Datasets:
fix: file_name in script docs: readme
Browse files- MacBook-Attacks-Dataset.py +13 -10
- README.md +20 -0
MacBook-Attacks-Dataset.py
CHANGED
|
@@ -10,9 +10,12 @@ year = {2023}
|
|
| 10 |
"""
|
| 11 |
|
| 12 |
_DESCRIPTION = """\
|
| 13 |
-
The dataset consists of
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
| 16 |
"""
|
| 17 |
_NAME = 'MacBook-Attacks-Dataset'
|
| 18 |
|
|
@@ -55,29 +58,29 @@ class MacBookAttacksDataset(datasets.GeneratorBasedBuilder):
|
|
| 55 |
def _generate_examples(self, attacks, annotations):
|
| 56 |
annotations_df = pd.read_csv(annotations, sep=';')
|
| 57 |
for idx, (video_path, video) in enumerate(attacks):
|
| 58 |
-
file_name = '/'.join(video_path.split('/')[-2:])
|
| 59 |
|
| 60 |
yield idx, {
|
| 61 |
'file':
|
| 62 |
-
|
| 63 |
'phone':
|
| 64 |
annotations_df.loc[
|
| 65 |
-
annotations_df['file'].
|
| 66 |
['phone'].values[0],
|
| 67 |
'computer':
|
| 68 |
annotations_df.loc[
|
| 69 |
-
annotations_df['file'].
|
| 70 |
['computer'].values[0],
|
| 71 |
'gender':
|
| 72 |
annotations_df.loc[
|
| 73 |
-
annotations_df['file'].
|
| 74 |
['gender'].values[0],
|
| 75 |
'age':
|
| 76 |
annotations_df.loc[
|
| 77 |
-
annotations_df['file'].
|
| 78 |
['age'].values[0],
|
| 79 |
'country':
|
| 80 |
annotations_df.loc[
|
| 81 |
-
annotations_df['file'].
|
| 82 |
['country'].values[0]
|
| 83 |
}
|
|
|
|
| 10 |
"""
|
| 11 |
|
| 12 |
_DESCRIPTION = """\
|
| 13 |
+
The dataset consists of videos of replay attacks played on different
|
| 14 |
+
models of MacBooks. The dataset solves tasks in the field of anti-spoofing and
|
| 15 |
+
it is useful for buisness and safety systems.
|
| 16 |
+
|
| 17 |
+
The dataset includes: **replay attacks** - videos of real people played on
|
| 18 |
+
a computer and filmed on the phone.
|
| 19 |
"""
|
| 20 |
_NAME = 'MacBook-Attacks-Dataset'
|
| 21 |
|
|
|
|
| 58 |
def _generate_examples(self, attacks, annotations):
|
| 59 |
annotations_df = pd.read_csv(annotations, sep=';')
|
| 60 |
for idx, (video_path, video) in enumerate(attacks):
|
| 61 |
+
# file_name = '/'.join(video_path.split('/')[-2:])
|
| 62 |
|
| 63 |
yield idx, {
|
| 64 |
'file':
|
| 65 |
+
video_path,
|
| 66 |
'phone':
|
| 67 |
annotations_df.loc[
|
| 68 |
+
annotations_df['file'] == video_path.lower()]
|
| 69 |
['phone'].values[0],
|
| 70 |
'computer':
|
| 71 |
annotations_df.loc[
|
| 72 |
+
annotations_df['file'] == video_path.lower()]
|
| 73 |
['computer'].values[0],
|
| 74 |
'gender':
|
| 75 |
annotations_df.loc[
|
| 76 |
+
annotations_df['file'] == video_path.lower()]
|
| 77 |
['gender'].values[0],
|
| 78 |
'age':
|
| 79 |
annotations_df.loc[
|
| 80 |
+
annotations_df['file'] == video_path.lower()]
|
| 81 |
['age'].values[0],
|
| 82 |
'country':
|
| 83 |
annotations_df.loc[
|
| 84 |
+
annotations_df['file'] == video_path.lower()]
|
| 85 |
['country'].values[0]
|
| 86 |
}
|
README.md
CHANGED
|
@@ -6,6 +6,26 @@ language:
|
|
| 6 |
- en
|
| 7 |
tags:
|
| 8 |
- finance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
# Antispoofing Replay Dataset
|
|
|
|
| 6 |
- en
|
| 7 |
tags:
|
| 8 |
- finance
|
| 9 |
+
dataset_info:
|
| 10 |
+
features:
|
| 11 |
+
- name: file
|
| 12 |
+
dtype: string
|
| 13 |
+
- name: phone
|
| 14 |
+
dtype: string
|
| 15 |
+
- name: computer
|
| 16 |
+
dtype: string
|
| 17 |
+
- name: gender
|
| 18 |
+
dtype: string
|
| 19 |
+
- name: age
|
| 20 |
+
dtype: int16
|
| 21 |
+
- name: country
|
| 22 |
+
dtype: string
|
| 23 |
+
splits:
|
| 24 |
+
- name: train
|
| 25 |
+
num_bytes: 1418
|
| 26 |
+
num_examples: 24
|
| 27 |
+
download_size: 573934283
|
| 28 |
+
dataset_size: 1418
|
| 29 |
---
|
| 30 |
|
| 31 |
# Antispoofing Replay Dataset
|