# coding=utf-8 # Copyright 2023 The HuggingFace Datasets Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """silero_open_stt Dataset""" import csv import os import json import datasets from tqdm import tqdm _DESCRIPTION = """open_stt is a Russian dataset for speech research.""" _CITATION = """None""" _HOMEPAGE = "https://github.com/snakers4/open_stt" _LICENSE = "cc-by-nc-4.0" _BASE_URL = "https://huggingface.co/datasets/Sh1man/silero_open_stt_opus/resolve/main/" _AUDIO_URL = _BASE_URL + "data/{subset}/{split}/{subset}_{split}_{shard_idx}.tar" _METADATA_URL = _BASE_URL + "metadata/{subset}/{split}.tsv" _N_SHARDS_URL = _BASE_URL + "n_shards.json" # Информация о поднаборах SUBSETS = { "tts_russian_addresses_rhvoice_4voices": { "description": "Поднабор tts_russian_addresses_rhvoice_4voices датасета silero_open_stt", }, } class silero_open_sttConfig(datasets.BuilderConfig): """BuilderConfig для silero_open_stt.""" def __init__(self, name, subset, description, **kwargs): """BuilderConfig для silero_open_stt. Args: name: Название набора данных subset: Поднабор данных description: Описание поднабора **kwargs: Дополнительные аргументы для суперкласса """ self.subset = subset super(silero_open_sttConfig, self).__init__( name=name, version=datasets.Version("1.0.0"), description=description, **kwargs, ) class silero_open_stt(datasets.GeneratorBasedBuilder): """Аудио-датасет silero_open_stt.""" VERSION = datasets.Version("1.0.0") DEFAULT_WRITER_BATCH_SIZE = 1000 BUILDER_CONFIGS = [ silero_open_sttConfig( name=subset, subset=subset, description=f"silero_open_stt - {info['description']}", ) for subset, info in SUBSETS.items() ] def _info(self): features = datasets.Features( { "id": datasets.Value("string"), "path": datasets.Value("string"), "text": datasets.Value("string"), "duration": datasets.Value("float32"), "audio": datasets.Audio(sampling_rate=16000), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" subset = self.config.subset # Загружаем информацию о количестве шардов n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL) with open(n_shards_path, encoding="utf-8") as f: n_shards = json.load(f) # Проверяем наличие данных для выбранного поднабора if subset not in n_shards: raise ValueError(f"Subset {subset} not found in n_shards.json") # Определяем доступные сплиты для этого поднабора splits = list(n_shards[subset].keys()) if not splits: raise ValueError(f"No splits found for subset {subset}") # Создаем URLs для аудио файлов audio_urls = {} for split in splits: if n_shards[subset][split] > 0: audio_urls[split] = [ _AUDIO_URL.format(subset=subset, split=split, shard_idx=i) for i in range(n_shards[subset][split]) ] # Скачиваем архивы archive_paths = dl_manager.download(audio_urls) local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} # Скачиваем метаданные meta_urls = {split: _METADATA_URL.format(subset=subset, split=split) for split in splits} meta_paths = dl_manager.download_and_extract(meta_urls) # Определяем генераторы сплитов split_generators = [] split_names = { "train": datasets.Split.TRAIN, "validate": datasets.Split.VALIDATION, "test": datasets.Split.TEST, } for split in splits: split_generators.append( datasets.SplitGenerator( name=split_names.get(split, split), gen_kwargs={ "local_extracted_archive_paths": local_extracted_archive_paths.get(split), "archives": [dl_manager.iter_archive(path) for path in archive_paths[split]], "meta_path": meta_paths[split], }, ), ) return split_generators def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): """Yields examples.""" data_fields = list(self._info().features.keys()) metadata = {} with open(meta_path, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) for row in tqdm(reader, desc="Reading metadata..."): # Проверяем наличие всех полей for field in data_fields: if field not in row and field != "audio": row[field] = "" metadata[row["path"]] = row for i, audio_archive in enumerate(archives): for path, file in audio_archive: _, filename = os.path.split(path) if filename in metadata: result = dict(metadata[filename]) # set the audio feature and the path to the extracted file path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path result["audio"] = {"path": path, "bytes": file.read()} result["path"] = path yield path, result