CURIOUS MODEL-BUILDING CONTROL SYSTEMS

Jiirgen Schmidhuber, TU Munich, Univ. of Colorado at Boulder

In Proc. International Joint Conference on Neural Networks, Singapore, volume 2, pages 1458-1463.
IEEE, 1991.

Abstract

A controller is a device which receives inputs from a (dynamic) environment and produces outputs
that manipulate the environmental state. A model-building control system is a controller with an addi-
tional module (the ‘world model’) which is trained to predict future inputs from previous input/action
pairs. The novel curious model-building control system described in this paper is a model-building con-
trol system which actively tries to provoke situations for which it learned to ezpect to learn something
about the environment. Such a system has been implemented as a 4-network system based on Watkins’
Q-learning algorithm which can be used to maximize the ezpectation of the temporal derivative of the
adaptive assumed reliability of future predictions. An experiment with an artificial non-deterministic
environment demonstrates that the system can be superior to previous model-building control systems
(the latter do not address the problem of modelling the reliability of the world model’s predictions in
uncertain environments and use ad-hoc methods (like random search) to train the world model).

1 INTRODUCTION

Much of the recent research on adaptive neuro-control and reinforcement learning focusses on systems
with sub-modules that learn to predict inputs from the environment. These sub-modules often are called
‘adaptive world models’; they are useful for a whole variety of control tasks. For instance, Werbos’ and Jor-
dan’s architectures for neuro-control [15][2] contain an adaptive world model in form of a back-propagation
module (the model network) which is trained to predict the next input, given the current input and the
current output of an adaptive control network. The model network allows to compute error gradients for
the controller outputs. This is essential, since with typical adaptive neuro-control tasks there is no teacher
who provides desired controller outputs. There is only a desired environmental input. Extensions of this
approach [9] rely on the same basic principles. ‘DYNA-systems’ [11] use adaptive world models for limiting
the number of ‘real-world experiences’ necessary to solve certain reinforcement learning tasks.

There are at least two important problems with all of these approaches that have not been addressed
so far:

1. Previous model-building control systems are not well-suited for uncertain non-deterministic environ-
ments. In particular, they do not model the reliability of the predictions of the adaptive world models.
Therefore, if credit assignment for the controller is based on the assumption of a correct world model,
unexpected results may be obtained.

2. Previous model-building control systems employ some ad-hoc method for establishing the world model.
For instance, [2], [3], [10], and others use random search to train the world model. [11] uses a local
input/output representation and makes the probability of making a certain training experiment dependent
on the time that went by since the system made the last experiment of the same type. These methods
work fine for certain problems, but they do not address the challenges of real world tasks in uncertain
environments. There are at least two (related) sources of efficiency which are neglected by these approaches:

2A. Not much additional training time should be wasted on exploring those parts of the world which are
already well-modelled. 2B. Not much additional training time should be wasted on exploring those parts of
the world where the expectation of future improvement of the world model is low.

The first contribution of this paper (section 2) is to show how one can adaptively model the reliability
of a predictor’s predictions.

The second (and most important) contribution of this paper (section 3) is to show how reinforcement
learning can be used for teaching a model-building control system to actively generate training examples for
increasing the reliability of the predictions of its world model. This is relevant for the problem of ‘on-line
state space exploration’. The approach is based on learning to estimate the effects of further learning.

2 ADAPTIVE CONFIDENCE

Consider an adaptive discrete time ‘predictor’ M (not necessarily a neural network) whose input at time
t is the real vector ip/(t) and whose output at time ¢ is the real vector oar(t) = far(ins(t), has(t)), where
the real vector hys(t) represents the internal state of M. Meaningful internal states are required if the
prediction task requires to memorize past events. At time ¢ there is a target output dps(t). The predictor’s
goal is to make ops(t) = dpr(t) for all ¢.

After having provided a number of training examples for M, M usually will still make some errors,
particularily if the training environment is noisy. How can we model the reliability of M’s predictions?

We introduce an additional ‘confidence module’ C' (not necessarily a neural network) whose input at
time ¢ is the real vector i¢(t) = ips(t) and whose output at time ¢ is the real vector oc (t) = fo(ic(t), ho(t)),
where the real vector h¢(t) is the internal state of C. At time ¢ there is a target output dc(t) for the
confidence module. d¢(t) should provide information about how reliable M’s prediction o (t) can be
expected to be [8] [5] [7].

In what follows, v/ is the jth component of a vector v, E denotes the expectation operator, dim(z)
denotes the dimensionality of vector z, | ¢ | denotes the absolute value of scalar ¢, P(A | B) denotes the
conditional probability of A given B, and E(A | B) denotes the conditional expectation of A given B. For
simplicity, we will concentrate on the case of hc(t) = har(t) = 0 for all ¢. This means that M’s and C’s
current outputs are based only on the current input. There is a variety of simple ways of representing
reliability in de(2):

1. Modelling probabilities of global prediction failures. Let dc(t) be one-dimensional. Let d¢(t) =
Plom(t) # du(t) | im(t)). do(t) can be estimated by 7t, where ny is the number of those times k < ¢
with ia7(k) = ipr(t) and where n; is the number of those times k with ips(k) = ipr(t), opr (k) # dar (k).

2. Modelling probabilities of local prediction failures. Let dc (t) be dim(da (t))-dimensional. Let dé () =
P(oy,(t) # dj(t) | im(t)) for all appropriate j. di;(t) can be estimated by 71, where n is the number
of those times k < t with ip(k) = im(t) and where n; is the number of those times k with iy (k) =

im(t), 09 (k) # diy (k).

Variations of method 1 and method 2 would not measure the probabilities of exact matches between
predictions and reality but the probability of ‘near-matches’ within a certain (e.g. euclidian) tolerance.

3. Modelling global expected error. Let dc(t) be one-dimensional. Let

1

do®) = B { 5 — o 0) (dar(®) o (0) L iaa) |

If C is a back-propagation net (e.g. [14]), an approximation of d¢(t) can be obtained by using gradient
descent (with a small learning rate) for training C at time ¢ to emit M’s error & (da(t) — oar(t))T (dar(t) —
op(t)). This is a special case of the method described in [8] (there a fully recurrent net was employed). Of
course, other error functions are possible. For instance, with the experiments described below the confidence
network predicted the the absolute value of the difference between M’s (one-dimensional) output and the
current target value.

4. Modelling local expected error. Let dc(t) be dim(das(t))-dimensional. Let
di,(t) = E{(dy(t) — 03 (1)) | ina (1)}

for all appropriate j. If C is a back-propagation net, an approximation of d¢(¢) can be obtained by using

gradient descent (with a small learning rate) for training C at time ¢ to emit M’s local prediction errors

((dhy (8) = b ()%, -, (dy(8) — o)),

where m = dim(on (t)).

3 ADAPTIVE CURIOSITY

If M is used as a ‘world model’, then with many applications ips(t) = 04(t) o z(t) and dps(t) = z(t + 1),
where 04(t) is the output vector of a controller A at time ¢, ‘o’ is the concatenation operator, and z(t) is
the environmental input at time ¢. In general, 04 (t) influences the state of the environment. Therefore it
may have an influence on z(t + 1).

In [7] confidence modules have been successfully applied to the problem of meaningful hierarchical
sequence chunking. This section (which provides the major contribution of this paper) describes how they
can help to make the construction of a world model more efficient.

We define curiosity as the desire to improve a predictor of the reactions of an environment (a ‘world
model’). In [8] and [4] the following basic idea for ‘on-line state space exploration by implementing dynamic
curiosity and boredom’ has been formulated: Spend reinforcement for a model-building control system
whenever there is a mismatch between the expectations of the adaptive world model and reality. Any sensible
reinforcement learning algorithm can be used to encourage the controller to generate action sequences that
provoke situations where the world model tends to make bad predictions. Since the model is adaptive,
its predictions often will improve. This in turn will lead to less reinforcement for the control system.
Therefore the corresponding action sequences will become discouraged. The controller will get ‘bored’ with
the corresponding situations and will start to focus on yet unpredictable parts of the environment.

The particular implementation described in [8] employed a recurrent confidence network with a one-
dimensional output for modelling the expected error of the model network (this error was called the
‘curiosity reinforcement’). The confidence network was not called so: It was part of the model network
(which predicted the next state of the environment plus a reinforcement vector including all kinds of
reinforcement, not just ‘curiosity reinforcement’). The target activation of the single output unit of the
confidence net was a function of the current error of the model network. In the simplest case this function
was linear. The controller’s goal was to activate the error-predicting unit by creating action sequences for
provoking mismatches between expectations and reality. The gradient computed for the error predictor also
served to change the internal representations of the whole network (whose error function simply contained
an additional term). Recently [12] described related ideas (they use the term ‘competence network’ instead
of the term ‘confidence network’ as used in [7] and [5]).

One problem with the idea above is that in non-deterministic environments the controller will focus
on parts of the environmental dynamics which are inherently unpredictable. This is because the adaptive
model usually will produce incorrect predictions for the uncertain parts of the environment. Therefore the
control system will receive reinforcement although it cannot be expected that the world model will improve.

A related problem is that often certain parts of the environment can be represented only by a complex
mapping which is difficult to learn while other parts are ‘easy to learn’. If we want a system which first
tries to solve the easy tasks before focussing on the harder tasks then the system will need an (adaptive)
internal representation of something like the expectation of how difficult certain learning tasks will be.

Both problems are related in the sense that both require to learn something about the effects of further
learning. In what follows an approach for coping with these problems will be described. Instead of simply
learning to predict errors as the approach described in [8] the new approach learns to predict cumulative
error changes.

3.1 THE BASIC PRINCIPLE

This subsection discusses a rather general principle of adaptive curiosity. Here we do not have to care
whether the adaptive world model is implemented as a back-propagation network, as a lookup table, or as
something else. There are certain natural implementations of the ideas; they are discussed in the following
subsections.

The basic principle can be formulated as follows: Learn a mapping from actions (or action sequences) to
the expectation of future performance improvement of the world model. Encourage action sequences where
this expectation is high.

One way to do this is the following (section 4 will describe alternatives): Model the reliability of the
predictions of the adaptive predictor as described in section 2. At time t, spend reinforcement for the
model-building control system in proportion to the current change of reliability of the adaptive predictor.
The ‘curiosity goal’ of the control system (it might have additional ‘pre-wired’ goals) is to maximize the
expectation of the cumulative sum of future positive or negative changes in prediction reliability.

More formally: The control system’s curiosity goal at time ty is to maximize

E{)_ —+""Noc(t+1)}.

t>to

Here 0 < v < 1 is a discount factor for avoiding infinite sums, and Aoc(t) is the (positive or negative)
change of assumed reliability caused by the observation of ixs(t), opr(t), and z(t + 1). B

For instance, if method 1 or method 3 from section 2 is employed, then Aoc(t) = oc(t) — oc(t), where
oc(t) is C’s response to i (t) after having adjusted C at time ¢.

So far the discussion did not have to refer to a particular reinforcement learning algorithm. Every
sensible reinforcement learning algorithm ought to be useful (e.g [1][16][13][9]). For instance, [6] describes
how adaptive critics [1][15] can be used to build a ‘curious’ model-building control system based on the
principle described above. The following subsection focusses on Watkins’ recent ‘Q-learning’ method.

3.2 A CURIOUS SYSTEM BASED ON Q-LEARNING

Here we describe how a reinforcement learning method called Q-learning can be used to build a ‘curious’
model builder. The notation is the same as above. Following [13] we introduce an adaptive function @ for
evaluating pairs of inputs z(¢) and actions a(t) as well as an utility function U for evaluating inputs z(¢).

After random initialization of C;, M, A, U, and @), at each time step ¢ the following algorithm is
performed:

1. Randomly select p € [0,...,1]. f p < p €[0,...,1] then a(t) = 04(t) else a(t) is chosen
randomly.

2. Compute opr(t), execute a(t), obtain x(t 4+ 1), and adjust M to improve its prediction in
similar situations. Adjust C according to one of the methods described in section 2. Obtain
7(t) = rege(t) + Aoc(t), where reg(t) is the current externally defined reinforcement (if there
is any) and where Ao (t) is the current change of confidence in M’s current predictions.
3. Set Q(x(t),a(t)) + (1 —a)Q(x(t),a(t)) + a(r(t) + U (z(t +1)) — Q(x(t), a(t))), where o
is a learning rate and 0 <~y < 1.

4. Adjust A to emit a in response to z(t) such that Q(z(t), a) = mazyQ(z(t),b).

5. U(z(t)) < Q(z(t),a).

Note that the algorithm does not specify the implementation of C, M, and A. All three can be imple-
mented as lookup tables or (in hope for useful ‘generalizations’) as back-propagation networks, Boltzmann-
machines, etc. @ and U may be replaced by back-propagation networks, too (see the experiments described
in section 5).

4 PREDICTING ERROR CHANGES DIRECTLY

The reinforcement generating mechanism for the reinforcement learning systems described above can be
modified in various ways. For instance, define op(t) as M’s response to iy (t) after having adjusted M
at time ¢. We can replace the confidence network by a network H which at every time step receives the
current input 457 (t) and whose target output is the current change of M’s output Aops(t) = o (t) — onr (%)
caused by M’s learning algorithm (H should have a small learning rate). H will learn approximations of

the expectations
E{lom(t) |im(t)}

of the changes of M’s responses to given inputs. The absolute value | om(t) | of H’s output og(t) (an
approximation of | E {Aop(t) | ips(t)} |) should be taken as the reinforcement for the adaptive critic or
the Q-learning algorithm (the reinforcement learning algorithm does not have to be specified here): The
control system’s curiosity goal at time %y is to maximize

E{Y_ - |on(t) |},

t>t0

where 0 < v < 1is a discount rate. An alternative would be to make predictions about the (discounted)
sum of future changes of M’s weight vector and use these predictions in an analoguous manner.

5 EXPERIMENTS

A ‘curious’ adaptive agent based on Watkins’ Q-learning method was tested in artificial non-deterministic
discrete-state environments. M (the world model), C, a controller A, and a module for evaluating pairs of
environmental states and actions () were implemented as general back-propagation networks.

The agent was able to move around in a two-dimensional world with 100 different states. The environ-
ment was reactive. M’s task was to predict the reactions of the environment which were partly random
and partly deterministic.

The ‘curious’ system was tested against the conventional random search method. With both methods,
at time ¢ the sum E(t) of the squared differences between the values of the possible deterministic reactions
and the corresponding predictions of M was used as a criterion for judging the quality of M.

With guidance by the principle of adaptive curiosity E(t) decreased up to 10 times faster than with
random search (see [6] for details). The reason for this superior performance was that the ‘curious’ system
soon found out that there were certain states of the environment where further performance improvement
of M could be expected. It started to focus on these particular states. The random search method was not
selective at all, therefore it wasted a lot of time on senseless exploration of states of the environment that
did not allow performance improvement.

The more complex the environment the more benefits should be expected from the principle of adaptive
curiosity. Ongoing experiments focus on increasingly complex worlds, non-local input/output representa-
tions and on the expected ‘generalization capabilities’ of non-trivial networks with hidden units.

6 CONCLUSION

The central idea of this paper is to construct an adaptive system which learns to predict the effects of
further learning. This is done by training an adaptive sub-module to predict (the expectation of the sum
of) future error changes caused by a particular learning algorithm. Here one adaptive module learns to
make estimates about the effects of the learning procedure of another adaptive module. In other words,
there is a module which learns to make a statement about learning itself. This is related to the concept of
‘meta-learning”™ In a very limited sense the system learns how to learn.

The method represents a general strategy for learning to select training examples such that the expected
performance improvement is maximized. Therefore the usefulness of the approach is not limited to model-
building control systems. The principles above are general enough to be of interest whenever the task is
to select appropriate training examples for any kind of learning system.

7 ACKNOWLEDGEMENTS

I wish to thank Reiner Wahnsiedler who conducted the experiments.

References

[1]

[7]

[8]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SM(C-13:834-846,
1983.

M. I. Jordan and D. E. Rumelhart. Supervised learning with a distal teacher. Technical Report
Occasional Paper #40, Center for Cog. Sci., Massachusetts Institute of Technology, 1990.

Nguyen and B. Widrow. The truck backer-upper: An example of self learning in neural networks. In
IEEE/INNS International Joint Conference on Neural Networks, Washington, D.C., volume 1, pages
357-364, 1989.

J. H. Schmidhuber. Dynamische neuronale Netze und das fundamentale raumzeitliche Lernproblem.
Dissertation, Institut fiir Informatik, Technische Universitdt Miinchen, 1990.

J. H. Schmidhuber. Talk at the NIPS’90 workshop on dynamic networks led by R. Rohwer, 1990.

J. H. Schmidhuber. Adaptive curiosity and adaptive confidence. Technical Report FKI-149-91, Institut
fiir Informatik, Technische Universitdt Miinchen, April 1991.

J. H. Schmidhuber. Adaptive decomposition of time. In T. Kohonen, K. Makisara, O. Simula, and
J. Kangas, editors, Artificial Neural Networks, pages 909-914. Elsevier Science Publishers B.V., North-
Holland, 1991.

J. H. Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. In J. A. Meyer and S. W. Wilson, editors, Proc. of the International Conference on
Simulation of Adaptive Behavior: From Animals to Animats, pages 222-227. MIT Press/Bradford
Books, 1991.

J. H. Schmidhuber. Reinforcement learning in markovian and non-markovian environments. In D. S.
Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing
Systems 3, pages 500-506. San Mateo, CA: Morgan Kaufmann, 1991.

J. H. Schmidhuber and R. Huber. Learning to generate artificial fovea trajectories for target detection.
International Journal of Neural Systems, 2(1 & 2):135-141, 1991.

R. S. Sutton. First results with DYNA, an integrated architecture for learning, planning and reacting.
In Proceedings of the AAAI Spring Symposium on Planning in Uncertain, Unpredictable, or Changing
Environments, 1990.

S. Thrun and K. Méller. On planning and exploration in non-discrete environments. Technical report,
Gesellschaft fiir Mathematik und Datenverarbeitung, D-5205 St. Augustin, Germany, March 1991.

C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, 1989.

P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.
PhD thesis, Harvard University, 1974.

P. J. Werbos. Building and understanding adaptive systems: A statistical/numerical approach to
factory automation and brain research. IEEE Transactions on Systems, Man, and Cybernetics, 17,
1987.

R. J. Williams. Toward a theory of reinforcement-learning connectionist systems. Technical Report
NU-CCS-88-3, College of Comp. Sci., Northeastern University, Boston, MA, 1988.

