silero_open_stt_opus / silero_open_stt.py
Sh1man's picture
Upload folder using huggingface_hub
59a259a
raw
history blame
8.01 kB
# coding=utf-8
# Copyright 2023 The HuggingFace Datasets Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""silero_open_stt Dataset"""
import csv
import os
import json
import datasets
from tqdm import tqdm
_DESCRIPTION = """open_stt is a Russian dataset for speech research."""
_CITATION = """None"""
_HOMEPAGE = "https://github.com/snakers4/open_stt"
_LICENSE = "cc-by-nc-4.0"
_BASE_URL = "https://huggingface.co/datasets/Sh1man/silero_open_stt_opus/resolve/main/"
_AUDIO_URL = _BASE_URL + "data/{subset}/{split}/{subset}_{split}_{shard_idx}.tar"
_METADATA_URL = _BASE_URL + "metadata/{subset}/{split}.tsv"
_N_SHARDS_URL = _BASE_URL + "n_shards.json"
# Информация о поднаборах
SUBSETS = {
"tts_russian_addresses_rhvoice_4voices": {
"description": "Поднабор tts_russian_addresses_rhvoice_4voices датасета silero_open_stt",
},
}
class silero_open_sttConfig(datasets.BuilderConfig):
"""BuilderConfig для silero_open_stt."""
def __init__(self, name, subset, description, **kwargs):
"""BuilderConfig для silero_open_stt.
Args:
name: Название набора данных
subset: Поднабор данных
description: Описание поднабора
**kwargs: Дополнительные аргументы для суперкласса
"""
self.subset = subset
super(silero_open_sttConfig, self).__init__(
name=name,
version=datasets.Version("1.0.0"),
description=description,
**kwargs,
)
class silero_open_stt(datasets.GeneratorBasedBuilder):
"""Аудио-датасет silero_open_stt."""
VERSION = datasets.Version("1.0.0")
DEFAULT_WRITER_BATCH_SIZE = 1000
BUILDER_CONFIGS = [
silero_open_sttConfig(
name=subset,
subset=subset,
description=f"silero_open_stt - {info['description']}",
)
for subset, info in SUBSETS.items()
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"path": datasets.Value("string"),
"text": datasets.Value("string"),
"duration": datasets.Value("float32"),
"audio": datasets.Audio(sampling_rate=16000),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
subset = self.config.subset
# Загружаем информацию о количестве шардов
n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL)
with open(n_shards_path, encoding="utf-8") as f:
n_shards = json.load(f)
# Проверяем наличие данных для выбранного поднабора
if subset not in n_shards:
raise ValueError(f"Subset {subset} not found in n_shards.json")
# Определяем доступные сплиты для этого поднабора
splits = list(n_shards[subset].keys())
if not splits:
raise ValueError(f"No splits found for subset {subset}")
# Создаем URLs для аудио файлов
audio_urls = {}
for split in splits:
if n_shards[subset][split] > 0:
audio_urls[split] = [
_AUDIO_URL.format(subset=subset, split=split, shard_idx=i)
for i in range(n_shards[subset][split])
]
# Скачиваем архивы
archive_paths = dl_manager.download(audio_urls)
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
# Скачиваем метаданные
meta_urls = {split: _METADATA_URL.format(subset=subset, split=split) for split in splits}
meta_paths = dl_manager.download_and_extract(meta_urls)
# Определяем генераторы сплитов
split_generators = []
split_names = {
"train": datasets.Split.TRAIN,
"validate": datasets.Split.VALIDATION,
"test": datasets.Split.TEST,
}
for split in splits:
split_generators.append(
datasets.SplitGenerator(
name=split_names.get(split, split),
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get(split),
"archives": [dl_manager.iter_archive(path) for path in archive_paths[split]],
"meta_path": meta_paths[split],
},
),
)
return split_generators
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
"""Yields examples."""
data_fields = list(self._info().features.keys())
metadata = {}
with open(meta_path, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in tqdm(reader, desc="Reading metadata..."):
# Проверяем наличие всех полей
for field in data_fields:
if field not in row and field != "audio":
row[field] = ""
metadata[row["path"]] = row
for i, audio_archive in enumerate(archives):
for path, file in audio_archive:
_, filename = os.path.split(path)
if filename in metadata:
result = dict(metadata[filename])
# set the audio feature and the path to the extracted file
path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path
result["audio"] = {"path": path, "bytes": file.read()}
result["path"] = path
yield path, result