File size: 5,591 Bytes
b58a9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
license: mit
language:
- en
tags:
- conversations
- tagging
- embeddings
- bittensor
pretty_name: Bittensor Conversational Tagging and Embedding
size_categories:
- 10M<n<100M
---
[![Hugging Face Dataset](https://img.shields.io/badge/Dataset-on%20Hugging%20Face-blue)](https://huggingface.co/datasets/your-username/readyai-bittensor-conversational-tags)

## πŸ—‚οΈ ReadyAI - Bittensor Conversational Tagging and Embedding Dataset

ReadyAI is an open-source initiative focused on low-cost, resource-minimal pipelines for structuring raw data for AI applications.  
This dataset is part of the ReadyAI Conversational Genome Project, leveraging the Bittensor decentralized network.

AI runs on structured data β€” and this dataset bridges the gap between raw conversation transcripts and structured, vectorized semantic tags.

You can find more about our subnet on GitHub [here](https://github.com/afterpartyai/bittensor-conversation-genome-project).

---

## πŸ“‹ Dataset Overview

This dataset contains **annotated conversation transcripts** with:
- Human-readable semantic tags
- **Embedding vectors** contextualized to each conversation
- Participant metadata

It is ideal for:
- Conversational AI training
- Dialogue understanding research
- Retrieval-augmented generation (RAG)
- Semantic search
- Fine-tuning large language models (LLMs)

---

## πŸ“‚ Dataset Structure

The dataset consists of four main components:

### 1. **data/bittensor-conversational-tags-and-embeddings-part-*.parquet** β€” Tag Embeddings and Metadata

Each Parquet file contains rows with:


| Column | Type | Description |
|:-------|:-----|:------------|
| c_guid | int64 | Unique conversation group ID |
| tag_id | int64 | Unique identifier for the tag |
| tag | string | Semantic tag (e.g., "climate change") |
| vector | list of float32 | Embedding vector representing the tag's meaning **in the conversation's context** |


βœ… Files split into ~1GB chunks for efficient loading and streaming.

---

### 2. **tag_to_id.parquet** β€” Tag Mapping

Mapping between tag IDs and human-readable tags.

| Column | Type | Description |
|:-------|:-----|:------------|
| tag_id | int64 | Unique tag ID |
| tag | string | Semantic tag text |

βœ… Useful for reverse-mapping tags from models or outputs.

---

### 3. **conversations_to_tags.parquet** β€” Conversation-to-Tag Mappings

Links conversations to their associated semantic tags.

| Column | Type | Description |
|:-------|:-----|:------------|
| c_guid | int64 | Conversation group ID |
| tag_ids | list of int64 | List of tag IDs relevant to the conversation |

βœ… For supervised training, retrieval tasks, or semantic labeling.

---

### 4. **conversations.parquet** β€” Full Conversation Text and Participants

Contains the raw multi-turn dialogue and metadata.

| Column | Type | Description |
|:-------|:-----|:------------|
| c_guid | int64 | Conversation group ID |
| transcript | string | Full conversation text |
| participants | list of strings | List of speaker identifiers |

βœ… Useful for dialogue modeling, multi-speaker AI, or fine-tuning.

---

## πŸš€ How to Use

**Install dependencies**

```
pip install pandas pyarrow
```

**Load a single Parquet split**

``` 
import pandas as pd

df = pd.read_parquet("data/bittensor-conversational-tags-and-embeddings-part-0000.parquet")
print(df.head())
```

**Load all tag splits**

``` 
import pandas as pd
import glob

files = sorted(glob.glob("data/bittensor-conversational-tags-and-embeddings-part-*.parquet"))
df_tags = pd.concat((pd.read_parquet(f) for f in files), ignore_index=True)

print(f"Loaded {len(df_tags)} tag records.")
```

**Load tag dictionary**

```
tag_dict = pd.read_parquet("tag_to_id.parquet")
print(tag_dict.head())
```

**Load conversation to tags mapping**

``` 
df_mapping = pd.read_parquet("conversations_to_tags.parquet")
print(df_mapping.head())
```

**Load full conversations dialog and metadata**

``` 
df_conversations = pd.read_parquet("conversations.parquet")
print(df_conversations.head())
```

---

## πŸ”₯ Example: Reconstruct Tags for a Conversation

``` 
# Build tag lookup
tag_lookup = dict(zip(tag_dict['tag_id'], tag_dict['tag']))

# Pick a conversation
sample = df_mapping.iloc[0]
c_guid = sample['c_guid']
tag_ids = sample['tag_ids']

# Translate tag IDs to human-readable tags
tags = [tag_lookup.get(tid, "Unknown") for tid in tag_ids]

print(f"Conversation {c_guid} has tags: {tags}")
```

---

## πŸ“¦ Handling Split Files

| Situation | Strategy |
|:----------|:---------|
| Enough RAM | Use `pd.concat()` to merge splits |
| Low memory | Process each split one-by-one |
| Hugging Face datasets | Use streaming mode |

**Example (streaming with Hugging Face `datasets`)**

```
from datasets import load_dataset

# Stream the dataset directly
dataset = load_dataset(
    "ReadyAi/bittensor-conversational-tags-and-embeddings",
    split="train",
    streaming=True
)

for example in dataset:
    print(example)
    break
```

---

## πŸ“œ License

MIT License β€”  
βœ… Free to use and modify,  
❌ Commercial redistribution without permission is prohibited.

---

## ✨ Credits

Built using contributions from Bittensor conversational miners and the ReadyAI open-source community.

---

## 🎯 Summary

| Component | Description |
|:----------|:------------|
| parquets/part_*.parquet | Semantic tags and their contextual embeddings |
| tag_to_id.parquet | Dictionary mapping of tag IDs to text |
| conversations_to_tags.parquet | Links conversations to tags |
| conversations.parquet | Full multi-turn dialogue with participant metadata |