|
| 197 |
"breed_all = labels_all['breed']\n",
|
| 198 |
"breed_count = breed_all.value_counts()\n",
|
|
@@ -201,7 +184,7 @@
|
|
| 201 |
},
|
| 202 |
{
|
| 203 |
"cell_type": "code",
|
| 204 |
-
"execution_count":
|
| 205 |
"metadata": {
|
| 206 |
"execution": {
|
| 207 |
"iopub.execute_input": "2023-05-31T11:55:45.890591Z",
|
|
@@ -282,7 +265,7 @@
|
|
| 282 |
"4 88 021b5a49189665c0442c19b5b33e8cf1 entlebucher"
|
| 283 |
]
|
| 284 |
},
|
| 285 |
-
"execution_count":
|
| 286 |
"metadata": {},
|
| 287 |
"output_type": "execute_result"
|
| 288 |
}
|
|
@@ -296,7 +279,7 @@
|
|
| 296 |
},
|
| 297 |
{
|
| 298 |
"cell_type": "code",
|
| 299 |
-
"execution_count":
|
| 300 |
"metadata": {
|
| 301 |
"execution": {
|
| 302 |
"iopub.execute_input": "2023-05-31T11:55:45.934744Z",
|
|
@@ -317,7 +300,7 @@
|
|
| 317 |
},
|
| 318 |
{
|
| 319 |
"cell_type": "code",
|
| 320 |
-
"execution_count":
|
| 321 |
"metadata": {
|
| 322 |
"execution": {
|
| 323 |
"iopub.execute_input": "2023-05-31T11:55:46.081478Z",
|
|
@@ -327,76 +310,7 @@
|
|
| 327 |
"shell.execute_reply.started": "2023-05-31T11:55:46.081439Z"
|
| 328 |
}
|
| 329 |
},
|
| 330 |
-
"outputs": [
|
| 331 |
-
{
|
| 332 |
-
"data": {
|
| 333 |
-
"text/html": [
|
| 334 |
-
"<div>\n",
|
| 335 |
-
"<style scoped>\n",
|
| 336 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 337 |
-
" vertical-align: middle;\n",
|
| 338 |
-
" }\n",
|
| 339 |
-
"\n",
|
| 340 |
-
" .dataframe tbody tr th {\n",
|
| 341 |
-
" vertical-align: top;\n",
|
| 342 |
-
" }\n",
|
| 343 |
-
"\n",
|
| 344 |
-
" .dataframe thead th {\n",
|
| 345 |
-
" text-align: right;\n",
|
| 346 |
-
" }\n",
|
| 347 |
-
"</style>\n",
|
| 348 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 349 |
-
" <thead>\n",
|
| 350 |
-
" <tr style=\"text-align: right;\">\n",
|
| 351 |
-
" <th></th>\n",
|
| 352 |
-
" <th>id</th>\n",
|
| 353 |
-
" <th>breed</th>\n",
|
| 354 |
-
" </tr>\n",
|
| 355 |
-
" </thead>\n",
|
| 356 |
-
" <tbody>\n",
|
| 357 |
-
" <tr>\n",
|
| 358 |
-
" <th>0</th>\n",
|
| 359 |
-
" <td>000bec180eb18c7604dcecc8fe0dba07</td>\n",
|
| 360 |
-
" <td>boston_bull</td>\n",
|
| 361 |
-
" </tr>\n",
|
| 362 |
-
" <tr>\n",
|
| 363 |
-
" <th>1</th>\n",
|
| 364 |
-
" <td>001513dfcb2ffafc82cccf4d8bbaba97</td>\n",
|
| 365 |
-
" <td>dingo</td>\n",
|
| 366 |
-
" </tr>\n",
|
| 367 |
-
" <tr>\n",
|
| 368 |
-
" <th>2</th>\n",
|
| 369 |
-
" <td>001cdf01b096e06d78e9e5112d419397</td>\n",
|
| 370 |
-
" <td>pekinese</td>\n",
|
| 371 |
-
" </tr>\n",
|
| 372 |
-
" <tr>\n",
|
| 373 |
-
" <th>3</th>\n",
|
| 374 |
-
" <td>00214f311d5d2247d5dfe4fe24b2303d</td>\n",
|
| 375 |
-
" <td>bluetick</td>\n",
|
| 376 |
-
" </tr>\n",
|
| 377 |
-
" <tr>\n",
|
| 378 |
-
" <th>4</th>\n",
|
| 379 |
-
" <td>0021f9ceb3235effd7fcde7f7538ed62</td>\n",
|
| 380 |
-
" <td>golden_retriever</td>\n",
|
| 381 |
-
" </tr>\n",
|
| 382 |
-
" </tbody>\n",
|
| 383 |
-
"</table>\n",
|
| 384 |
-
"</div>"
|
| 385 |
-
],
|
| 386 |
-
"text/plain": [
|
| 387 |
-
" id breed\n",
|
| 388 |
-
"0 000bec180eb18c7604dcecc8fe0dba07 boston_bull\n",
|
| 389 |
-
"1 001513dfcb2ffafc82cccf4d8bbaba97 dingo\n",
|
| 390 |
-
"2 001cdf01b096e06d78e9e5112d419397 pekinese\n",
|
| 391 |
-
"3 00214f311d5d2247d5dfe4fe24b2303d bluetick\n",
|
| 392 |
-
"4 0021f9ceb3235effd7fcde7f7538ed62 golden_retriever"
|
| 393 |
-
]
|
| 394 |
-
},
|
| 395 |
-
"execution_count": 8,
|
| 396 |
-
"metadata": {},
|
| 397 |
-
"output_type": "execute_result"
|
| 398 |
-
}
|
| 399 |
-
],
|
| 400 |
"source": [
|
| 401 |
"train_labels.head()"
|
| 402 |
]
|
|
@@ -461,7 +375,7 @@
|
|
| 461 |
},
|
| 462 |
{
|
| 463 |
"cell_type": "code",
|
| 464 |
-
"execution_count":
|
| 465 |
"metadata": {
|
| 466 |
"execution": {
|
| 467 |
"iopub.execute_input": "2023-05-31T11:51:03.032746Z",
|
|
@@ -476,7 +390,7 @@
|
|
| 476 |
"name": "stderr",
|
| 477 |
"output_type": "stream",
|
| 478 |
"text": [
|
| 479 |
-
"100%|██████████| 588/588 [00:00<00:00,
|
| 480 |
]
|
| 481 |
},
|
| 482 |
{
|
|
@@ -487,6 +401,13 @@
|
|
| 487 |
"Train Images shape: (3, 1, 224, 224, 3) size: 451,584\n",
|
| 488 |
"One-hot encoded output shape: (3, 5) size: 15\n"
|
| 489 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 490 |
}
|
| 491 |
],
|
| 492 |
"source": [
|
|
|
|
| 165 |
},
|
| 166 |
{
|
| 167 |
"cell_type": "code",
|
| 168 |
+
"execution_count": null,
|
| 169 |
"metadata": {
|
| 170 |
"execution": {
|
| 171 |
"iopub.execute_input": "2023-05-31T11:55:45.863383Z",
|
|
|
|
| 175 |
"shell.execute_reply.started": "2023-05-31T11:55:45.863351Z"
|
| 176 |
}
|
| 177 |
},
|
| 178 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
"source": [
|
| 180 |
"breed_all = labels_all['breed']\n",
|
| 181 |
"breed_count = breed_all.value_counts()\n",
|
|
|
|
| 184 |
},
|
| 185 |
{
|
| 186 |
"cell_type": "code",
|
| 187 |
+
"execution_count": 5,
|
| 188 |
"metadata": {
|
| 189 |
"execution": {
|
| 190 |
"iopub.execute_input": "2023-05-31T11:55:45.890591Z",
|
|
|
|
| 265 |
"4 88 021b5a49189665c0442c19b5b33e8cf1 entlebucher"
|
| 266 |
]
|
| 267 |
},
|
| 268 |
+
"execution_count": 5,
|
| 269 |
"metadata": {},
|
| 270 |
"output_type": "execute_result"
|
| 271 |
}
|
|
|
|
| 279 |
},
|
| 280 |
{
|
| 281 |
"cell_type": "code",
|
| 282 |
+
"execution_count": 6,
|
| 283 |
"metadata": {
|
| 284 |
"execution": {
|
| 285 |
"iopub.execute_input": "2023-05-31T11:55:45.934744Z",
|
|
|
|
| 300 |
},
|
| 301 |
{
|
| 302 |
"cell_type": "code",
|
| 303 |
+
"execution_count": null,
|
| 304 |
"metadata": {
|
| 305 |
"execution": {
|
| 306 |
"iopub.execute_input": "2023-05-31T11:55:46.081478Z",
|
|
|
|
| 310 |
"shell.execute_reply.started": "2023-05-31T11:55:46.081439Z"
|
| 311 |
}
|
| 312 |
},
|
| 313 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
"source": [
|
| 315 |
"train_labels.head()"
|
| 316 |
]
|
|
|
|
| 375 |
},
|
| 376 |
{
|
| 377 |
"cell_type": "code",
|
| 378 |
+
"execution_count": 7,
|
| 379 |
"metadata": {
|
| 380 |
"execution": {
|
| 381 |
"iopub.execute_input": "2023-05-31T11:51:03.032746Z",
|
|
|
|
| 390 |
"name": "stderr",
|
| 391 |
"output_type": "stream",
|
| 392 |
"text": [
|
| 393 |
+
"100%|██████████| 588/588 [00:00<00:00, 630.73it/s]"
|
| 394 |
]
|
| 395 |
},
|
| 396 |
{
|
|
|
|
| 401 |
"Train Images shape: (3, 1, 224, 224, 3) size: 451,584\n",
|
| 402 |
"One-hot encoded output shape: (3, 5) size: 15\n"
|
| 403 |
]
|
| 404 |
+
},
|
| 405 |
+
{
|
| 406 |
+
"name": "stderr",
|
| 407 |
+
"output_type": "stream",
|
| 408 |
+
"text": [
|
| 409 |
+
"\n"
|
| 410 |
+
]
|
| 411 |
}
|
| 412 |
],
|
| 413 |
"source": [
|
benchmark/numpy_6/numpy_6_reproduced.ipynb
CHANGED
|
@@ -70,7 +70,7 @@
|
|
| 70 |
},
|
| 71 |
{
|
| 72 |
"cell_type": "code",
|
| 73 |
-
"execution_count":
|
| 74 |
"metadata": {
|
| 75 |
"execution": {
|
| 76 |
"iopub.execute_input": "2023-05-31T11:55:45.831997Z",
|
|
@@ -152,7 +152,7 @@
|
|
| 152 |
"4 0021f9ceb3235effd7fcde7f7538ed62 golden_retriever"
|
| 153 |
]
|
| 154 |
},
|
| 155 |
-
"execution_count":
|
| 156 |
"metadata": {},
|
| 157 |
"output_type": "execute_result"
|
| 158 |
}
|
|
@@ -165,7 +165,7 @@
|
|
| 165 |
},
|
| 166 |
{
|
| 167 |
"cell_type": "code",
|
| 168 |
-
"execution_count":
|
| 169 |
"metadata": {
|
| 170 |
"execution": {
|
| 171 |
"iopub.execute_input": "2023-05-31T11:55:45.863383Z",
|
|
@@ -175,24 +175,7 @@
|
|
| 175 |
"shell.execute_reply.started": "2023-05-31T11:55:45.863351Z"
|
| 176 |
}
|
| 177 |
},
|
| 178 |
-
"outputs": [
|
| 179 |
-
{
|
| 180 |
-
"data": {
|
| 181 |
-
"text/plain": [
|
| 182 |
-
"breed\n",
|
| 183 |
-
"scottish_deerhound 126\n",
|
| 184 |
-
"maltese_dog 117\n",
|
| 185 |
-
"afghan_hound 116\n",
|
| 186 |
-
"entlebucher 115\n",
|
| 187 |
-
"bernese_mountain_dog 114\n",
|
| 188 |
-
"Name: count, dtype: int64"
|
| 189 |
-
]
|
| 190 |
-
},
|
| 191 |
-
"execution_count": 5,
|
| 192 |
-
"metadata": {},
|
| 193 |
-
"output_type": "execute_result"
|
| 194 |
-
}
|
| 195 |
-
],
|
| 196 |
"source": [
|
| 197 |
"breed_all = labels_all['breed']\n",
|
| 198 |
"breed_count = breed_all.value_counts()\n",
|
|
@@ -296,7 +279,7 @@
|
|
| 296 |
},
|
| 297 |
{
|
| 298 |
"cell_type": "code",
|
| 299 |
-
"execution_count":
|
| 300 |
"metadata": {
|
| 301 |
"execution": {
|
| 302 |
"iopub.execute_input": "2023-05-31T11:55:45.934744Z",
|
|
@@ -317,7 +300,7 @@
|
|
| 317 |
},
|
| 318 |
{
|
| 319 |
"cell_type": "code",
|
| 320 |
-
"execution_count":
|
| 321 |
"metadata": {
|
| 322 |
"execution": {
|
| 323 |
"iopub.execute_input": "2023-05-31T11:55:46.081478Z",
|
|
@@ -327,76 +310,7 @@
|
|
| 327 |
"shell.execute_reply.started": "2023-05-31T11:55:46.081439Z"
|
| 328 |
}
|
| 329 |
},
|
| 330 |
-
"outputs": [
|
| 331 |
-
{
|
| 332 |
-
"data": {
|
| 333 |
-
"text/html": [
|
| 334 |
-
"<div>\n",
|
| 335 |
-
"<style scoped>\n",
|
| 336 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 337 |
-
" vertical-align: middle;\n",
|
| 338 |
-
" }\n",
|
| 339 |
-
"\n",
|
| 340 |
-
" .dataframe tbody tr th {\n",
|
| 341 |
-
" vertical-align: top;\n",
|
| 342 |
-
" }\n",
|
| 343 |
-
"\n",
|
| 344 |
-
" .dataframe thead th {\n",
|
| 345 |
-
" text-align: right;\n",
|
| 346 |
-
" }\n",
|
| 347 |
-
"</style>\n",
|
| 348 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 349 |
-
" <thead>\n",
|
| 350 |
-
" <tr style=\"text-align: right;\">\n",
|
| 351 |
-
" <th></th>\n",
|
| 352 |
-
" <th>id</th>\n",
|
| 353 |
-
" <th>breed</th>\n",
|
| 354 |
-
" </tr>\n",
|
| 355 |
-
" </thead>\n",
|
| 356 |
-
" <tbody>\n",
|
| 357 |
-
" <tr>\n",
|
| 358 |
-
" <th>0</th>\n",
|
| 359 |
-
" <td>000bec180eb18c7604dcecc8fe0dba07</td>\n",
|
| 360 |
-
" <td>boston_bull</td>\n",
|
| 361 |
-
" </tr>\n",
|
| 362 |
-
" <tr>\n",
|
| 363 |
-
" <th>1</th>\n",
|
| 364 |
-
" <td>001513dfcb2ffafc82cccf4d8bbaba97</td>\n",
|
| 365 |
-
" <td>dingo</td>\n",
|
| 366 |
-
" </tr>\n",
|
| 367 |
-
" <tr>\n",
|
| 368 |
-
" <th>2</th>\n",
|
| 369 |
-
" <td>001cdf01b096e06d78e9e5112d419397</td>\n",
|
| 370 |
-
" <td>pekinese</td>\n",
|
| 371 |
-
" </tr>\n",
|
| 372 |
-
" <tr>\n",
|
| 373 |
-
" <th>3</th>\n",
|
| 374 |
-
" <td>00214f311d5d2247d5dfe4fe24b2303d</td>\n",
|
| 375 |
-
" <td>bluetick</td>\n",
|
| 376 |
-
" </tr>\n",
|
| 377 |
-
" <tr>\n",
|
| 378 |
-
" <th>4</th>\n",
|
| 379 |
-
" <td>0021f9ceb3235effd7fcde7f7538ed62</td>\n",
|
| 380 |
-
" <td>golden_retriever</td>\n",
|
| 381 |
-
" </tr>\n",
|
| 382 |
-
" </tbody>\n",
|
| 383 |
-
"</table>\n",
|
| 384 |
-
"</div>"
|
| 385 |
-
],
|
| 386 |
-
"text/plain": [
|
| 387 |
-
" id breed\n",
|
| 388 |
-
"0 000bec180eb18c7604dcecc8fe0dba07 boston_bull\n",
|
| 389 |
-
"1 001513dfcb2ffafc82cccf4d8bbaba97 dingo\n",
|
| 390 |
-
"2 001cdf01b096e06d78e9e5112d419397 pekinese\n",
|
| 391 |
-
"3 00214f311d5d2247d5dfe4fe24b2303d bluetick\n",
|
| 392 |
-
"4 0021f9ceb3235effd7fcde7f7538ed62 golden_retriever"
|
| 393 |
-
]
|
| 394 |
-
},
|
| 395 |
-
"execution_count": 9,
|
| 396 |
-
"metadata": {},
|
| 397 |
-
"output_type": "execute_result"
|
| 398 |
-
}
|
| 399 |
-
],
|
| 400 |
"source": [
|
| 401 |
"train_labels.head()"
|
| 402 |
]
|
|
@@ -461,7 +375,7 @@
|
|
| 461 |
},
|
| 462 |
{
|
| 463 |
"cell_type": "code",
|
| 464 |
-
"execution_count":
|
| 465 |
"metadata": {
|
| 466 |
"execution": {
|
| 467 |
"iopub.execute_input": "2023-05-31T11:51:03.032746Z",
|
|
@@ -476,7 +390,7 @@
|
|
| 476 |
"name": "stderr",
|
| 477 |
"output_type": "stream",
|
| 478 |
"text": [
|
| 479 |
-
"100%|██████████| 588/588 [00:00<00:00,
|
| 480 |
]
|
| 481 |
},
|
| 482 |
{
|
|
@@ -486,7 +400,7 @@
|
|
| 486 |
"traceback": [
|
| 487 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 488 |
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
|
| 489 |
-
"\u001b[0;32m<ipython-input-
|
| 490 |
"\u001b[0;31mIndexError\u001b[0m: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices"
|
| 491 |
]
|
| 492 |
}
|
|
|
|
| 70 |
},
|
| 71 |
{
|
| 72 |
"cell_type": "code",
|
| 73 |
+
"execution_count": 5,
|
| 74 |
"metadata": {
|
| 75 |
"execution": {
|
| 76 |
"iopub.execute_input": "2023-05-31T11:55:45.831997Z",
|
|
|
|
| 152 |
"4 0021f9ceb3235effd7fcde7f7538ed62 golden_retriever"
|
| 153 |
]
|
| 154 |
},
|
| 155 |
+
"execution_count": 5,
|
| 156 |
"metadata": {},
|
| 157 |
"output_type": "execute_result"
|
| 158 |
}
|
|
|
|
| 165 |
},
|
| 166 |
{
|
| 167 |
"cell_type": "code",
|
| 168 |
+
"execution_count": null,
|
| 169 |
"metadata": {
|
| 170 |
"execution": {
|
| 171 |
"iopub.execute_input": "2023-05-31T11:55:45.863383Z",
|
|
|
|
| 175 |
"shell.execute_reply.started": "2023-05-31T11:55:45.863351Z"
|
| 176 |
}
|
| 177 |
},
|
| 178 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
"source": [
|
| 180 |
"breed_all = labels_all['breed']\n",
|
| 181 |
"breed_count = breed_all.value_counts()\n",
|
|
|
|
| 279 |
},
|
| 280 |
{
|
| 281 |
"cell_type": "code",
|
| 282 |
+
"execution_count": 7,
|
| 283 |
"metadata": {
|
| 284 |
"execution": {
|
| 285 |
"iopub.execute_input": "2023-05-31T11:55:45.934744Z",
|
|
|
|
| 300 |
},
|
| 301 |
{
|
| 302 |
"cell_type": "code",
|
| 303 |
+
"execution_count": null,
|
| 304 |
"metadata": {
|
| 305 |
"execution": {
|
| 306 |
"iopub.execute_input": "2023-05-31T11:55:46.081478Z",
|
|
|
|
| 310 |
"shell.execute_reply.started": "2023-05-31T11:55:46.081439Z"
|
| 311 |
}
|
| 312 |
},
|
| 313 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
"source": [
|
| 315 |
"train_labels.head()"
|
| 316 |
]
|
|
|
|
| 375 |
},
|
| 376 |
{
|
| 377 |
"cell_type": "code",
|
| 378 |
+
"execution_count": 8,
|
| 379 |
"metadata": {
|
| 380 |
"execution": {
|
| 381 |
"iopub.execute_input": "2023-05-31T11:51:03.032746Z",
|
|
|
|
| 390 |
"name": "stderr",
|
| 391 |
"output_type": "stream",
|
| 392 |
"text": [
|
| 393 |
+
"100%|██████████| 588/588 [00:00<00:00, 657.49it/s]\n"
|
| 394 |
]
|
| 395 |
},
|
| 396 |
{
|
|
|
|
| 400 |
"traceback": [
|
| 401 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 402 |
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
|
| 403 |
+
"\u001b[0;32m<ipython-input-8-86af726456f6>\u001b[0m in \u001b[0;36m<cell line: 16>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexpand_dims\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0mX_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0;36m255.0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0mX_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'id'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrain_labels\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'id'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 17\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;31m# Printing train image and one hot encode shape & size\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 404 |
"\u001b[0;31mIndexError\u001b[0m: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices"
|
| 405 |
]
|
| 406 |
}
|
benchmark/numpy_7/learning_curve.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
benchmark/numpy_7/model.h5
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:e25639a39cbbf0584914ab0b658dbfcbd1aa1e36a4ccb9205a60cba0854b9292
|
| 3 |
-
size 1952384
|
|
|
|
|
|
|
|
|
|
|
|
benchmark/numpy_7/numpy_7_fixed.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
benchmark/numpy_7/numpy_7_reproduced.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
benchmark/numpy_7/training_accuracy.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
benchmark/numpy_8/numpy_8_fixed.ipynb
CHANGED
|
@@ -167,7 +167,7 @@
|
|
| 167 |
},
|
| 168 |
{
|
| 169 |
"cell_type": "code",
|
| 170 |
-
"execution_count":
|
| 171 |
"metadata": {
|
| 172 |
"execution": {
|
| 173 |
"iopub.execute_input": "2023-05-20T13:31:42.474671Z",
|
|
@@ -177,25 +177,14 @@
|
|
| 177 |
"shell.execute_reply.started": "2023-05-20T13:31:42.474643Z"
|
| 178 |
}
|
| 179 |
},
|
| 180 |
-
"outputs": [
|
| 181 |
-
{
|
| 182 |
-
"data": {
|
| 183 |
-
"text/plain": [
|
| 184 |
-
"(307511, 73)"
|
| 185 |
-
]
|
| 186 |
-
},
|
| 187 |
-
"execution_count": 6,
|
| 188 |
-
"metadata": {},
|
| 189 |
-
"output_type": "execute_result"
|
| 190 |
-
}
|
| 191 |
-
],
|
| 192 |
"source": [
|
| 193 |
"app_train.shape"
|
| 194 |
]
|
| 195 |
},
|
| 196 |
{
|
| 197 |
"cell_type": "code",
|
| 198 |
-
"execution_count":
|
| 199 |
"metadata": {
|
| 200 |
"execution": {
|
| 201 |
"iopub.execute_input": "2023-05-20T13:31:42.482990Z",
|
|
@@ -205,18 +194,7 @@
|
|
| 205 |
"shell.execute_reply.started": "2023-05-20T13:31:42.482965Z"
|
| 206 |
}
|
| 207 |
},
|
| 208 |
-
"outputs": [
|
| 209 |
-
{
|
| 210 |
-
"data": {
|
| 211 |
-
"text/plain": [
|
| 212 |
-
"(48744, 72)"
|
| 213 |
-
]
|
| 214 |
-
},
|
| 215 |
-
"execution_count": 7,
|
| 216 |
-
"metadata": {},
|
| 217 |
-
"output_type": "execute_result"
|
| 218 |
-
}
|
| 219 |
-
],
|
| 220 |
"source": [
|
| 221 |
"app_test.shape"
|
| 222 |
]
|
|
@@ -259,7 +237,7 @@
|
|
| 259 |
},
|
| 260 |
{
|
| 261 |
"cell_type": "code",
|
| 262 |
-
"execution_count":
|
| 263 |
"metadata": {
|
| 264 |
"execution": {
|
| 265 |
"iopub.execute_input": "2023-05-20T13:31:43.880911Z",
|
|
@@ -284,7 +262,7 @@
|
|
| 284 |
},
|
| 285 |
{
|
| 286 |
"cell_type": "code",
|
| 287 |
-
"execution_count":
|
| 288 |
"metadata": {
|
| 289 |
"execution": {
|
| 290 |
"iopub.execute_input": "2023-05-20T13:31:48.487653Z",
|
|
@@ -303,7 +281,7 @@
|
|
| 303 |
},
|
| 304 |
{
|
| 305 |
"cell_type": "code",
|
| 306 |
-
"execution_count":
|
| 307 |
"metadata": {
|
| 308 |
"execution": {
|
| 309 |
"iopub.execute_input": "2023-05-20T13:31:48.901595Z",
|
|
@@ -321,7 +299,7 @@
|
|
| 321 |
},
|
| 322 |
{
|
| 323 |
"cell_type": "code",
|
| 324 |
-
"execution_count":
|
| 325 |
"metadata": {
|
| 326 |
"execution": {
|
| 327 |
"iopub.execute_input": "2023-05-20T13:31:48.911188Z",
|
|
@@ -343,7 +321,7 @@
|
|
| 343 |
},
|
| 344 |
{
|
| 345 |
"cell_type": "code",
|
| 346 |
-
"execution_count":
|
| 347 |
"metadata": {
|
| 348 |
"execution": {
|
| 349 |
"iopub.execute_input": "2023-05-20T13:31:49.050761Z",
|
|
@@ -360,7 +338,7 @@
|
|
| 360 |
},
|
| 361 |
{
|
| 362 |
"cell_type": "code",
|
| 363 |
-
"execution_count":
|
| 364 |
"metadata": {
|
| 365 |
"execution": {
|
| 366 |
"iopub.execute_input": "2023-05-20T13:31:49.070174Z",
|
|
@@ -396,7 +374,7 @@
|
|
| 396 |
},
|
| 397 |
{
|
| 398 |
"cell_type": "code",
|
| 399 |
-
"execution_count":
|
| 400 |
"metadata": {
|
| 401 |
"execution": {
|
| 402 |
"iopub.execute_input": "2023-05-20T13:31:49.172092Z",
|
|
@@ -414,7 +392,7 @@
|
|
| 414 |
},
|
| 415 |
{
|
| 416 |
"cell_type": "code",
|
| 417 |
-
"execution_count":
|
| 418 |
"metadata": {
|
| 419 |
"execution": {
|
| 420 |
"iopub.execute_input": "2023-05-20T13:31:49.181041Z",
|
|
@@ -432,7 +410,7 @@
|
|
| 432 |
},
|
| 433 |
{
|
| 434 |
"cell_type": "code",
|
| 435 |
-
"execution_count":
|
| 436 |
"metadata": {
|
| 437 |
"execution": {
|
| 438 |
"iopub.execute_input": "2023-05-20T13:31:49.239903Z",
|
|
@@ -492,7 +470,7 @@
|
|
| 492 |
},
|
| 493 |
{
|
| 494 |
"cell_type": "code",
|
| 495 |
-
"execution_count":
|
| 496 |
"metadata": {
|
| 497 |
"execution": {
|
| 498 |
"iopub.execute_input": "2023-05-20T13:31:49.399844Z",
|
|
@@ -536,7 +514,7 @@
|
|
| 536 |
},
|
| 537 |
{
|
| 538 |
"cell_type": "code",
|
| 539 |
-
"execution_count":
|
| 540 |
"metadata": {
|
| 541 |
"execution": {
|
| 542 |
"iopub.execute_input": "2023-05-20T13:31:49.615247Z",
|
|
@@ -673,7 +651,7 @@
|
|
| 673 |
"freq 53900 67991 "
|
| 674 |
]
|
| 675 |
},
|
| 676 |
-
"execution_count":
|
| 677 |
"metadata": {},
|
| 678 |
"output_type": "execute_result"
|
| 679 |
}
|
|
@@ -720,7 +698,7 @@
|
|
| 720 |
},
|
| 721 |
{
|
| 722 |
"cell_type": "code",
|
| 723 |
-
"execution_count":
|
| 724 |
"metadata": {
|
| 725 |
"execution": {
|
| 726 |
"iopub.execute_input": "2023-05-20T13:31:50.800859Z",
|
|
@@ -736,52 +714,52 @@
|
|
| 736 |
"name": "stderr",
|
| 737 |
"output_type": "stream",
|
| 738 |
"text": [
|
| 739 |
-
"<ipython-input-
|
| 740 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 741 |
"\n",
|
| 742 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 743 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Secondary / secondary special'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Secondary / secondary special'].fillna('Laborers')\n",
|
| 744 |
-
"<ipython-input-
|
| 745 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 746 |
"\n",
|
| 747 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 748 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Higher education'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Higher education'].fillna('Core staff')\n",
|
| 749 |
-
"<ipython-input-
|
| 750 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 751 |
"\n",
|
| 752 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 753 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Incomplete higher'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Incomplete higher'].fillna('Laborers')\n",
|
| 754 |
-
"<ipython-input-
|
| 755 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 756 |
"\n",
|
| 757 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 758 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Lower secondary'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Lower secondary'].fillna('Laborers')\n",
|
| 759 |
-
"<ipython-input-
|
| 760 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 761 |
"\n",
|
| 762 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 763 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Academic degree'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Academic degree'].fillna('Managers')\n",
|
| 764 |
-
"<ipython-input-
|
| 765 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 766 |
"\n",
|
| 767 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 768 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Secondary / secondary special'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Secondary / secondary special'].fillna('Laborers')\n",
|
| 769 |
-
"<ipython-input-
|
| 770 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 771 |
"\n",
|
| 772 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 773 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Higher education'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Higher education'].fillna('Core staff')\n",
|
| 774 |
-
"<ipython-input-
|
| 775 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 776 |
"\n",
|
| 777 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 778 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Incomplete higher'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Incomplete higher'].fillna('Laborers')\n",
|
| 779 |
-
"<ipython-input-
|
| 780 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 781 |
"\n",
|
| 782 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 783 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Lower secondary'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Lower secondary'].fillna('Laborers')\n",
|
| 784 |
-
"<ipython-input-
|
| 785 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 786 |
"\n",
|
| 787 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|
@@ -822,7 +800,7 @@
|
|
| 822 |
},
|
| 823 |
{
|
| 824 |
"cell_type": "code",
|
| 825 |
-
"execution_count":
|
| 826 |
"metadata": {
|
| 827 |
"execution": {
|
| 828 |
"iopub.execute_input": "2023-05-20T13:31:51.675082Z",
|
|
@@ -838,42 +816,42 @@
|
|
| 838 |
"name": "stderr",
|
| 839 |
"output_type": "stream",
|
| 840 |
"text": [
|
| 841 |
-
"<ipython-input-
|
| 842 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 843 |
"\n",
|
| 844 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 845 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Accountants') |\n",
|
| 846 |
-
"<ipython-input-
|
| 847 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 848 |
"\n",
|
| 849 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 850 |
" app_test['ORGANIZATION_TYPE'][(app_test['OCCUPATION_TYPE'] == 'Accountants') |\n",
|
| 851 |
-
"<ipython-input-
|
| 852 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 853 |
"\n",
|
| 854 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 855 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Medicine staff')|\n",
|
| 856 |
-
"<ipython-input-
|
| 857 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 858 |
"\n",
|
| 859 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 860 |
" app_test['ORGANIZATION_TYPE'][(app_test['OCCUPATION_TYPE'] == 'Medicine staff')|\n",
|
| 861 |
-
"<ipython-input-
|
| 862 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 863 |
"\n",
|
| 864 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 865 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Private service staff')|\n",
|
| 866 |
-
"<ipython-input-
|
| 867 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 868 |
"\n",
|
| 869 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 870 |
" app_test['ORGANIZATION_TYPE'][(app_test['OCCUPATION_TYPE'] == 'Private service staff')|\n",
|
| 871 |
-
"<ipython-input-
|
| 872 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 873 |
"\n",
|
| 874 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 875 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Security staff')] = app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Security staff')].fillna('Security')\n",
|
| 876 |
-
"<ipython-input-
|
| 877 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 878 |
"\n",
|
| 879 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|
@@ -950,7 +928,7 @@
|
|
| 950 |
},
|
| 951 |
{
|
| 952 |
"cell_type": "code",
|
| 953 |
-
"execution_count":
|
| 954 |
"metadata": {
|
| 955 |
"execution": {
|
| 956 |
"iopub.execute_input": "2023-05-20T13:31:54.947839Z",
|
|
@@ -967,7 +945,7 @@
|
|
| 967 |
},
|
| 968 |
{
|
| 969 |
"cell_type": "code",
|
| 970 |
-
"execution_count":
|
| 971 |
"metadata": {
|
| 972 |
"execution": {
|
| 973 |
"iopub.execute_input": "2023-05-20T13:31:54.976259Z",
|
|
@@ -982,7 +960,7 @@
|
|
| 982 |
"name": "stderr",
|
| 983 |
"output_type": "stream",
|
| 984 |
"text": [
|
| 985 |
-
"<ipython-input-
|
| 986 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
| 987 |
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
| 988 |
"\n",
|
|
@@ -998,7 +976,7 @@
|
|
| 998 |
},
|
| 999 |
{
|
| 1000 |
"cell_type": "code",
|
| 1001 |
-
"execution_count":
|
| 1002 |
"metadata": {
|
| 1003 |
"execution": {
|
| 1004 |
"iopub.execute_input": "2023-05-20T13:31:55.085687Z",
|
|
@@ -1013,7 +991,7 @@
|
|
| 1013 |
"name": "stderr",
|
| 1014 |
"output_type": "stream",
|
| 1015 |
"text": [
|
| 1016 |
-
"<ipython-input-
|
| 1017 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
| 1018 |
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
| 1019 |
"\n",
|
|
@@ -1029,7 +1007,7 @@
|
|
| 1029 |
},
|
| 1030 |
{
|
| 1031 |
"cell_type": "code",
|
| 1032 |
-
"execution_count":
|
| 1033 |
"metadata": {
|
| 1034 |
"execution": {
|
| 1035 |
"iopub.execute_input": "2023-05-20T13:31:55.192859Z",
|
|
@@ -1047,7 +1025,7 @@
|
|
| 1047 |
},
|
| 1048 |
{
|
| 1049 |
"cell_type": "code",
|
| 1050 |
-
"execution_count":
|
| 1051 |
"metadata": {
|
| 1052 |
"execution": {
|
| 1053 |
"iopub.execute_input": "2023-05-20T13:31:55.235212Z",
|
|
@@ -1085,7 +1063,7 @@
|
|
| 1085 |
},
|
| 1086 |
{
|
| 1087 |
"cell_type": "code",
|
| 1088 |
-
"execution_count":
|
| 1089 |
"metadata": {
|
| 1090 |
"execution": {
|
| 1091 |
"iopub.execute_input": "2023-05-20T13:31:55.502923Z",
|
|
@@ -1158,7 +1136,7 @@
|
|
| 1158 |
},
|
| 1159 |
{
|
| 1160 |
"cell_type": "code",
|
| 1161 |
-
"execution_count":
|
| 1162 |
"metadata": {
|
| 1163 |
"execution": {
|
| 1164 |
"iopub.execute_input": "2023-05-20T13:31:57.927525Z",
|
|
@@ -1192,7 +1170,7 @@
|
|
| 1192 |
},
|
| 1193 |
{
|
| 1194 |
"cell_type": "code",
|
| 1195 |
-
"execution_count":
|
| 1196 |
"metadata": {
|
| 1197 |
"execution": {
|
| 1198 |
"iopub.execute_input": "2023-05-20T13:31:58.048903Z",
|
|
@@ -1210,7 +1188,7 @@
|
|
| 1210 |
},
|
| 1211 |
{
|
| 1212 |
"cell_type": "code",
|
| 1213 |
-
"execution_count":
|
| 1214 |
"metadata": {
|
| 1215 |
"execution": {
|
| 1216 |
"iopub.execute_input": "2023-05-20T13:31:58.153738Z",
|
|
@@ -1226,35 +1204,35 @@
|
|
| 1226 |
"text/plain": [
|
| 1227 |
"['DAYS_EMPLOYED',\n",
|
| 1228 |
" 'AMT_ANNUITY',\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1229 |
" 'AMT_GOODS_PRICE',\n",
|
| 1230 |
-
" '
|
|
|
|
|
|
|
| 1231 |
" 'CNT_CHILDREN',\n",
|
| 1232 |
-
" 'AMT_REQ_CREDIT_BUREAU_HOUR',\n",
|
| 1233 |
-
" 'DAYS_ID_PUBLISH',\n",
|
| 1234 |
-
" 'DAYS_BIRTH',\n",
|
| 1235 |
" 'REGION_POPULATION_RELATIVE',\n",
|
| 1236 |
-
" '
|
| 1237 |
-
" '
|
| 1238 |
-
" 'AMT_INCOME_TOTAL',\n",
|
| 1239 |
" 'DAYS_REGISTRATION',\n",
|
|
|
|
|
|
|
|
|
|
| 1240 |
" 'DEF_60_CNT_SOCIAL_CIRCLE',\n",
|
| 1241 |
" 'AMT_REQ_CREDIT_BUREAU_YEAR',\n",
|
| 1242 |
-
" 'REG_CITY_NOT_LIVE_CITY',\n",
|
| 1243 |
-
" 'AMT_REQ_CREDIT_BUREAU_QRT',\n",
|
| 1244 |
-
" 'AMT_REQ_CREDIT_BUREAU_WEEK',\n",
|
| 1245 |
-
" 'HOUR_APPR_PROCESS_START',\n",
|
| 1246 |
-
" 'REG_CITY_NOT_WORK_CITY',\n",
|
| 1247 |
-
" 'DEF_30_CNT_SOCIAL_CIRCLE',\n",
|
| 1248 |
-
" 'AMT_REQ_CREDIT_BUREAU_DAY',\n",
|
| 1249 |
" 'DAYS_LAST_PHONE_CHANGE',\n",
|
| 1250 |
-
" '
|
|
|
|
| 1251 |
" 'AMT_REQ_CREDIT_BUREAU_MON',\n",
|
| 1252 |
" 'LIVE_CITY_NOT_WORK_CITY',\n",
|
| 1253 |
-
" '
|
| 1254 |
-
" '
|
| 1255 |
]
|
| 1256 |
},
|
| 1257 |
-
"execution_count":
|
| 1258 |
"metadata": {},
|
| 1259 |
"output_type": "execute_result"
|
| 1260 |
}
|
|
@@ -1267,7 +1245,7 @@
|
|
| 1267 |
},
|
| 1268 |
{
|
| 1269 |
"cell_type": "code",
|
| 1270 |
-
"execution_count":
|
| 1271 |
"metadata": {
|
| 1272 |
"execution": {
|
| 1273 |
"iopub.execute_input": "2023-05-20T13:31:58.164735Z",
|
|
@@ -1299,7 +1277,7 @@
|
|
| 1299 |
},
|
| 1300 |
{
|
| 1301 |
"cell_type": "code",
|
| 1302 |
-
"execution_count":
|
| 1303 |
"metadata": {
|
| 1304 |
"execution": {
|
| 1305 |
"iopub.execute_input": "2023-05-20T13:31:58.183609Z",
|
|
@@ -1318,7 +1296,7 @@
|
|
| 1318 |
},
|
| 1319 |
{
|
| 1320 |
"cell_type": "code",
|
| 1321 |
-
"execution_count":
|
| 1322 |
"metadata": {
|
| 1323 |
"execution": {
|
| 1324 |
"iopub.execute_input": "2023-05-20T13:31:59.697622Z",
|
|
@@ -1345,7 +1323,7 @@
|
|
| 1345 |
},
|
| 1346 |
{
|
| 1347 |
"cell_type": "code",
|
| 1348 |
-
"execution_count":
|
| 1349 |
"metadata": {
|
| 1350 |
"execution": {
|
| 1351 |
"iopub.execute_input": "2023-05-20T13:32:00.313206Z",
|
|
@@ -1387,7 +1365,7 @@
|
|
| 1387 |
},
|
| 1388 |
{
|
| 1389 |
"cell_type": "code",
|
| 1390 |
-
"execution_count":
|
| 1391 |
"metadata": {
|
| 1392 |
"execution": {
|
| 1393 |
"iopub.execute_input": "2023-05-20T13:32:01.830751Z",
|
|
@@ -1405,7 +1383,7 @@
|
|
| 1405 |
},
|
| 1406 |
{
|
| 1407 |
"cell_type": "code",
|
| 1408 |
-
"execution_count":
|
| 1409 |
"metadata": {
|
| 1410 |
"execution": {
|
| 1411 |
"iopub.execute_input": "2023-05-20T13:32:09.294612Z",
|
|
@@ -1422,7 +1400,7 @@
|
|
| 1422 |
},
|
| 1423 |
{
|
| 1424 |
"cell_type": "code",
|
| 1425 |
-
"execution_count":
|
| 1426 |
"metadata": {
|
| 1427 |
"execution": {
|
| 1428 |
"iopub.execute_input": "2023-05-20T13:32:09.651347Z",
|
|
@@ -1440,7 +1418,7 @@
|
|
| 1440 |
},
|
| 1441 |
{
|
| 1442 |
"cell_type": "code",
|
| 1443 |
-
"execution_count":
|
| 1444 |
"metadata": {
|
| 1445 |
"execution": {
|
| 1446 |
"iopub.execute_input": "2023-05-20T13:32:09.718228Z",
|
|
@@ -1782,7 +1760,7 @@
|
|
| 1782 |
},
|
| 1783 |
{
|
| 1784 |
"cell_type": "code",
|
| 1785 |
-
"execution_count":
|
| 1786 |
"metadata": {
|
| 1787 |
"execution": {
|
| 1788 |
"iopub.execute_input": "2023-05-20T14:18:30.867184Z",
|
|
@@ -1991,7 +1969,7 @@
|
|
| 1991 |
},
|
| 1992 |
{
|
| 1993 |
"cell_type": "code",
|
| 1994 |
-
"execution_count":
|
| 1995 |
"metadata": {
|
| 1996 |
"execution": {
|
| 1997 |
"iopub.execute_input": "2023-05-20T14:49:11.499710Z",
|
|
@@ -2024,7 +2002,7 @@
|
|
| 2024 |
},
|
| 2025 |
{
|
| 2026 |
"cell_type": "code",
|
| 2027 |
-
"execution_count":
|
| 2028 |
"metadata": {
|
| 2029 |
"execution": {
|
| 2030 |
"iopub.execute_input": "2023-05-20T14:47:45.251432Z",
|
|
@@ -2061,7 +2039,7 @@
|
|
| 2061 |
},
|
| 2062 |
{
|
| 2063 |
"cell_type": "code",
|
| 2064 |
-
"execution_count":
|
| 2065 |
"metadata": {
|
| 2066 |
"execution": {
|
| 2067 |
"iopub.execute_input": "2023-05-20T14:49:14.993876Z",
|
|
@@ -2071,18 +2049,7 @@
|
|
| 2071 |
"shell.execute_reply.started": "2023-05-20T14:49:14.993845Z"
|
| 2072 |
}
|
| 2073 |
},
|
| 2074 |
-
"outputs": [
|
| 2075 |
-
{
|
| 2076 |
-
"name": "stderr",
|
| 2077 |
-
"output_type": "stream",
|
| 2078 |
-
"text": [
|
| 2079 |
-
"/usr/local/lib/python3.10/dist-packages/deap/creator.py:185: RuntimeWarning: A class named 'FitnessMax' has already been created and it will be overwritten. Consider deleting previous creation of that class or rename it.\n",
|
| 2080 |
-
" warnings.warn(\"A class named '{0}' has already been created and it \"\n",
|
| 2081 |
-
"/usr/local/lib/python3.10/dist-packages/deap/creator.py:185: RuntimeWarning: A class named 'Individual' has already been created and it will be overwritten. Consider deleting previous creation of that class or rename it.\n",
|
| 2082 |
-
" warnings.warn(\"A class named '{0}' has already been created and it \"\n"
|
| 2083 |
-
]
|
| 2084 |
-
}
|
| 2085 |
-
],
|
| 2086 |
"source": [
|
| 2087 |
"# Создание класса для управления эволюцией\n",
|
| 2088 |
"creator.create(\"FitnessMax\", base.Fitness, weights=(1.0,))\n",
|
|
@@ -2105,7 +2072,7 @@
|
|
| 2105 |
},
|
| 2106 |
{
|
| 2107 |
"cell_type": "code",
|
| 2108 |
-
"execution_count":
|
| 2109 |
"metadata": {
|
| 2110 |
"execution": {
|
| 2111 |
"iopub.execute_input": "2023-05-20T14:58:23.426108Z",
|
|
@@ -2142,7 +2109,7 @@
|
|
| 2142 |
},
|
| 2143 |
{
|
| 2144 |
"cell_type": "code",
|
| 2145 |
-
"execution_count":
|
| 2146 |
"metadata": {
|
| 2147 |
"execution": {
|
| 2148 |
"iopub.execute_input": "2023-05-20T14:58:26.121638Z",
|
|
@@ -2193,6 +2160,13 @@
|
|
| 2193 |
" # Замена старого поколения потомками\n",
|
| 2194 |
" population[:] = offspring"
|
| 2195 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2196 |
}
|
| 2197 |
],
|
| 2198 |
"metadata": {
|
|
|
|
| 167 |
},
|
| 168 |
{
|
| 169 |
"cell_type": "code",
|
| 170 |
+
"execution_count": null,
|
| 171 |
"metadata": {
|
| 172 |
"execution": {
|
| 173 |
"iopub.execute_input": "2023-05-20T13:31:42.474671Z",
|
|
|
|
| 177 |
"shell.execute_reply.started": "2023-05-20T13:31:42.474643Z"
|
| 178 |
}
|
| 179 |
},
|
| 180 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
"source": [
|
| 182 |
"app_train.shape"
|
| 183 |
]
|
| 184 |
},
|
| 185 |
{
|
| 186 |
"cell_type": "code",
|
| 187 |
+
"execution_count": null,
|
| 188 |
"metadata": {
|
| 189 |
"execution": {
|
| 190 |
"iopub.execute_input": "2023-05-20T13:31:42.482990Z",
|
|
|
|
| 194 |
"shell.execute_reply.started": "2023-05-20T13:31:42.482965Z"
|
| 195 |
}
|
| 196 |
},
|
| 197 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
"source": [
|
| 199 |
"app_test.shape"
|
| 200 |
]
|
|
|
|
| 237 |
},
|
| 238 |
{
|
| 239 |
"cell_type": "code",
|
| 240 |
+
"execution_count": 6,
|
| 241 |
"metadata": {
|
| 242 |
"execution": {
|
| 243 |
"iopub.execute_input": "2023-05-20T13:31:43.880911Z",
|
|
|
|
| 262 |
},
|
| 263 |
{
|
| 264 |
"cell_type": "code",
|
| 265 |
+
"execution_count": 7,
|
| 266 |
"metadata": {
|
| 267 |
"execution": {
|
| 268 |
"iopub.execute_input": "2023-05-20T13:31:48.487653Z",
|
|
|
|
| 281 |
},
|
| 282 |
{
|
| 283 |
"cell_type": "code",
|
| 284 |
+
"execution_count": 8,
|
| 285 |
"metadata": {
|
| 286 |
"execution": {
|
| 287 |
"iopub.execute_input": "2023-05-20T13:31:48.901595Z",
|
|
|
|
| 299 |
},
|
| 300 |
{
|
| 301 |
"cell_type": "code",
|
| 302 |
+
"execution_count": 9,
|
| 303 |
"metadata": {
|
| 304 |
"execution": {
|
| 305 |
"iopub.execute_input": "2023-05-20T13:31:48.911188Z",
|
|
|
|
| 321 |
},
|
| 322 |
{
|
| 323 |
"cell_type": "code",
|
| 324 |
+
"execution_count": 10,
|
| 325 |
"metadata": {
|
| 326 |
"execution": {
|
| 327 |
"iopub.execute_input": "2023-05-20T13:31:49.050761Z",
|
|
|
|
| 338 |
},
|
| 339 |
{
|
| 340 |
"cell_type": "code",
|
| 341 |
+
"execution_count": 11,
|
| 342 |
"metadata": {
|
| 343 |
"execution": {
|
| 344 |
"iopub.execute_input": "2023-05-20T13:31:49.070174Z",
|
|
|
|
| 374 |
},
|
| 375 |
{
|
| 376 |
"cell_type": "code",
|
| 377 |
+
"execution_count": 12,
|
| 378 |
"metadata": {
|
| 379 |
"execution": {
|
| 380 |
"iopub.execute_input": "2023-05-20T13:31:49.172092Z",
|
|
|
|
| 392 |
},
|
| 393 |
{
|
| 394 |
"cell_type": "code",
|
| 395 |
+
"execution_count": 13,
|
| 396 |
"metadata": {
|
| 397 |
"execution": {
|
| 398 |
"iopub.execute_input": "2023-05-20T13:31:49.181041Z",
|
|
|
|
| 410 |
},
|
| 411 |
{
|
| 412 |
"cell_type": "code",
|
| 413 |
+
"execution_count": 14,
|
| 414 |
"metadata": {
|
| 415 |
"execution": {
|
| 416 |
"iopub.execute_input": "2023-05-20T13:31:49.239903Z",
|
|
|
|
| 470 |
},
|
| 471 |
{
|
| 472 |
"cell_type": "code",
|
| 473 |
+
"execution_count": 15,
|
| 474 |
"metadata": {
|
| 475 |
"execution": {
|
| 476 |
"iopub.execute_input": "2023-05-20T13:31:49.399844Z",
|
|
|
|
| 514 |
},
|
| 515 |
{
|
| 516 |
"cell_type": "code",
|
| 517 |
+
"execution_count": 16,
|
| 518 |
"metadata": {
|
| 519 |
"execution": {
|
| 520 |
"iopub.execute_input": "2023-05-20T13:31:49.615247Z",
|
|
|
|
| 651 |
"freq 53900 67991 "
|
| 652 |
]
|
| 653 |
},
|
| 654 |
+
"execution_count": 16,
|
| 655 |
"metadata": {},
|
| 656 |
"output_type": "execute_result"
|
| 657 |
}
|
|
|
|
| 698 |
},
|
| 699 |
{
|
| 700 |
"cell_type": "code",
|
| 701 |
+
"execution_count": 17,
|
| 702 |
"metadata": {
|
| 703 |
"execution": {
|
| 704 |
"iopub.execute_input": "2023-05-20T13:31:50.800859Z",
|
|
|
|
| 714 |
"name": "stderr",
|
| 715 |
"output_type": "stream",
|
| 716 |
"text": [
|
| 717 |
+
"<ipython-input-17-3e482c76d290>:1: SettingWithCopyWarning: \n",
|
| 718 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 719 |
"\n",
|
| 720 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 721 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Secondary / secondary special'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Secondary / secondary special'].fillna('Laborers')\n",
|
| 722 |
+
"<ipython-input-17-3e482c76d290>:2: SettingWithCopyWarning: \n",
|
| 723 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 724 |
"\n",
|
| 725 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 726 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Higher education'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Higher education'].fillna('Core staff')\n",
|
| 727 |
+
"<ipython-input-17-3e482c76d290>:3: SettingWithCopyWarning: \n",
|
| 728 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 729 |
"\n",
|
| 730 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 731 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Incomplete higher'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Incomplete higher'].fillna('Laborers')\n",
|
| 732 |
+
"<ipython-input-17-3e482c76d290>:4: SettingWithCopyWarning: \n",
|
| 733 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 734 |
"\n",
|
| 735 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 736 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Lower secondary'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Lower secondary'].fillna('Laborers')\n",
|
| 737 |
+
"<ipython-input-17-3e482c76d290>:5: SettingWithCopyWarning: \n",
|
| 738 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 739 |
"\n",
|
| 740 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 741 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Academic degree'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Academic degree'].fillna('Managers')\n",
|
| 742 |
+
"<ipython-input-17-3e482c76d290>:7: SettingWithCopyWarning: \n",
|
| 743 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 744 |
"\n",
|
| 745 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 746 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Secondary / secondary special'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Secondary / secondary special'].fillna('Laborers')\n",
|
| 747 |
+
"<ipython-input-17-3e482c76d290>:8: SettingWithCopyWarning: \n",
|
| 748 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 749 |
"\n",
|
| 750 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 751 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Higher education'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Higher education'].fillna('Core staff')\n",
|
| 752 |
+
"<ipython-input-17-3e482c76d290>:9: SettingWithCopyWarning: \n",
|
| 753 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 754 |
"\n",
|
| 755 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 756 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Incomplete higher'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Incomplete higher'].fillna('Laborers')\n",
|
| 757 |
+
"<ipython-input-17-3e482c76d290>:10: SettingWithCopyWarning: \n",
|
| 758 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 759 |
"\n",
|
| 760 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 761 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Lower secondary'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Lower secondary'].fillna('Laborers')\n",
|
| 762 |
+
"<ipython-input-17-3e482c76d290>:11: SettingWithCopyWarning: \n",
|
| 763 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 764 |
"\n",
|
| 765 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|
|
|
| 800 |
},
|
| 801 |
{
|
| 802 |
"cell_type": "code",
|
| 803 |
+
"execution_count": 18,
|
| 804 |
"metadata": {
|
| 805 |
"execution": {
|
| 806 |
"iopub.execute_input": "2023-05-20T13:31:51.675082Z",
|
|
|
|
| 816 |
"name": "stderr",
|
| 817 |
"output_type": "stream",
|
| 818 |
"text": [
|
| 819 |
+
"<ipython-input-18-eee1247958f3>:1: SettingWithCopyWarning: \n",
|
| 820 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 821 |
"\n",
|
| 822 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 823 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Accountants') |\n",
|
| 824 |
+
"<ipython-input-18-eee1247958f3>:23: SettingWithCopyWarning: \n",
|
| 825 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 826 |
"\n",
|
| 827 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 828 |
" app_test['ORGANIZATION_TYPE'][(app_test['OCCUPATION_TYPE'] == 'Accountants') |\n",
|
| 829 |
+
"<ipython-input-18-eee1247958f3>:46: SettingWithCopyWarning: \n",
|
| 830 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 831 |
"\n",
|
| 832 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 833 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Medicine staff')|\n",
|
| 834 |
+
"<ipython-input-18-eee1247958f3>:49: SettingWithCopyWarning: \n",
|
| 835 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 836 |
"\n",
|
| 837 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 838 |
" app_test['ORGANIZATION_TYPE'][(app_test['OCCUPATION_TYPE'] == 'Medicine staff')|\n",
|
| 839 |
+
"<ipython-input-18-eee1247958f3>:52: SettingWithCopyWarning: \n",
|
| 840 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 841 |
"\n",
|
| 842 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 843 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Private service staff')|\n",
|
| 844 |
+
"<ipython-input-18-eee1247958f3>:57: SettingWithCopyWarning: \n",
|
| 845 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 846 |
"\n",
|
| 847 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 848 |
" app_test['ORGANIZATION_TYPE'][(app_test['OCCUPATION_TYPE'] == 'Private service staff')|\n",
|
| 849 |
+
"<ipython-input-18-eee1247958f3>:63: SettingWithCopyWarning: \n",
|
| 850 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 851 |
"\n",
|
| 852 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 853 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Security staff')] = app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Security staff')].fillna('Security')\n",
|
| 854 |
+
"<ipython-input-18-eee1247958f3>:64: SettingWithCopyWarning: \n",
|
| 855 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 856 |
"\n",
|
| 857 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|
|
|
| 928 |
},
|
| 929 |
{
|
| 930 |
"cell_type": "code",
|
| 931 |
+
"execution_count": 19,
|
| 932 |
"metadata": {
|
| 933 |
"execution": {
|
| 934 |
"iopub.execute_input": "2023-05-20T13:31:54.947839Z",
|
|
|
|
| 945 |
},
|
| 946 |
{
|
| 947 |
"cell_type": "code",
|
| 948 |
+
"execution_count": 20,
|
| 949 |
"metadata": {
|
| 950 |
"execution": {
|
| 951 |
"iopub.execute_input": "2023-05-20T13:31:54.976259Z",
|
|
|
|
| 960 |
"name": "stderr",
|
| 961 |
"output_type": "stream",
|
| 962 |
"text": [
|
| 963 |
+
"<ipython-input-20-0a2c7bd4f24d>:2: SettingWithCopyWarning: \n",
|
| 964 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
| 965 |
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
| 966 |
"\n",
|
|
|
|
| 976 |
},
|
| 977 |
{
|
| 978 |
"cell_type": "code",
|
| 979 |
+
"execution_count": 21,
|
| 980 |
"metadata": {
|
| 981 |
"execution": {
|
| 982 |
"iopub.execute_input": "2023-05-20T13:31:55.085687Z",
|
|
|
|
| 991 |
"name": "stderr",
|
| 992 |
"output_type": "stream",
|
| 993 |
"text": [
|
| 994 |
+
"<ipython-input-21-012c43242dab>:2: SettingWithCopyWarning: \n",
|
| 995 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
| 996 |
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
| 997 |
"\n",
|
|
|
|
| 1007 |
},
|
| 1008 |
{
|
| 1009 |
"cell_type": "code",
|
| 1010 |
+
"execution_count": 22,
|
| 1011 |
"metadata": {
|
| 1012 |
"execution": {
|
| 1013 |
"iopub.execute_input": "2023-05-20T13:31:55.192859Z",
|
|
|
|
| 1025 |
},
|
| 1026 |
{
|
| 1027 |
"cell_type": "code",
|
| 1028 |
+
"execution_count": 23,
|
| 1029 |
"metadata": {
|
| 1030 |
"execution": {
|
| 1031 |
"iopub.execute_input": "2023-05-20T13:31:55.235212Z",
|
|
|
|
| 1063 |
},
|
| 1064 |
{
|
| 1065 |
"cell_type": "code",
|
| 1066 |
+
"execution_count": 24,
|
| 1067 |
"metadata": {
|
| 1068 |
"execution": {
|
| 1069 |
"iopub.execute_input": "2023-05-20T13:31:55.502923Z",
|
|
|
|
| 1136 |
},
|
| 1137 |
{
|
| 1138 |
"cell_type": "code",
|
| 1139 |
+
"execution_count": 25,
|
| 1140 |
"metadata": {
|
| 1141 |
"execution": {
|
| 1142 |
"iopub.execute_input": "2023-05-20T13:31:57.927525Z",
|
|
|
|
| 1170 |
},
|
| 1171 |
{
|
| 1172 |
"cell_type": "code",
|
| 1173 |
+
"execution_count": 26,
|
| 1174 |
"metadata": {
|
| 1175 |
"execution": {
|
| 1176 |
"iopub.execute_input": "2023-05-20T13:31:58.048903Z",
|
|
|
|
| 1188 |
},
|
| 1189 |
{
|
| 1190 |
"cell_type": "code",
|
| 1191 |
+
"execution_count": 27,
|
| 1192 |
"metadata": {
|
| 1193 |
"execution": {
|
| 1194 |
"iopub.execute_input": "2023-05-20T13:31:58.153738Z",
|
|
|
|
| 1204 |
"text/plain": [
|
| 1205 |
"['DAYS_EMPLOYED',\n",
|
| 1206 |
" 'AMT_ANNUITY',\n",
|
| 1207 |
+
" 'REGION_RATING_CLIENT',\n",
|
| 1208 |
+
" 'REG_CITY_NOT_WORK_CITY',\n",
|
| 1209 |
+
" 'DAYS_ID_PUBLISH',\n",
|
| 1210 |
+
" 'EXT_SOURCE_3',\n",
|
| 1211 |
+
" 'REG_CITY_NOT_LIVE_CITY',\n",
|
| 1212 |
" 'AMT_GOODS_PRICE',\n",
|
| 1213 |
+
" 'REGION_RATING_CLIENT_W_CITY',\n",
|
| 1214 |
+
" 'AMT_REQ_CREDIT_BUREAU_WEEK',\n",
|
| 1215 |
+
" 'AMT_REQ_CREDIT_BUREAU_DAY',\n",
|
| 1216 |
" 'CNT_CHILDREN',\n",
|
|
|
|
|
|
|
|
|
|
| 1217 |
" 'REGION_POPULATION_RELATIVE',\n",
|
| 1218 |
+
" 'AMT_REQ_CREDIT_BUREAU_QRT',\n",
|
| 1219 |
+
" 'AMT_REQ_CREDIT_BUREAU_HOUR',\n",
|
|
|
|
| 1220 |
" 'DAYS_REGISTRATION',\n",
|
| 1221 |
+
" 'AMT_INCOME_TOTAL',\n",
|
| 1222 |
+
" 'OBS_30_CNT_SOCIAL_CIRCLE',\n",
|
| 1223 |
+
" 'DAYS_BIRTH',\n",
|
| 1224 |
" 'DEF_60_CNT_SOCIAL_CIRCLE',\n",
|
| 1225 |
" 'AMT_REQ_CREDIT_BUREAU_YEAR',\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1226 |
" 'DAYS_LAST_PHONE_CHANGE',\n",
|
| 1227 |
+
" 'DEF_30_CNT_SOCIAL_CIRCLE',\n",
|
| 1228 |
+
" 'REG_REGION_NOT_LIVE_REGION',\n",
|
| 1229 |
" 'AMT_REQ_CREDIT_BUREAU_MON',\n",
|
| 1230 |
" 'LIVE_CITY_NOT_WORK_CITY',\n",
|
| 1231 |
+
" 'EXT_SOURCE_2',\n",
|
| 1232 |
+
" 'HOUR_APPR_PROCESS_START']"
|
| 1233 |
]
|
| 1234 |
},
|
| 1235 |
+
"execution_count": 27,
|
| 1236 |
"metadata": {},
|
| 1237 |
"output_type": "execute_result"
|
| 1238 |
}
|
|
|
|
| 1245 |
},
|
| 1246 |
{
|
| 1247 |
"cell_type": "code",
|
| 1248 |
+
"execution_count": 28,
|
| 1249 |
"metadata": {
|
| 1250 |
"execution": {
|
| 1251 |
"iopub.execute_input": "2023-05-20T13:31:58.164735Z",
|
|
|
|
| 1277 |
},
|
| 1278 |
{
|
| 1279 |
"cell_type": "code",
|
| 1280 |
+
"execution_count": 29,
|
| 1281 |
"metadata": {
|
| 1282 |
"execution": {
|
| 1283 |
"iopub.execute_input": "2023-05-20T13:31:58.183609Z",
|
|
|
|
| 1296 |
},
|
| 1297 |
{
|
| 1298 |
"cell_type": "code",
|
| 1299 |
+
"execution_count": 30,
|
| 1300 |
"metadata": {
|
| 1301 |
"execution": {
|
| 1302 |
"iopub.execute_input": "2023-05-20T13:31:59.697622Z",
|
|
|
|
| 1323 |
},
|
| 1324 |
{
|
| 1325 |
"cell_type": "code",
|
| 1326 |
+
"execution_count": 31,
|
| 1327 |
"metadata": {
|
| 1328 |
"execution": {
|
| 1329 |
"iopub.execute_input": "2023-05-20T13:32:00.313206Z",
|
|
|
|
| 1365 |
},
|
| 1366 |
{
|
| 1367 |
"cell_type": "code",
|
| 1368 |
+
"execution_count": 32,
|
| 1369 |
"metadata": {
|
| 1370 |
"execution": {
|
| 1371 |
"iopub.execute_input": "2023-05-20T13:32:01.830751Z",
|
|
|
|
| 1383 |
},
|
| 1384 |
{
|
| 1385 |
"cell_type": "code",
|
| 1386 |
+
"execution_count": 33,
|
| 1387 |
"metadata": {
|
| 1388 |
"execution": {
|
| 1389 |
"iopub.execute_input": "2023-05-20T13:32:09.294612Z",
|
|
|
|
| 1400 |
},
|
| 1401 |
{
|
| 1402 |
"cell_type": "code",
|
| 1403 |
+
"execution_count": null,
|
| 1404 |
"metadata": {
|
| 1405 |
"execution": {
|
| 1406 |
"iopub.execute_input": "2023-05-20T13:32:09.651347Z",
|
|
|
|
| 1418 |
},
|
| 1419 |
{
|
| 1420 |
"cell_type": "code",
|
| 1421 |
+
"execution_count": null,
|
| 1422 |
"metadata": {
|
| 1423 |
"execution": {
|
| 1424 |
"iopub.execute_input": "2023-05-20T13:32:09.718228Z",
|
|
|
|
| 1760 |
},
|
| 1761 |
{
|
| 1762 |
"cell_type": "code",
|
| 1763 |
+
"execution_count": 34,
|
| 1764 |
"metadata": {
|
| 1765 |
"execution": {
|
| 1766 |
"iopub.execute_input": "2023-05-20T14:18:30.867184Z",
|
|
|
|
| 1969 |
},
|
| 1970 |
{
|
| 1971 |
"cell_type": "code",
|
| 1972 |
+
"execution_count": 35,
|
| 1973 |
"metadata": {
|
| 1974 |
"execution": {
|
| 1975 |
"iopub.execute_input": "2023-05-20T14:49:11.499710Z",
|
|
|
|
| 2002 |
},
|
| 2003 |
{
|
| 2004 |
"cell_type": "code",
|
| 2005 |
+
"execution_count": 36,
|
| 2006 |
"metadata": {
|
| 2007 |
"execution": {
|
| 2008 |
"iopub.execute_input": "2023-05-20T14:47:45.251432Z",
|
|
|
|
| 2039 |
},
|
| 2040 |
{
|
| 2041 |
"cell_type": "code",
|
| 2042 |
+
"execution_count": 38,
|
| 2043 |
"metadata": {
|
| 2044 |
"execution": {
|
| 2045 |
"iopub.execute_input": "2023-05-20T14:49:14.993876Z",
|
|
|
|
| 2049 |
"shell.execute_reply.started": "2023-05-20T14:49:14.993845Z"
|
| 2050 |
}
|
| 2051 |
},
|
| 2052 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2053 |
"source": [
|
| 2054 |
"# Создание класса для управления эволюцией\n",
|
| 2055 |
"creator.create(\"FitnessMax\", base.Fitness, weights=(1.0,))\n",
|
|
|
|
| 2072 |
},
|
| 2073 |
{
|
| 2074 |
"cell_type": "code",
|
| 2075 |
+
"execution_count": 37,
|
| 2076 |
"metadata": {
|
| 2077 |
"execution": {
|
| 2078 |
"iopub.execute_input": "2023-05-20T14:58:23.426108Z",
|
|
|
|
| 2109 |
},
|
| 2110 |
{
|
| 2111 |
"cell_type": "code",
|
| 2112 |
+
"execution_count": 39,
|
| 2113 |
"metadata": {
|
| 2114 |
"execution": {
|
| 2115 |
"iopub.execute_input": "2023-05-20T14:58:26.121638Z",
|
|
|
|
| 2160 |
" # Замена старого поколения потомками\n",
|
| 2161 |
" population[:] = offspring"
|
| 2162 |
]
|
| 2163 |
+
},
|
| 2164 |
+
{
|
| 2165 |
+
"cell_type": "code",
|
| 2166 |
+
"execution_count": null,
|
| 2167 |
+
"metadata": {},
|
| 2168 |
+
"outputs": [],
|
| 2169 |
+
"source": []
|
| 2170 |
}
|
| 2171 |
],
|
| 2172 |
"metadata": {
|
benchmark/numpy_8/numpy_8_reproduced.ipynb
CHANGED
|
@@ -167,7 +167,7 @@
|
|
| 167 |
},
|
| 168 |
{
|
| 169 |
"cell_type": "code",
|
| 170 |
-
"execution_count":
|
| 171 |
"metadata": {
|
| 172 |
"execution": {
|
| 173 |
"iopub.execute_input": "2023-05-20T13:31:42.474671Z",
|
|
@@ -177,25 +177,14 @@
|
|
| 177 |
"shell.execute_reply.started": "2023-05-20T13:31:42.474643Z"
|
| 178 |
}
|
| 179 |
},
|
| 180 |
-
"outputs": [
|
| 181 |
-
{
|
| 182 |
-
"data": {
|
| 183 |
-
"text/plain": [
|
| 184 |
-
"(307511, 73)"
|
| 185 |
-
]
|
| 186 |
-
},
|
| 187 |
-
"execution_count": 6,
|
| 188 |
-
"metadata": {},
|
| 189 |
-
"output_type": "execute_result"
|
| 190 |
-
}
|
| 191 |
-
],
|
| 192 |
"source": [
|
| 193 |
"app_train.shape"
|
| 194 |
]
|
| 195 |
},
|
| 196 |
{
|
| 197 |
"cell_type": "code",
|
| 198 |
-
"execution_count":
|
| 199 |
"metadata": {
|
| 200 |
"execution": {
|
| 201 |
"iopub.execute_input": "2023-05-20T13:31:42.482990Z",
|
|
@@ -205,18 +194,7 @@
|
|
| 205 |
"shell.execute_reply.started": "2023-05-20T13:31:42.482965Z"
|
| 206 |
}
|
| 207 |
},
|
| 208 |
-
"outputs": [
|
| 209 |
-
{
|
| 210 |
-
"data": {
|
| 211 |
-
"text/plain": [
|
| 212 |
-
"(48744, 72)"
|
| 213 |
-
]
|
| 214 |
-
},
|
| 215 |
-
"execution_count": 7,
|
| 216 |
-
"metadata": {},
|
| 217 |
-
"output_type": "execute_result"
|
| 218 |
-
}
|
| 219 |
-
],
|
| 220 |
"source": [
|
| 221 |
"app_test.shape"
|
| 222 |
]
|
|
@@ -259,7 +237,7 @@
|
|
| 259 |
},
|
| 260 |
{
|
| 261 |
"cell_type": "code",
|
| 262 |
-
"execution_count":
|
| 263 |
"metadata": {
|
| 264 |
"execution": {
|
| 265 |
"iopub.execute_input": "2023-05-20T13:31:43.880911Z",
|
|
@@ -284,7 +262,7 @@
|
|
| 284 |
},
|
| 285 |
{
|
| 286 |
"cell_type": "code",
|
| 287 |
-
"execution_count":
|
| 288 |
"metadata": {
|
| 289 |
"execution": {
|
| 290 |
"iopub.execute_input": "2023-05-20T13:31:48.487653Z",
|
|
@@ -303,7 +281,7 @@
|
|
| 303 |
},
|
| 304 |
{
|
| 305 |
"cell_type": "code",
|
| 306 |
-
"execution_count":
|
| 307 |
"metadata": {
|
| 308 |
"execution": {
|
| 309 |
"iopub.execute_input": "2023-05-20T13:31:48.901595Z",
|
|
@@ -321,7 +299,7 @@
|
|
| 321 |
},
|
| 322 |
{
|
| 323 |
"cell_type": "code",
|
| 324 |
-
"execution_count":
|
| 325 |
"metadata": {
|
| 326 |
"execution": {
|
| 327 |
"iopub.execute_input": "2023-05-20T13:31:48.911188Z",
|
|
@@ -343,7 +321,7 @@
|
|
| 343 |
},
|
| 344 |
{
|
| 345 |
"cell_type": "code",
|
| 346 |
-
"execution_count":
|
| 347 |
"metadata": {
|
| 348 |
"execution": {
|
| 349 |
"iopub.execute_input": "2023-05-20T13:31:49.050761Z",
|
|
@@ -360,7 +338,7 @@
|
|
| 360 |
},
|
| 361 |
{
|
| 362 |
"cell_type": "code",
|
| 363 |
-
"execution_count":
|
| 364 |
"metadata": {
|
| 365 |
"execution": {
|
| 366 |
"iopub.execute_input": "2023-05-20T13:31:49.070174Z",
|
|
@@ -396,7 +374,7 @@
|
|
| 396 |
},
|
| 397 |
{
|
| 398 |
"cell_type": "code",
|
| 399 |
-
"execution_count":
|
| 400 |
"metadata": {
|
| 401 |
"execution": {
|
| 402 |
"iopub.execute_input": "2023-05-20T13:31:49.172092Z",
|
|
@@ -414,7 +392,7 @@
|
|
| 414 |
},
|
| 415 |
{
|
| 416 |
"cell_type": "code",
|
| 417 |
-
"execution_count":
|
| 418 |
"metadata": {
|
| 419 |
"execution": {
|
| 420 |
"iopub.execute_input": "2023-05-20T13:31:49.181041Z",
|
|
@@ -432,7 +410,7 @@
|
|
| 432 |
},
|
| 433 |
{
|
| 434 |
"cell_type": "code",
|
| 435 |
-
"execution_count":
|
| 436 |
"metadata": {
|
| 437 |
"execution": {
|
| 438 |
"iopub.execute_input": "2023-05-20T13:31:49.239903Z",
|
|
@@ -492,7 +470,7 @@
|
|
| 492 |
},
|
| 493 |
{
|
| 494 |
"cell_type": "code",
|
| 495 |
-
"execution_count":
|
| 496 |
"metadata": {
|
| 497 |
"execution": {
|
| 498 |
"iopub.execute_input": "2023-05-20T13:31:49.399844Z",
|
|
@@ -536,7 +514,7 @@
|
|
| 536 |
},
|
| 537 |
{
|
| 538 |
"cell_type": "code",
|
| 539 |
-
"execution_count":
|
| 540 |
"metadata": {
|
| 541 |
"execution": {
|
| 542 |
"iopub.execute_input": "2023-05-20T13:31:49.615247Z",
|
|
@@ -673,7 +651,7 @@
|
|
| 673 |
"freq 53900 67991 "
|
| 674 |
]
|
| 675 |
},
|
| 676 |
-
"execution_count":
|
| 677 |
"metadata": {},
|
| 678 |
"output_type": "execute_result"
|
| 679 |
}
|
|
@@ -720,7 +698,7 @@
|
|
| 720 |
},
|
| 721 |
{
|
| 722 |
"cell_type": "code",
|
| 723 |
-
"execution_count":
|
| 724 |
"metadata": {
|
| 725 |
"execution": {
|
| 726 |
"iopub.execute_input": "2023-05-20T13:31:50.800859Z",
|
|
@@ -736,52 +714,52 @@
|
|
| 736 |
"name": "stderr",
|
| 737 |
"output_type": "stream",
|
| 738 |
"text": [
|
| 739 |
-
"<ipython-input-
|
| 740 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 741 |
"\n",
|
| 742 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 743 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Secondary / secondary special'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Secondary / secondary special'].fillna('Laborers')\n",
|
| 744 |
-
"<ipython-input-
|
| 745 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 746 |
"\n",
|
| 747 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 748 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Higher education'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Higher education'].fillna('Core staff')\n",
|
| 749 |
-
"<ipython-input-
|
| 750 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 751 |
"\n",
|
| 752 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 753 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Incomplete higher'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Incomplete higher'].fillna('Laborers')\n",
|
| 754 |
-
"<ipython-input-
|
| 755 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 756 |
"\n",
|
| 757 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 758 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Lower secondary'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Lower secondary'].fillna('Laborers')\n",
|
| 759 |
-
"<ipython-input-
|
| 760 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 761 |
"\n",
|
| 762 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 763 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Academic degree'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Academic degree'].fillna('Managers')\n",
|
| 764 |
-
"<ipython-input-
|
| 765 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 766 |
"\n",
|
| 767 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 768 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Secondary / secondary special'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Secondary / secondary special'].fillna('Laborers')\n",
|
| 769 |
-
"<ipython-input-
|
| 770 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 771 |
"\n",
|
| 772 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 773 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Higher education'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Higher education'].fillna('Core staff')\n",
|
| 774 |
-
"<ipython-input-
|
| 775 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 776 |
"\n",
|
| 777 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 778 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Incomplete higher'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Incomplete higher'].fillna('Laborers')\n",
|
| 779 |
-
"<ipython-input-
|
| 780 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 781 |
"\n",
|
| 782 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 783 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Lower secondary'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Lower secondary'].fillna('Laborers')\n",
|
| 784 |
-
"<ipython-input-
|
| 785 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 786 |
"\n",
|
| 787 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|
@@ -822,7 +800,7 @@
|
|
| 822 |
},
|
| 823 |
{
|
| 824 |
"cell_type": "code",
|
| 825 |
-
"execution_count":
|
| 826 |
"metadata": {
|
| 827 |
"execution": {
|
| 828 |
"iopub.execute_input": "2023-05-20T13:31:51.675082Z",
|
|
@@ -838,42 +816,42 @@
|
|
| 838 |
"name": "stderr",
|
| 839 |
"output_type": "stream",
|
| 840 |
"text": [
|
| 841 |
-
"<ipython-input-
|
| 842 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 843 |
"\n",
|
| 844 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 845 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Accountants') |\n",
|
| 846 |
-
"<ipython-input-
|
| 847 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 848 |
"\n",
|
| 849 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 850 |
" app_test['ORGANIZATION_TYPE'][(app_test['OCCUPATION_TYPE'] == 'Accountants') |\n",
|
| 851 |
-
"<ipython-input-
|
| 852 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 853 |
"\n",
|
| 854 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 855 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Medicine staff')|\n",
|
| 856 |
-
"<ipython-input-
|
| 857 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 858 |
"\n",
|
| 859 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 860 |
" app_test['ORGANIZATION_TYPE'][(app_test['OCCUPATION_TYPE'] == 'Medicine staff')|\n",
|
| 861 |
-
"<ipython-input-
|
| 862 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 863 |
"\n",
|
| 864 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 865 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Private service staff')|\n",
|
| 866 |
-
"<ipython-input-
|
| 867 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 868 |
"\n",
|
| 869 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 870 |
" app_test['ORGANIZATION_TYPE'][(app_test['OCCUPATION_TYPE'] == 'Private service staff')|\n",
|
| 871 |
-
"<ipython-input-
|
| 872 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 873 |
"\n",
|
| 874 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 875 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Security staff')] = app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Security staff')].fillna('Security')\n",
|
| 876 |
-
"<ipython-input-
|
| 877 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 878 |
"\n",
|
| 879 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|
@@ -950,7 +928,7 @@
|
|
| 950 |
},
|
| 951 |
{
|
| 952 |
"cell_type": "code",
|
| 953 |
-
"execution_count":
|
| 954 |
"metadata": {
|
| 955 |
"execution": {
|
| 956 |
"iopub.execute_input": "2023-05-20T13:31:54.947839Z",
|
|
@@ -967,7 +945,7 @@
|
|
| 967 |
},
|
| 968 |
{
|
| 969 |
"cell_type": "code",
|
| 970 |
-
"execution_count":
|
| 971 |
"metadata": {
|
| 972 |
"execution": {
|
| 973 |
"iopub.execute_input": "2023-05-20T13:31:54.976259Z",
|
|
@@ -982,7 +960,7 @@
|
|
| 982 |
"name": "stderr",
|
| 983 |
"output_type": "stream",
|
| 984 |
"text": [
|
| 985 |
-
"<ipython-input-
|
| 986 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
| 987 |
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
| 988 |
"\n",
|
|
@@ -998,7 +976,7 @@
|
|
| 998 |
},
|
| 999 |
{
|
| 1000 |
"cell_type": "code",
|
| 1001 |
-
"execution_count":
|
| 1002 |
"metadata": {
|
| 1003 |
"execution": {
|
| 1004 |
"iopub.execute_input": "2023-05-20T13:31:55.085687Z",
|
|
@@ -1013,7 +991,7 @@
|
|
| 1013 |
"name": "stderr",
|
| 1014 |
"output_type": "stream",
|
| 1015 |
"text": [
|
| 1016 |
-
"<ipython-input-
|
| 1017 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
| 1018 |
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
| 1019 |
"\n",
|
|
@@ -1029,7 +1007,7 @@
|
|
| 1029 |
},
|
| 1030 |
{
|
| 1031 |
"cell_type": "code",
|
| 1032 |
-
"execution_count":
|
| 1033 |
"metadata": {
|
| 1034 |
"execution": {
|
| 1035 |
"iopub.execute_input": "2023-05-20T13:31:55.192859Z",
|
|
@@ -1047,7 +1025,7 @@
|
|
| 1047 |
},
|
| 1048 |
{
|
| 1049 |
"cell_type": "code",
|
| 1050 |
-
"execution_count":
|
| 1051 |
"metadata": {
|
| 1052 |
"execution": {
|
| 1053 |
"iopub.execute_input": "2023-05-20T13:31:55.235212Z",
|
|
@@ -1085,7 +1063,7 @@
|
|
| 1085 |
},
|
| 1086 |
{
|
| 1087 |
"cell_type": "code",
|
| 1088 |
-
"execution_count":
|
| 1089 |
"metadata": {
|
| 1090 |
"execution": {
|
| 1091 |
"iopub.execute_input": "2023-05-20T13:31:55.502923Z",
|
|
@@ -1158,7 +1136,7 @@
|
|
| 1158 |
},
|
| 1159 |
{
|
| 1160 |
"cell_type": "code",
|
| 1161 |
-
"execution_count":
|
| 1162 |
"metadata": {
|
| 1163 |
"execution": {
|
| 1164 |
"iopub.execute_input": "2023-05-20T13:31:57.927525Z",
|
|
@@ -1192,7 +1170,7 @@
|
|
| 1192 |
},
|
| 1193 |
{
|
| 1194 |
"cell_type": "code",
|
| 1195 |
-
"execution_count":
|
| 1196 |
"metadata": {
|
| 1197 |
"execution": {
|
| 1198 |
"iopub.execute_input": "2023-05-20T13:31:58.048903Z",
|
|
@@ -1210,7 +1188,7 @@
|
|
| 1210 |
},
|
| 1211 |
{
|
| 1212 |
"cell_type": "code",
|
| 1213 |
-
"execution_count":
|
| 1214 |
"metadata": {
|
| 1215 |
"execution": {
|
| 1216 |
"iopub.execute_input": "2023-05-20T13:31:58.153738Z",
|
|
@@ -1224,37 +1202,37 @@
|
|
| 1224 |
{
|
| 1225 |
"data": {
|
| 1226 |
"text/plain": [
|
| 1227 |
-
"['
|
| 1228 |
-
" 'AMT_ANNUITY',\n",
|
| 1229 |
-
" 'AMT_GOODS_PRICE',\n",
|
| 1230 |
-
" 'REG_REGION_NOT_LIVE_REGION',\n",
|
| 1231 |
-
" 'CNT_CHILDREN',\n",
|
| 1232 |
-
" 'AMT_REQ_CREDIT_BUREAU_HOUR',\n",
|
| 1233 |
-
" 'DAYS_ID_PUBLISH',\n",
|
| 1234 |
" 'DAYS_BIRTH',\n",
|
| 1235 |
-
" 'REGION_POPULATION_RELATIVE',\n",
|
| 1236 |
-
" 'REGION_RATING_CLIENT_W_CITY',\n",
|
| 1237 |
-
" 'EXT_SOURCE_2',\n",
|
| 1238 |
" 'AMT_INCOME_TOTAL',\n",
|
| 1239 |
-
" 'DAYS_REGISTRATION',\n",
|
| 1240 |
-
" 'DEF_60_CNT_SOCIAL_CIRCLE',\n",
|
| 1241 |
-
" 'AMT_REQ_CREDIT_BUREAU_YEAR',\n",
|
| 1242 |
-
" 'REG_CITY_NOT_LIVE_CITY',\n",
|
| 1243 |
-
" 'AMT_REQ_CREDIT_BUREAU_QRT',\n",
|
| 1244 |
-
" 'AMT_REQ_CREDIT_BUREAU_WEEK',\n",
|
| 1245 |
" 'HOUR_APPR_PROCESS_START',\n",
|
| 1246 |
-
" '
|
| 1247 |
" 'DEF_30_CNT_SOCIAL_CIRCLE',\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1248 |
" 'AMT_REQ_CREDIT_BUREAU_DAY',\n",
|
|
|
|
|
|
|
| 1249 |
" 'DAYS_LAST_PHONE_CHANGE',\n",
|
| 1250 |
-
" '
|
| 1251 |
-
" '
|
|
|
|
| 1252 |
" 'LIVE_CITY_NOT_WORK_CITY',\n",
|
| 1253 |
-
" '
|
| 1254 |
-
" '
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1255 |
]
|
| 1256 |
},
|
| 1257 |
-
"execution_count":
|
| 1258 |
"metadata": {},
|
| 1259 |
"output_type": "execute_result"
|
| 1260 |
}
|
|
@@ -1267,7 +1245,7 @@
|
|
| 1267 |
},
|
| 1268 |
{
|
| 1269 |
"cell_type": "code",
|
| 1270 |
-
"execution_count":
|
| 1271 |
"metadata": {
|
| 1272 |
"execution": {
|
| 1273 |
"iopub.execute_input": "2023-05-20T13:31:58.164735Z",
|
|
@@ -1299,7 +1277,7 @@
|
|
| 1299 |
},
|
| 1300 |
{
|
| 1301 |
"cell_type": "code",
|
| 1302 |
-
"execution_count":
|
| 1303 |
"metadata": {
|
| 1304 |
"execution": {
|
| 1305 |
"iopub.execute_input": "2023-05-20T13:31:58.183609Z",
|
|
@@ -1318,7 +1296,7 @@
|
|
| 1318 |
},
|
| 1319 |
{
|
| 1320 |
"cell_type": "code",
|
| 1321 |
-
"execution_count":
|
| 1322 |
"metadata": {
|
| 1323 |
"execution": {
|
| 1324 |
"iopub.execute_input": "2023-05-20T13:31:59.697622Z",
|
|
@@ -1345,7 +1323,7 @@
|
|
| 1345 |
},
|
| 1346 |
{
|
| 1347 |
"cell_type": "code",
|
| 1348 |
-
"execution_count":
|
| 1349 |
"metadata": {
|
| 1350 |
"execution": {
|
| 1351 |
"iopub.execute_input": "2023-05-20T13:32:00.313206Z",
|
|
@@ -1387,7 +1365,7 @@
|
|
| 1387 |
},
|
| 1388 |
{
|
| 1389 |
"cell_type": "code",
|
| 1390 |
-
"execution_count":
|
| 1391 |
"metadata": {
|
| 1392 |
"execution": {
|
| 1393 |
"iopub.execute_input": "2023-05-20T13:32:01.830751Z",
|
|
@@ -1405,7 +1383,7 @@
|
|
| 1405 |
},
|
| 1406 |
{
|
| 1407 |
"cell_type": "code",
|
| 1408 |
-
"execution_count":
|
| 1409 |
"metadata": {
|
| 1410 |
"execution": {
|
| 1411 |
"iopub.execute_input": "2023-05-20T13:32:09.294612Z",
|
|
@@ -1422,7 +1400,7 @@
|
|
| 1422 |
},
|
| 1423 |
{
|
| 1424 |
"cell_type": "code",
|
| 1425 |
-
"execution_count":
|
| 1426 |
"metadata": {
|
| 1427 |
"execution": {
|
| 1428 |
"iopub.execute_input": "2023-05-20T13:32:09.651347Z",
|
|
@@ -1440,7 +1418,7 @@
|
|
| 1440 |
},
|
| 1441 |
{
|
| 1442 |
"cell_type": "code",
|
| 1443 |
-
"execution_count":
|
| 1444 |
"metadata": {
|
| 1445 |
"execution": {
|
| 1446 |
"iopub.execute_input": "2023-05-20T13:32:09.718228Z",
|
|
@@ -1782,7 +1760,7 @@
|
|
| 1782 |
},
|
| 1783 |
{
|
| 1784 |
"cell_type": "code",
|
| 1785 |
-
"execution_count":
|
| 1786 |
"metadata": {
|
| 1787 |
"execution": {
|
| 1788 |
"iopub.execute_input": "2023-05-20T14:18:30.867184Z",
|
|
@@ -1792,7 +1770,15 @@
|
|
| 1792 |
"shell.execute_reply.started": "2023-05-20T14:18:30.867141Z"
|
| 1793 |
}
|
| 1794 |
},
|
| 1795 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1796 |
"source": [
|
| 1797 |
"import pandas as pd\n",
|
| 1798 |
"from sklearn.model_selection import train_test_split\n",
|
|
@@ -1983,7 +1969,7 @@
|
|
| 1983 |
},
|
| 1984 |
{
|
| 1985 |
"cell_type": "code",
|
| 1986 |
-
"execution_count":
|
| 1987 |
"metadata": {
|
| 1988 |
"execution": {
|
| 1989 |
"iopub.execute_input": "2023-05-20T14:49:11.499710Z",
|
|
@@ -2016,7 +2002,7 @@
|
|
| 2016 |
},
|
| 2017 |
{
|
| 2018 |
"cell_type": "code",
|
| 2019 |
-
"execution_count":
|
| 2020 |
"metadata": {
|
| 2021 |
"execution": {
|
| 2022 |
"iopub.execute_input": "2023-05-20T14:47:45.251432Z",
|
|
@@ -2049,7 +2035,7 @@
|
|
| 2049 |
},
|
| 2050 |
{
|
| 2051 |
"cell_type": "code",
|
| 2052 |
-
"execution_count":
|
| 2053 |
"metadata": {
|
| 2054 |
"execution": {
|
| 2055 |
"iopub.execute_input": "2023-05-20T14:49:14.993876Z",
|
|
@@ -2082,7 +2068,7 @@
|
|
| 2082 |
},
|
| 2083 |
{
|
| 2084 |
"cell_type": "code",
|
| 2085 |
-
"execution_count":
|
| 2086 |
"metadata": {
|
| 2087 |
"execution": {
|
| 2088 |
"iopub.execute_input": "2023-05-20T14:58:23.426108Z",
|
|
@@ -2112,7 +2098,7 @@
|
|
| 2112 |
},
|
| 2113 |
{
|
| 2114 |
"cell_type": "code",
|
| 2115 |
-
"execution_count":
|
| 2116 |
"metadata": {
|
| 2117 |
"execution": {
|
| 2118 |
"iopub.execute_input": "2023-05-20T14:58:26.121638Z",
|
|
@@ -2125,16 +2111,16 @@
|
|
| 2125 |
"outputs": [
|
| 2126 |
{
|
| 2127 |
"ename": "TypeError",
|
| 2128 |
-
"evalue": "<lambda>() takes 2 positional arguments but
|
| 2129 |
"output_type": "error",
|
| 2130 |
"traceback": [
|
| 2131 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 2132 |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
| 2133 |
-
"\u001b[0;32m<ipython-input-
|
| 2134 |
-
"\u001b[0;32m<ipython-input-
|
| 2135 |
-
"\u001b[0;32m<ipython-input-
|
| 2136 |
-
"\u001b[0;32m<ipython-input-
|
| 2137 |
-
"\u001b[0;31mTypeError\u001b[0m: <lambda>() takes 2 positional arguments but
|
| 2138 |
]
|
| 2139 |
}
|
| 2140 |
],
|
|
|
|
| 167 |
},
|
| 168 |
{
|
| 169 |
"cell_type": "code",
|
| 170 |
+
"execution_count": null,
|
| 171 |
"metadata": {
|
| 172 |
"execution": {
|
| 173 |
"iopub.execute_input": "2023-05-20T13:31:42.474671Z",
|
|
|
|
| 177 |
"shell.execute_reply.started": "2023-05-20T13:31:42.474643Z"
|
| 178 |
}
|
| 179 |
},
|
| 180 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
"source": [
|
| 182 |
"app_train.shape"
|
| 183 |
]
|
| 184 |
},
|
| 185 |
{
|
| 186 |
"cell_type": "code",
|
| 187 |
+
"execution_count": null,
|
| 188 |
"metadata": {
|
| 189 |
"execution": {
|
| 190 |
"iopub.execute_input": "2023-05-20T13:31:42.482990Z",
|
|
|
|
| 194 |
"shell.execute_reply.started": "2023-05-20T13:31:42.482965Z"
|
| 195 |
}
|
| 196 |
},
|
| 197 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
"source": [
|
| 199 |
"app_test.shape"
|
| 200 |
]
|
|
|
|
| 237 |
},
|
| 238 |
{
|
| 239 |
"cell_type": "code",
|
| 240 |
+
"execution_count": 6,
|
| 241 |
"metadata": {
|
| 242 |
"execution": {
|
| 243 |
"iopub.execute_input": "2023-05-20T13:31:43.880911Z",
|
|
|
|
| 262 |
},
|
| 263 |
{
|
| 264 |
"cell_type": "code",
|
| 265 |
+
"execution_count": 7,
|
| 266 |
"metadata": {
|
| 267 |
"execution": {
|
| 268 |
"iopub.execute_input": "2023-05-20T13:31:48.487653Z",
|
|
|
|
| 281 |
},
|
| 282 |
{
|
| 283 |
"cell_type": "code",
|
| 284 |
+
"execution_count": 8,
|
| 285 |
"metadata": {
|
| 286 |
"execution": {
|
| 287 |
"iopub.execute_input": "2023-05-20T13:31:48.901595Z",
|
|
|
|
| 299 |
},
|
| 300 |
{
|
| 301 |
"cell_type": "code",
|
| 302 |
+
"execution_count": 9,
|
| 303 |
"metadata": {
|
| 304 |
"execution": {
|
| 305 |
"iopub.execute_input": "2023-05-20T13:31:48.911188Z",
|
|
|
|
| 321 |
},
|
| 322 |
{
|
| 323 |
"cell_type": "code",
|
| 324 |
+
"execution_count": 10,
|
| 325 |
"metadata": {
|
| 326 |
"execution": {
|
| 327 |
"iopub.execute_input": "2023-05-20T13:31:49.050761Z",
|
|
|
|
| 338 |
},
|
| 339 |
{
|
| 340 |
"cell_type": "code",
|
| 341 |
+
"execution_count": 11,
|
| 342 |
"metadata": {
|
| 343 |
"execution": {
|
| 344 |
"iopub.execute_input": "2023-05-20T13:31:49.070174Z",
|
|
|
|
| 374 |
},
|
| 375 |
{
|
| 376 |
"cell_type": "code",
|
| 377 |
+
"execution_count": 12,
|
| 378 |
"metadata": {
|
| 379 |
"execution": {
|
| 380 |
"iopub.execute_input": "2023-05-20T13:31:49.172092Z",
|
|
|
|
| 392 |
},
|
| 393 |
{
|
| 394 |
"cell_type": "code",
|
| 395 |
+
"execution_count": 13,
|
| 396 |
"metadata": {
|
| 397 |
"execution": {
|
| 398 |
"iopub.execute_input": "2023-05-20T13:31:49.181041Z",
|
|
|
|
| 410 |
},
|
| 411 |
{
|
| 412 |
"cell_type": "code",
|
| 413 |
+
"execution_count": 14,
|
| 414 |
"metadata": {
|
| 415 |
"execution": {
|
| 416 |
"iopub.execute_input": "2023-05-20T13:31:49.239903Z",
|
|
|
|
| 470 |
},
|
| 471 |
{
|
| 472 |
"cell_type": "code",
|
| 473 |
+
"execution_count": 15,
|
| 474 |
"metadata": {
|
| 475 |
"execution": {
|
| 476 |
"iopub.execute_input": "2023-05-20T13:31:49.399844Z",
|
|
|
|
| 514 |
},
|
| 515 |
{
|
| 516 |
"cell_type": "code",
|
| 517 |
+
"execution_count": 16,
|
| 518 |
"metadata": {
|
| 519 |
"execution": {
|
| 520 |
"iopub.execute_input": "2023-05-20T13:31:49.615247Z",
|
|
|
|
| 651 |
"freq 53900 67991 "
|
| 652 |
]
|
| 653 |
},
|
| 654 |
+
"execution_count": 16,
|
| 655 |
"metadata": {},
|
| 656 |
"output_type": "execute_result"
|
| 657 |
}
|
|
|
|
| 698 |
},
|
| 699 |
{
|
| 700 |
"cell_type": "code",
|
| 701 |
+
"execution_count": 17,
|
| 702 |
"metadata": {
|
| 703 |
"execution": {
|
| 704 |
"iopub.execute_input": "2023-05-20T13:31:50.800859Z",
|
|
|
|
| 714 |
"name": "stderr",
|
| 715 |
"output_type": "stream",
|
| 716 |
"text": [
|
| 717 |
+
"<ipython-input-17-3e482c76d290>:1: SettingWithCopyWarning: \n",
|
| 718 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 719 |
"\n",
|
| 720 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 721 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Secondary / secondary special'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Secondary / secondary special'].fillna('Laborers')\n",
|
| 722 |
+
"<ipython-input-17-3e482c76d290>:2: SettingWithCopyWarning: \n",
|
| 723 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 724 |
"\n",
|
| 725 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 726 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Higher education'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Higher education'].fillna('Core staff')\n",
|
| 727 |
+
"<ipython-input-17-3e482c76d290>:3: SettingWithCopyWarning: \n",
|
| 728 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 729 |
"\n",
|
| 730 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 731 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Incomplete higher'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Incomplete higher'].fillna('Laborers')\n",
|
| 732 |
+
"<ipython-input-17-3e482c76d290>:4: SettingWithCopyWarning: \n",
|
| 733 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 734 |
"\n",
|
| 735 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 736 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Lower secondary'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Lower secondary'].fillna('Laborers')\n",
|
| 737 |
+
"<ipython-input-17-3e482c76d290>:5: SettingWithCopyWarning: \n",
|
| 738 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 739 |
"\n",
|
| 740 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 741 |
" app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Academic degree'] = app_train['OCCUPATION_TYPE'][app_train['NAME_EDUCATION_TYPE']=='Academic degree'].fillna('Managers')\n",
|
| 742 |
+
"<ipython-input-17-3e482c76d290>:7: SettingWithCopyWarning: \n",
|
| 743 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 744 |
"\n",
|
| 745 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 746 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Secondary / secondary special'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Secondary / secondary special'].fillna('Laborers')\n",
|
| 747 |
+
"<ipython-input-17-3e482c76d290>:8: SettingWithCopyWarning: \n",
|
| 748 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 749 |
"\n",
|
| 750 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 751 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Higher education'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Higher education'].fillna('Core staff')\n",
|
| 752 |
+
"<ipython-input-17-3e482c76d290>:9: SettingWithCopyWarning: \n",
|
| 753 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 754 |
"\n",
|
| 755 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 756 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Incomplete higher'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Incomplete higher'].fillna('Laborers')\n",
|
| 757 |
+
"<ipython-input-17-3e482c76d290>:10: SettingWithCopyWarning: \n",
|
| 758 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 759 |
"\n",
|
| 760 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 761 |
" app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Lower secondary'] = app_test['OCCUPATION_TYPE'][app_test['NAME_EDUCATION_TYPE']=='Lower secondary'].fillna('Laborers')\n",
|
| 762 |
+
"<ipython-input-17-3e482c76d290>:11: SettingWithCopyWarning: \n",
|
| 763 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 764 |
"\n",
|
| 765 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|
|
|
| 800 |
},
|
| 801 |
{
|
| 802 |
"cell_type": "code",
|
| 803 |
+
"execution_count": 18,
|
| 804 |
"metadata": {
|
| 805 |
"execution": {
|
| 806 |
"iopub.execute_input": "2023-05-20T13:31:51.675082Z",
|
|
|
|
| 816 |
"name": "stderr",
|
| 817 |
"output_type": "stream",
|
| 818 |
"text": [
|
| 819 |
+
"<ipython-input-18-eee1247958f3>:1: SettingWithCopyWarning: \n",
|
| 820 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 821 |
"\n",
|
| 822 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 823 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Accountants') |\n",
|
| 824 |
+
"<ipython-input-18-eee1247958f3>:23: SettingWithCopyWarning: \n",
|
| 825 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 826 |
"\n",
|
| 827 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 828 |
" app_test['ORGANIZATION_TYPE'][(app_test['OCCUPATION_TYPE'] == 'Accountants') |\n",
|
| 829 |
+
"<ipython-input-18-eee1247958f3>:46: SettingWithCopyWarning: \n",
|
| 830 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 831 |
"\n",
|
| 832 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 833 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Medicine staff')|\n",
|
| 834 |
+
"<ipython-input-18-eee1247958f3>:49: SettingWithCopyWarning: \n",
|
| 835 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 836 |
"\n",
|
| 837 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 838 |
" app_test['ORGANIZATION_TYPE'][(app_test['OCCUPATION_TYPE'] == 'Medicine staff')|\n",
|
| 839 |
+
"<ipython-input-18-eee1247958f3>:52: SettingWithCopyWarning: \n",
|
| 840 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 841 |
"\n",
|
| 842 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 843 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Private service staff')|\n",
|
| 844 |
+
"<ipython-input-18-eee1247958f3>:57: SettingWithCopyWarning: \n",
|
| 845 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 846 |
"\n",
|
| 847 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 848 |
" app_test['ORGANIZATION_TYPE'][(app_test['OCCUPATION_TYPE'] == 'Private service staff')|\n",
|
| 849 |
+
"<ipython-input-18-eee1247958f3>:63: SettingWithCopyWarning: \n",
|
| 850 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 851 |
"\n",
|
| 852 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 853 |
" app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Security staff')] = app_train['ORGANIZATION_TYPE'][(app_train['OCCUPATION_TYPE'] == 'Security staff')].fillna('Security')\n",
|
| 854 |
+
"<ipython-input-18-eee1247958f3>:64: SettingWithCopyWarning: \n",
|
| 855 |
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 856 |
"\n",
|
| 857 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
|
|
|
| 928 |
},
|
| 929 |
{
|
| 930 |
"cell_type": "code",
|
| 931 |
+
"execution_count": 19,
|
| 932 |
"metadata": {
|
| 933 |
"execution": {
|
| 934 |
"iopub.execute_input": "2023-05-20T13:31:54.947839Z",
|
|
|
|
| 945 |
},
|
| 946 |
{
|
| 947 |
"cell_type": "code",
|
| 948 |
+
"execution_count": 20,
|
| 949 |
"metadata": {
|
| 950 |
"execution": {
|
| 951 |
"iopub.execute_input": "2023-05-20T13:31:54.976259Z",
|
|
|
|
| 960 |
"name": "stderr",
|
| 961 |
"output_type": "stream",
|
| 962 |
"text": [
|
| 963 |
+
"<ipython-input-20-0a2c7bd4f24d>:2: SettingWithCopyWarning: \n",
|
| 964 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
| 965 |
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
| 966 |
"\n",
|
|
|
|
| 976 |
},
|
| 977 |
{
|
| 978 |
"cell_type": "code",
|
| 979 |
+
"execution_count": 21,
|
| 980 |
"metadata": {
|
| 981 |
"execution": {
|
| 982 |
"iopub.execute_input": "2023-05-20T13:31:55.085687Z",
|
|
|
|
| 991 |
"name": "stderr",
|
| 992 |
"output_type": "stream",
|
| 993 |
"text": [
|
| 994 |
+
"<ipython-input-21-012c43242dab>:2: SettingWithCopyWarning: \n",
|
| 995 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
| 996 |
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
| 997 |
"\n",
|
|
|
|
| 1007 |
},
|
| 1008 |
{
|
| 1009 |
"cell_type": "code",
|
| 1010 |
+
"execution_count": 22,
|
| 1011 |
"metadata": {
|
| 1012 |
"execution": {
|
| 1013 |
"iopub.execute_input": "2023-05-20T13:31:55.192859Z",
|
|
|
|
| 1025 |
},
|
| 1026 |
{
|
| 1027 |
"cell_type": "code",
|
| 1028 |
+
"execution_count": 23,
|
| 1029 |
"metadata": {
|
| 1030 |
"execution": {
|
| 1031 |
"iopub.execute_input": "2023-05-20T13:31:55.235212Z",
|
|
|
|
| 1063 |
},
|
| 1064 |
{
|
| 1065 |
"cell_type": "code",
|
| 1066 |
+
"execution_count": 24,
|
| 1067 |
"metadata": {
|
| 1068 |
"execution": {
|
| 1069 |
"iopub.execute_input": "2023-05-20T13:31:55.502923Z",
|
|
|
|
| 1136 |
},
|
| 1137 |
{
|
| 1138 |
"cell_type": "code",
|
| 1139 |
+
"execution_count": 25,
|
| 1140 |
"metadata": {
|
| 1141 |
"execution": {
|
| 1142 |
"iopub.execute_input": "2023-05-20T13:31:57.927525Z",
|
|
|
|
| 1170 |
},
|
| 1171 |
{
|
| 1172 |
"cell_type": "code",
|
| 1173 |
+
"execution_count": 26,
|
| 1174 |
"metadata": {
|
| 1175 |
"execution": {
|
| 1176 |
"iopub.execute_input": "2023-05-20T13:31:58.048903Z",
|
|
|
|
| 1188 |
},
|
| 1189 |
{
|
| 1190 |
"cell_type": "code",
|
| 1191 |
+
"execution_count": 27,
|
| 1192 |
"metadata": {
|
| 1193 |
"execution": {
|
| 1194 |
"iopub.execute_input": "2023-05-20T13:31:58.153738Z",
|
|
|
|
| 1202 |
{
|
| 1203 |
"data": {
|
| 1204 |
"text/plain": [
|
| 1205 |
+
"['CNT_CHILDREN',\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1206 |
" 'DAYS_BIRTH',\n",
|
|
|
|
|
|
|
|
|
|
| 1207 |
" 'AMT_INCOME_TOTAL',\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1208 |
" 'HOUR_APPR_PROCESS_START',\n",
|
| 1209 |
+
" 'AMT_GOODS_PRICE',\n",
|
| 1210 |
" 'DEF_30_CNT_SOCIAL_CIRCLE',\n",
|
| 1211 |
+
" 'AMT_REQ_CREDIT_BUREAU_QRT',\n",
|
| 1212 |
+
" 'AMT_REQ_CREDIT_BUREAU_YEAR',\n",
|
| 1213 |
+
" 'DEF_60_CNT_SOCIAL_CIRCLE',\n",
|
| 1214 |
+
" 'AMT_REQ_CREDIT_BUREAU_HOUR',\n",
|
| 1215 |
+
" 'AMT_REQ_CREDIT_BUREAU_MON',\n",
|
| 1216 |
+
" 'REGION_RATING_CLIENT_W_CITY',\n",
|
| 1217 |
+
" 'EXT_SOURCE_2',\n",
|
| 1218 |
" 'AMT_REQ_CREDIT_BUREAU_DAY',\n",
|
| 1219 |
+
" 'OBS_30_CNT_SOCIAL_CIRCLE',\n",
|
| 1220 |
+
" 'DAYS_ID_PUBLISH',\n",
|
| 1221 |
" 'DAYS_LAST_PHONE_CHANGE',\n",
|
| 1222 |
+
" 'REG_CITY_NOT_WORK_CITY',\n",
|
| 1223 |
+
" 'DAYS_EMPLOYED',\n",
|
| 1224 |
+
" 'REGION_RATING_CLIENT',\n",
|
| 1225 |
" 'LIVE_CITY_NOT_WORK_CITY',\n",
|
| 1226 |
+
" 'REG_REGION_NOT_LIVE_REGION',\n",
|
| 1227 |
+
" 'REGION_POPULATION_RELATIVE',\n",
|
| 1228 |
+
" 'DAYS_REGISTRATION',\n",
|
| 1229 |
+
" 'REG_CITY_NOT_LIVE_CITY',\n",
|
| 1230 |
+
" 'EXT_SOURCE_3',\n",
|
| 1231 |
+
" 'AMT_ANNUITY',\n",
|
| 1232 |
+
" 'AMT_REQ_CREDIT_BUREAU_WEEK']"
|
| 1233 |
]
|
| 1234 |
},
|
| 1235 |
+
"execution_count": 27,
|
| 1236 |
"metadata": {},
|
| 1237 |
"output_type": "execute_result"
|
| 1238 |
}
|
|
|
|
| 1245 |
},
|
| 1246 |
{
|
| 1247 |
"cell_type": "code",
|
| 1248 |
+
"execution_count": 28,
|
| 1249 |
"metadata": {
|
| 1250 |
"execution": {
|
| 1251 |
"iopub.execute_input": "2023-05-20T13:31:58.164735Z",
|
|
|
|
| 1277 |
},
|
| 1278 |
{
|
| 1279 |
"cell_type": "code",
|
| 1280 |
+
"execution_count": 29,
|
| 1281 |
"metadata": {
|
| 1282 |
"execution": {
|
| 1283 |
"iopub.execute_input": "2023-05-20T13:31:58.183609Z",
|
|
|
|
| 1296 |
},
|
| 1297 |
{
|
| 1298 |
"cell_type": "code",
|
| 1299 |
+
"execution_count": 30,
|
| 1300 |
"metadata": {
|
| 1301 |
"execution": {
|
| 1302 |
"iopub.execute_input": "2023-05-20T13:31:59.697622Z",
|
|
|
|
| 1323 |
},
|
| 1324 |
{
|
| 1325 |
"cell_type": "code",
|
| 1326 |
+
"execution_count": 31,
|
| 1327 |
"metadata": {
|
| 1328 |
"execution": {
|
| 1329 |
"iopub.execute_input": "2023-05-20T13:32:00.313206Z",
|
|
|
|
| 1365 |
},
|
| 1366 |
{
|
| 1367 |
"cell_type": "code",
|
| 1368 |
+
"execution_count": 32,
|
| 1369 |
"metadata": {
|
| 1370 |
"execution": {
|
| 1371 |
"iopub.execute_input": "2023-05-20T13:32:01.830751Z",
|
|
|
|
| 1383 |
},
|
| 1384 |
{
|
| 1385 |
"cell_type": "code",
|
| 1386 |
+
"execution_count": 33,
|
| 1387 |
"metadata": {
|
| 1388 |
"execution": {
|
| 1389 |
"iopub.execute_input": "2023-05-20T13:32:09.294612Z",
|
|
|
|
| 1400 |
},
|
| 1401 |
{
|
| 1402 |
"cell_type": "code",
|
| 1403 |
+
"execution_count": null,
|
| 1404 |
"metadata": {
|
| 1405 |
"execution": {
|
| 1406 |
"iopub.execute_input": "2023-05-20T13:32:09.651347Z",
|
|
|
|
| 1418 |
},
|
| 1419 |
{
|
| 1420 |
"cell_type": "code",
|
| 1421 |
+
"execution_count": null,
|
| 1422 |
"metadata": {
|
| 1423 |
"execution": {
|
| 1424 |
"iopub.execute_input": "2023-05-20T13:32:09.718228Z",
|
|
|
|
| 1760 |
},
|
| 1761 |
{
|
| 1762 |
"cell_type": "code",
|
| 1763 |
+
"execution_count": 34,
|
| 1764 |
"metadata": {
|
| 1765 |
"execution": {
|
| 1766 |
"iopub.execute_input": "2023-05-20T14:18:30.867184Z",
|
|
|
|
| 1770 |
"shell.execute_reply.started": "2023-05-20T14:18:30.867141Z"
|
| 1771 |
}
|
| 1772 |
},
|
| 1773 |
+
"outputs": [
|
| 1774 |
+
{
|
| 1775 |
+
"name": "stdout",
|
| 1776 |
+
"output_type": "stream",
|
| 1777 |
+
"text": [
|
| 1778 |
+
"Accuracy: 0.84\n"
|
| 1779 |
+
]
|
| 1780 |
+
}
|
| 1781 |
+
],
|
| 1782 |
"source": [
|
| 1783 |
"import pandas as pd\n",
|
| 1784 |
"from sklearn.model_selection import train_test_split\n",
|
|
|
|
| 1969 |
},
|
| 1970 |
{
|
| 1971 |
"cell_type": "code",
|
| 1972 |
+
"execution_count": 35,
|
| 1973 |
"metadata": {
|
| 1974 |
"execution": {
|
| 1975 |
"iopub.execute_input": "2023-05-20T14:49:11.499710Z",
|
|
|
|
| 2002 |
},
|
| 2003 |
{
|
| 2004 |
"cell_type": "code",
|
| 2005 |
+
"execution_count": 36,
|
| 2006 |
"metadata": {
|
| 2007 |
"execution": {
|
| 2008 |
"iopub.execute_input": "2023-05-20T14:47:45.251432Z",
|
|
|
|
| 2035 |
},
|
| 2036 |
{
|
| 2037 |
"cell_type": "code",
|
| 2038 |
+
"execution_count": 38,
|
| 2039 |
"metadata": {
|
| 2040 |
"execution": {
|
| 2041 |
"iopub.execute_input": "2023-05-20T14:49:14.993876Z",
|
|
|
|
| 2068 |
},
|
| 2069 |
{
|
| 2070 |
"cell_type": "code",
|
| 2071 |
+
"execution_count": 37,
|
| 2072 |
"metadata": {
|
| 2073 |
"execution": {
|
| 2074 |
"iopub.execute_input": "2023-05-20T14:58:23.426108Z",
|
|
|
|
| 2098 |
},
|
| 2099 |
{
|
| 2100 |
"cell_type": "code",
|
| 2101 |
+
"execution_count": 39,
|
| 2102 |
"metadata": {
|
| 2103 |
"execution": {
|
| 2104 |
"iopub.execute_input": "2023-05-20T14:58:26.121638Z",
|
|
|
|
| 2111 |
"outputs": [
|
| 2112 |
{
|
| 2113 |
"ename": "TypeError",
|
| 2114 |
+
"evalue": "<lambda>() takes 2 positional arguments but 72 were given",
|
| 2115 |
"output_type": "error",
|
| 2116 |
"traceback": [
|
| 2117 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 2118 |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
| 2119 |
+
"\u001b[0;32m<ipython-input-39-c2fff693920c>\u001b[0m in \u001b[0;36m<cell line: 8>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;31m# Оценка фитнеса\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mfitnesses\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mevaluate_fitness\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpopulation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mindividual\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfitness\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpopulation\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfitnesses\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0mindividual\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfitness\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfitness\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 2120 |
+
"\u001b[0;32m<ipython-input-37-c74419f37cb5>\u001b[0m in \u001b[0;36mevaluate_fitness\u001b[0;34m(individual)\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mevaluate_fitness\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindividual\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;31m# Вычислите значения признаков на основе individual\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0mX_train_gp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtransform_gp_structure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindividual\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX_train\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Вычисление новых признаков на обучающей выборке\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0mrf_model_gp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_train_gp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Обучение модели случайного леса с новыми признаками\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0mX_test_gp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtransform_gp_structure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindividual\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX_test\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Вычисление новых признаков на тестовой выборке\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 2121 |
+
"\u001b[0;32m<ipython-input-37-c74419f37cb5>\u001b[0m in \u001b[0;36mtransform_gp_structure\u001b[0;34m(individual, X)\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mtransform_gp_structure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindividual\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mexpr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindividual\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mexpr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mrow\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mrow\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;31m# Определение функции оценки фитнеса (ваша собственная функция)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 2122 |
+
"\u001b[0;32m<ipython-input-37-c74419f37cb5>\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mtransform_gp_structure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindividual\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mexpr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindividual\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mexpr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mrow\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mrow\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;31m# Определение функции оценки фитнеса (ваша собственная функция)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 2123 |
+
"\u001b[0;31mTypeError\u001b[0m: <lambda>() takes 2 positional arguments but 72 were given"
|
| 2124 |
]
|
| 2125 |
}
|
| 2126 |
],
|
benchmark/numpy_9/numpy_9_fixed.ipynb
CHANGED
|
@@ -734,7 +734,7 @@
|
|
| 734 |
},
|
| 735 |
{
|
| 736 |
"cell_type": "code",
|
| 737 |
-
"execution_count":
|
| 738 |
"metadata": {
|
| 739 |
"execution": {
|
| 740 |
"iopub.execute_input": "2023-07-29T17:57:32.925654Z",
|
|
@@ -784,7 +784,7 @@
|
|
| 784 |
"name": "stderr",
|
| 785 |
"output_type": "stream",
|
| 786 |
"text": [
|
| 787 |
-
"<ipython-input-
|
| 788 |
" regression_weight = torch.tensor(regression_weight, dtype=torch.float32, device=device)\n"
|
| 789 |
]
|
| 790 |
}
|
|
|
|
| 734 |
},
|
| 735 |
{
|
| 736 |
"cell_type": "code",
|
| 737 |
+
"execution_count": 1,
|
| 738 |
"metadata": {
|
| 739 |
"execution": {
|
| 740 |
"iopub.execute_input": "2023-07-29T17:57:32.925654Z",
|
|
|
|
| 784 |
"name": "stderr",
|
| 785 |
"output_type": "stream",
|
| 786 |
"text": [
|
| 787 |
+
"<ipython-input-1-b586dafd4291>:49: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 788 |
" regression_weight = torch.tensor(regression_weight, dtype=torch.float32, device=device)\n"
|
| 789 |
]
|
| 790 |
}
|
benchmark/numpy_9/numpy_9_reproduced.ipynb
CHANGED
|
@@ -734,7 +734,7 @@
|
|
| 734 |
},
|
| 735 |
{
|
| 736 |
"cell_type": "code",
|
| 737 |
-
"execution_count":
|
| 738 |
"metadata": {
|
| 739 |
"execution": {
|
| 740 |
"iopub.execute_input": "2023-07-29T17:57:32.925654Z",
|
|
@@ -752,8 +752,8 @@
|
|
| 752 |
"traceback": [
|
| 753 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 754 |
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
| 755 |
-
"\u001b[0;32m<ipython-input-
|
| 756 |
-
"\u001b[0;32m<ipython-input-
|
| 757 |
"\u001b[0;31mValueError\u001b[0m: zero-dimensional arrays cannot be concatenated"
|
| 758 |
]
|
| 759 |
}
|
|
|
|
| 734 |
},
|
| 735 |
{
|
| 736 |
"cell_type": "code",
|
| 737 |
+
"execution_count": 1,
|
| 738 |
"metadata": {
|
| 739 |
"execution": {
|
| 740 |
"iopub.execute_input": "2023-07-29T17:57:32.925654Z",
|
|
|
|
| 752 |
"traceback": [
|
| 753 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 754 |
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
| 755 |
+
"\u001b[0;32m<ipython-input-1-cb771ae86354>\u001b[0m in \u001b[0;36m<cell line: 20>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0;31m# Load initial regression loss weights from the directory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 20\u001b[0;31m \u001b[0mregression_weight\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_loss_weights_from_directory\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mregression_weights_directory\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 21\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;31m# Training loop for regression task\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 756 |
+
"\u001b[0;32m<ipython-input-1-cb771ae86354>\u001b[0m in \u001b[0;36mload_loss_weights_from_directory\u001b[0;34m(directory_path)\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mweight_files\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mfilename\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlistdir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdirectory_path\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mendswith\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\".npy\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mweights\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdirectory_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mweight_files\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcatenate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweights\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;31m# Function to save the updated weights to a directory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 757 |
"\u001b[0;31mValueError\u001b[0m: zero-dimensional arrays cannot be concatenated"
|
| 758 |
]
|
| 759 |
}
|