# RoboChallenge Dataset ## Tasks and Embodiments The dataset includes 30 diverse manipulation tasks (Table30) across 4 embodiments: ### Available Tasks - `arrange_flowers` - `arrange_fruits_in_basket` - `arrange_paper_cups` - `clean_dining_table` - `fold_dishcloth` - `hang_toothbrush_cup` - `make_vegetarian_sandwich` - `move_objects_into_box` - `open_the_drawer` - `place_shoes_on_rack` - `plug_in_network_cable` - `pour_fries_into_plate` - `press_three_buttons` - `put_cup_on_coaster` - `put_opener_in_drawer` - `put_pen_into_pencil_case` - `scan_QR_code` - `search_green_boxes` - `set_the_plates` - `shred_scrap_paper` - `sort_books` - `sort_electronic_products` - `stack_bowls` - `stack_color_blocks` - `stick_tape_to_box` - `sweep_the_rubbish` - `turn_on_faucet` - `turn_on_light_switch` - `water_potted_plant` - `wipe_the_table` ### Embodiments - **ARX5** - Single-arm with triple camera setup (wrist + global + right-side views) - **UR5** - Single-arm with dual camera setup (wrist + global views) - **FRANKA** - Single-arm with triple perspective setup (wrist + main + side views) - **ALOHA** - Dual-arm with triple wrist camera setup (left wrist + right wrist + global views) ## Dataset Structure ### Hierarchy The dataset is organized by tasks, with each task containing multiple demonstration episodes: ``` . ├── / # e.g., arrange_flowers, fold_dishcloth │ ├── task_desc.json # Task description │ ├── meta/ # Task-level metadata │ │ ├── task_info.json │ └── data/ # Episode data │ ├── episode_000000/ # Individual episode │ │ ├── meta/ │ │ │ └── episode_meta.json # Episode metadata │ │ ├── states/ │ │ │ # for single-arm (ARX5, UR5, Franka) │ │ │ ├── states.jsonl # Single-arm robot states │ │ │ # for dual-arm (ALOHA) │ │ │ ├── left_states.jsonl # Left arm states │ │ │ └── right_states.jsonl # Right arm states │ │ └── videos/ │ │ # Video configurations vary by robot model: │ │ # ARX5 │ │ ├── arm_realsense_rgb.mp4 # Wrist view │ │ ├── global_realsense_rgb.mp4 # Global view │ │ └── right_realsense_rgb.mp4 # Side view │ │ # UR5 │ │ ├── global_realsense_rgb.mp4 # Global view │ │ └── handeye_realsense_rgb.mp4 # Wrist view │ │ # Franka │ │ ├── handeye_realsense_rgb.mp4 # Wrist view │ │ ├── main_realsense_rgb.mp4 # Global view │ │ └── side_realsense_rgb.mp4 # Side view │ │ # ALOHA │ │ ├── cam_high_rgb.mp4 # Global view │ │ ├── cam_wrist_left_rgb.mp4 # Left wrist view │ │ └── cam_wrist_right_rgb.mp4 # Right wrist view │ ├── episode_000001/ │ └── ... ├── convert_to_lerobot.py # Conversion script └── README.md ``` ### Metadata Schema `task_info.json` ```json { "robot_id": "arx5_1", // Robot model identifier "task_desc": { "task_name": "arrange_flowers", // Task identifier "prompt": "insert the three flowers on the table into the vase one by one", "scoring": "...", // Scoring criteria "task_tag": [ // Task characteristics "repeated", "single-arm", "ARX5", "precise3d" ] }, "video_info": { "fps": 30, // Video frame rate "ext": "mp4", // Video format "encoding": { "vcodec": "libx264", // Video codec "pix_fmt": "yuv420p" // Pixel format } } } ``` `episode_meta.json` ```json { "episode_index": 0, // Episode number "start_time": 1750405586.3430033, // Unix timestamp (start) "end_time": 1750405642.5247612, // Unix timestamp (end) "frames": 1672 // Total video frames } ``` ### Robot States Schema Each episode contains states data stored in JSONL format. Depending on the embodiment, the structure differs slightly: - **Single-arm robots (ARX5, UR5, Franka)** → `states.jsonl` - **Dual-arm robots (ALOHA)** → `left_states.jsonl` and `right_states.jsonl` Each file records the robot’s proprioceptive signals per frame, including joint angles, end-effector poses, gripper states, and timestamps. The exact field definitions and coordinate conventions vary by platform, as summarized below. #### ARX5 | Data Name | Data Key |Shape | Semantics | |:---------:|:-----:|:----:|:----:| | Joint control |joint_positions | (6,) | Joint angle (in radians) from the base to the end effector. | | Pose control | ee_positions | (6,) | End effector pose (tx, ty, tz, roll, pitch, yaw), where (roll, pitch, yaw) is relative euler angles from the arm base coordinate. X : back to front; Y: right to left; Z: down to up. | | Gripper control |gripper | (1,) | Actual gripper width measurement in meter. | | Time stamp |timestamp | (1,) | Floating point timestamp (in milliseconds) of each frame. | #### UR5 | Data Name | Data Key |Shape | Semantics | |:---------:|:-----:|:----:|:----:| | Joint control |joint_positions | (6,) | Joint angle (in radians) from the base to the end effector. | | Pose control | ee_positions | (7,) | End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : front to back; Y: left to right; Z: down to up. | | Gripper control |gripper | (1,) | Gripper closing angle, 0 for fully open, 255 for fully closed. | | Time stamp |timestamp | (1,) | Floating point timestamp (in milliseconds) of each frame. | #### Franka | Data Name | Data Key |Shape | Semantics | |:---------:|:-----:|:----:|:----:| | Joint control |joint_positions | (7,) | Joint angle (in radians) from the base to the end effector. | | Pose control | ee_positions | (7,) | End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : back to front; Y: right to left; Z: down to up. | | Gripper control |gripper | (2,) | Gripper trigger signals in the (close_button, open_button) order. | | Gripper width |gripper_width | (1,) | Actual gripper width measurement | | Time stamp |timestamp | (1,) | Floating point timestamp (in milliseconds) of each frame. | #### ALOHA | Data Name | Data Key |Shape | Semantics | |:---------:|:-----:|:----:|:----:| | Master joint control |joint_positions | (6,) | Maste joint angle (in radians) from the base to the end effector. | |Joint velocity| joint_vel | (7,) | Speed of 6 joint and gripper | | Puppet joint control |qpos | (6,) | Puppet joint angle (in radians) from the base to the end effector. | | Puppet pose control | ee_pose_quaternion | (7,) | End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : back to front; Y: right to left ; Z: down to up. | | Puppet pose control | ee_pose_rpy | (6,) | End effector pose (tx, ty, tz, rr, rp, ry), where (tx, ty, tz) is relative position from the arm base coordinate , (rr, rp, ry) is euler (in radians). X : back to front; Y: right to left ; Z: down to up. | | Gripper control |gripper | (1,) | Actual gripper width measurement in meter.| | Time stamp |timestamp | (1,) | Floating point timestamp (in mileseconds) of each frame. | ## Convert to LeRobot While you can implement a custom Dataset class to read RoboChallenge data directly, **we strongly recommend converting to LeRobot format** to take advantage of [LeRobot](https://github.com/huggingface/lerobot)'s comprehensive data processing and loading utilities. The example script **`convert_to_lerobot.py`** converts **ARX5** data to the LeRobot dataset as a example. For other robot embodiments (UR5, Franka, ALOHA), you can adapt the script accordingly. ### Prerequisites - Python 3.9+ with the following packages: - `lerobot==0.1.0` - `opencv-python` - `numpy` - Configure `$LEROBOT_HOME` (defaults to `~/.lerobot` if unset). ```bash pip install lerobot==0.1.0 opencv-python numpy export LEROBOT_HOME="/path/to/lerobot_home" ``` ### Usage Run the converter from the repository root (or provide an absolute path): ```bash python convert_to_lerobot.py \ --repo-name example_repo \ --raw-dataset /path/to/example_dataset \ --frame-interval 1 ``` ### Output - Frames and metadata are saved to `$LEROBOT_HOME/`. - At the end, the script calls `dataset.consolidate(run_compute_stats=False)`. If you require aggregated statistics, run it with `run_compute_stats=True` or execute a separate stats job.