Table30 / convert_to_lerobot.py
smrset's picture
Upload convert_to_lerobot.py
d823377 verified
"""
Minimal example: convert dataset to the LeRobot format.
CLI Example (using the *arrange_flowers* task as an example):
python convert_libero_to_lerobot.py \
--repo-name arrange_flowers_repo \
--raw-dataset /path/to/arrange_flowers \
--frame-interval 1 \
Notes:
- If you plan to push to the Hugging Face Hub later, handle that outside this script.
"""
import argparse
import json
import shutil
from pathlib import Path
from typing import Any, Dict, List
import cv2
import numpy as np
from lerobot.common.datasets.lerobot_dataset import LEROBOT_HOME, LeRobotDataset
def load_jsonl(path: Path) -> List[Dict[str, Any]]:
"""Load a JSONL file into a list of dicts."""
with path.open("r", encoding="utf-8") as f:
return [json.loads(line) for line in f]
def create_lerobot_dataset(
repo_name: str,
robot_type: str,
fps: float,
height: int,
width: int,
) -> LeRobotDataset:
"""
Create a LeRobot dataset with custom feature schema
"""
dataset = LeRobotDataset.create(
repo_id=repo_name,
robot_type=robot_type,
fps=fps,
features={
"global_image": {
"dtype": "image",
"shape": (height, width, 3),
"names": ["height", "width", "channel"],
},
"wrist_image": {
"dtype": "image",
"shape": (height, width, 3),
"names": ["height", "width", "channel"],
},
"right_image": {
"dtype": "image",
"shape": (height, width, 3),
"names": ["height", "width", "channel"],
},
"state": {
"dtype": "float32",
"shape": (7,), # for ee_pose and gripper width
"names": ["state"],
},
"actions": {
"dtype": "float32",
"shape": (7,), # for ee_pose and gripper width
"names": ["actions"],
},
},
image_writer_threads=32,
image_writer_processes=16,
)
return dataset
def process_episode_dir(
episode_path: Path,
dataset: LeRobotDataset,
frame_interval: int,
prompt: str,
) -> None:
"""
Process a single episode directory and append frames to the given dataset.
episode_path : Path
Episode directory containing `states/states.jsonl` and `videos/*.mp4`.
dataset : LeRobotDataset
Target dataset to which frames are added.
frame_interval : int
Sampling stride (>=1).
prompt : str
Language instruction of this episode.
"""
# Modify if your dataset consists of bimanual data.
states_path = episode_path / "states" / "states.jsonl"
videos_dir = episode_path / "videos"
ep_states = load_jsonl(states_path)
# adjust them to match your dataset’s actual naming.
wrist_video = cv2.VideoCapture(str(videos_dir / "arm_realsense_rgb.mp4"))
global_video = cv2.VideoCapture(str(videos_dir / "global_realsense_rgb.mp4"))
right_video = cv2.VideoCapture(str(videos_dir / "right_realsense_rgb.mp4"))
wrist_frames_count = int(wrist_video.get(cv2.CAP_PROP_FRAME_COUNT))
global_frames_count = int(global_video.get(cv2.CAP_PROP_FRAME_COUNT))
right_frames_count = int(right_video.get(cv2.CAP_PROP_FRAME_COUNT))
n_states = len(ep_states)
# assert all lengths match
assert (
n_states == wrist_frames_count == global_frames_count == right_frames_count
), (
f"Mismatch in episode {episode_path.name}: "
f"states={n_states}, wrist={wrist_frames_count}, "
f"global={global_frames_count}, right={right_frames_count}"
)
# write frames to the episode of lerobot dataset
for idx in range(frame_interval, n_states, frame_interval):
# Build pose
pose = np.concatenate(
(np.asarray(ep_states[idx]["end_effector_pose"]), [ep_states[idx]["gripper_width"]])
)
last_pose = np.concatenate(
(np.asarray(ep_states[idx - frame_interval]["end_effector_pose"]),
[ep_states[idx - frame_interval]["gripper_width"]])
)
# Read frames && BGR -> RGB
# Resize as needed, but update the LeRobot feature shape accordingly.
_, wrist_image = wrist_video.read()
_, global_image = global_video.read()
_, right_image = right_video.read()
wrist_image = cv2.cvtColor(wrist_image, cv2.COLOR_BGR2RGB)
global_image = cv2.cvtColor(global_image, cv2.COLOR_BGR2RGB)
right_image = cv2.cvtColor(right_image, cv2.COLOR_BGR2RGB)
dataset.add_frame(
{
"global_image": global_image,
"wrist_image": wrist_image,
"right_image": right_image,
"state": last_pose.astype(np.float32, copy=False),
"actions": pose.astype(np.float32, copy=False),
}
)
wrist_video.release()
global_video.release()
right_video.release()
dataset.save_episode(task=prompt)
def main(
repo_name: str,
raw_dataset: Path,
frame_interval: int = 1,
overwrite_repo: bool = False,
) -> None:
"""
Convert a dataset directory into LeRobot format.
repo_name : str
Output repo/dataset name (saved under $LEROBOT_HOME / repo_name).
raw_dataset : Path
Path to the raw dataset root directory.
frame_interval : int, default=1
Sample every N frames (kept identical).
overwrite_repo : bool, default=False
If True, remove the existing dataset directory before writing.
"""
assert frame_interval >= 1, "frame_interval must be >= 1"
# overwrite repo
dst_dir = LEROBOT_HOME / repo_name
if overwrite_repo and dst_dir.exists():
print(f"removing existing dataset at {dst_dir}")
shutil.rmtree(dst_dir)
# Load task_infos
task_info_path = raw_dataset / "meta" / "task_info.json"
with task_info_path.open("r", encoding="utf-8") as f:
task_info = json.load(f)
robot_type = task_info["task_desc"]["task_tag"][2] # "ARX5"
video_info = task_info["video_info"]
video_info["width"] = 640 # TODO: derive from task_info or actual videos
video_info["height"] = 480
fps = float(video_info["fps"])
prompt = task_info["task_desc"]["prompt"]
# Create dataset, define feature in the form you need.
# - proprio is stored in `state` and actions in `action`
# - LeRobot assumes that dtype of image data is `image`
dataset = create_lerobot_dataset(
repo_name=repo_name,
robot_type=robot_type,
fps=fps,
height=video_info["height"],
width=video_info["width"],
)
# populate the dataset to lerobot dataset
data_root = raw_dataset / "data"
for episode_path in data_root.iterdir():
if not episode_path.is_dir():
continue
print(f"Processing episode: {episode_path.name}")
process_episode_dir(
episode_path=episode_path,
dataset=dataset,
frame_interval=frame_interval,
prompt=prompt,
)
dataset.consolidate(run_compute_stats=False)
print("Done. Dataset saved to: {dst_dir}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Convert a custom dataset to LeRobot format."
)
parser.add_argument(
"--repo-name",
required=True,
help="Name of the output dataset (under $LEROBOT_HOME).",
)
parser.add_argument(
"--raw-dataset",
required=True,
type=str,
help="Path to the raw dataset root.",
)
parser.add_argument(
"--frame-interval",
type=int,
default=1,
help="Sample every N frames. Default: 1",
)
parser.add_argument(
"--overwrite-repo",
action="store_true",
help="Remove existing output directory if it exists.",
)
args = parser.parse_args()
main(
repo_name=args.repo_name,
raw_dataset=Path(args.raw_dataset),
frame_interval=args.frame_interval,
overwrite_repo=args.overwrite_repo,
)