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Abstract

This paper describes an approach to rein-
forcement learning in multiagent general-sum
games in which a learner is told to treat each
other agent as either a “friend” or “foe”. This
Q-learning-style algorithm provides strong
convergence guarantees compared to an ex-
isting Nash-equilibrium-based learning rule.

1. Introduction

Reinforcement learning (Sutton & Barto, 1998; Kael-
bling et al., 1996) is a learning paradigm for agents in
unfamiliar or complex environments. One particular
class of scenarios in which reinforcement learning holds
a great deal of promise is adapting in the presence of
other agents. The Markov game framework (van der
Wal, 1981; Shapley, 1953; Owen, 1982) is a formaliza-
tion of multiagent interaction that is a good match for
existing reinforcement-learning theory.

This paper extends the state of the art of reinforcement
learning in general-sum Markov games by presenting
the friend-or-foe Q-learning (FFQ) algorithm. FFQ
provides strong convergence guarantees and learns a
policy that is optimal in several important scenarios.

The ICML conference has been home to a series of
papers developing the theory of reinforcement learn-
ing in games. Littman (1994) introduced a Q-learning
algorithm called minimax-Q for zero-sum two-player
games. Littman and Szepesvari (1996) showed that
minimax-Q convergences to the game-theoretic opti-
mal value. Hu and Wellman (1998) described an exten-
sion to minimax-Q, called Nash-Q here, that attacks
general-sum games by using a Nash equilibrium com-
putation in the learning rule. Bowling (2000) clarified
the convergence conditions of the algorithm. Hu and
Wellman (2000) studied the convergence behavior of
Nash-Q in several small but non-trivial environments.

Briefly, although the Nash-Q algorithm is highly gen-
eral, the assumptions that are known to be sufficient to
guarantee its convergence are quite restrictive. These

assumptions put limits on the types of games that can
be guaranteed to be solved (those with coordination
or adversarial equilibria) as well as on the intermedi-
ate results of learning. Aside from zero-sum or fully
cooperative games, for which convergent learning al-
gorithms are already known, no general-sum game has
been shown to satisfy the intermediate-result restric-
tions of the Nash-Q theorem.

This paper presents a new algorithm, friend-or-foe Q-
learning (FFQ), that always converges. In addition,
in games with coordination or adversarial equilibria,
FFQ converges to precisely the values Nash-Q ought
to. To do this, FFQ requires that other players are
identified as being either “friend” or “foe” and fully
cooperative or zero-sum learning is used as appropri-
ate. Although the theoretical properties of FFQ are an
improvement over those of Nash-Q, a complete treat-
ment of general-sum games is still lacking,.

1.1 Definitions

A one-stage general-sum n-player game is defined by
a set of n players, their action-choice sets Ay, ..., A,
and their payoff functions Ry,...,R,. FEach payoff
function R; maps an action choice for each of the play-
ers to a scalar reward value.

A one-stage policy for player i, m;, is a probability
distribution over its actions A;. The expected pay-
off to player i when players adopt one-stage policies
T1,...,Ty is abbreviated R;(m,...,m,), which is just
the expected value of the values of R; weighted by the
probabilities under the given one-stage policies.

Every one-stage general-sum n-player game has a
Nash equilibrium. This is a set of one-stage policies
1, ..., T, such that no player can improve its expected
payoff by unilaterally changing its one-stage policy:

Ri(m,---,ﬂn) > Ri("rl:---:Wiflaﬂéaﬂi+1;--->7rn):
(1)
for all one-stage policies 7} and 1 < i < n. A game
can have more than one Nash equilibrium, and the
expected payoff to player ¢ can vary depending on the

equilibrium considered.



Of central importance in this paper are two special
kinds of Nash equilibria. An adversarial equilibrium
satisfies Equation 1 and also has the property that no
player i is hurt by any change of the other players:

! ! ! !
Ri(’”l; v >7rn) S Ri(’nl) ey T s Ty Ty e >7rn)7
for all combinations of one-stage policies «,... 7).
Not every game has an adversarial equilibrium. How-
ever, in a two-player zero-sum game R; = —R> and
all equilibria are adversarial equilibria (Equation 1 im-

plies Equation 2 in this case).

In a coordination equilibrium, all players achieve their
highest possible value:

Ri(’frl,... Ri(al,...,an) (3)

Tn) = max

’ n) a1€EAL,...,an €A,
Once again, such an equilibrium need not always exist.
However, in fully cooperative games Ry = Ry = --- =
R, and there is at least one coordination equilibrium.

As a concrete example of equilibria, consider the two-
player one-stage game defined by the following pair of
matrices, with row player 1 and column player 2:

-1 2 1 2
row:R; = [ 01 ] ,column:Ry = { 0 -1 } . (@)
Consider the pair of one-stage policies m; = (0, 1),

m2 = (1,0). This is a Nash equilibrium since row’s
payoff of 0 would be worse (—1) if row changed to ac-
tion 1, and column’s payoff of 0 would be worse (—1)
if column changed to action 2. In addition, it is an
adversarial equilibrium, since row’s payoff would im-
prove (to 1) if column changed actions, and column’s
payoff would improve (to 1) if row changed actions.

On the other hand, the pair of one-stage policies p; =
(1,0), p2 = (0,1) is a coordination equilibrium, since
both players receive their maximum payoff of 2.

Equation 4 shows that a game can have coordination
and adversarial equilibria with different values. In a
game with both types of equilibria, either the coordi-
nation equilibria have a higher value than the adver-
sarial equilibria or both players have constant-valued
payoff functions: Ry = ¢1, Rz = ¢».

1.2 Markov Games

A Markov game is a generalization of the one-stage
game to multiple stages. A game consists of a finite set
of states S. Each state s € S has its own payoff func-
tions as in the one-stage game scenario. In addition,
there is a transition function that takes a state and an
action choice for each player and returns a probability

distribution over next states. In this setting, a policy
maps states to probability distributions over actions.

The wvalue for a player in a game, given discount fac-
tor 0 < v < 1, is the discounted sum of payoffs. In
particular, let mq,...,m, be a set of policies for the n
players. The @ function for player i is defined to be

Qi(s,a1,..

an) = Ri(s,a1,...,a,)
), (5)

+v Z T(s,a1,-..,an,8)Q:(s ,m,...
s'eS

where Q;(s',71,...,m,) is a weighted sum of the values
of Q;(s',al,...,al,) according to the ws. The value of
Equation 5 represents the value to player i when the
state is s and the players choose actions a; through a,,

then continue using their policies.

Filar and Vrieze (1997) showed how the Q function
links Markov games and one-stage games. Treating
the Q functions at each state as payoff functions for
individual one-stage games, the policies at the individ-
ual states are in equilibrium if and only if the overall
multistage policies are in equilibrium. Therefore, an
equilibrium for a Markov game can be found by finding
a Q function with the appropriate properties.

2. Nash-Q

This section describes a method for learning a Q func-
tion for a player from experience interacting with other
players in the game. Experience takes the form of a tu-
ple (s,a1,...,an,s",r1,...,r,), where the game starts
in state s, players choose the given actions, and a tran-
sition occurs to state s’ with the given payoffs received.
The Nash-Q learning rule (Hu & Wellman, 1998) works
by maintaining a set of approximate Q functions and
updating them by

Qi[s,a1,...,a,]) == (1 — a)Qi[s,a1,...,a,]+
Qg (’I”i +7NaShi(SaQ17"'7Qn)) (6)
each time a new experience occurs. Here,

Nash;(s,Q1,...,Qn) = Qi(s,m1,...,7,) where the 7s
are a Nash equilibrium for the one-stage game defined
by the Q functions @1, ...,Q, at state s. The values
ay are a sequence of learning rates, and this paper as-
sumes they satisfy the standard stochastic approxima-
tion conditions for convergence (Jaakkola et al., 1994)
(square summable, but not summable).

The principle motivation behind this choice of learning
rule is that in single-player games (Markov decision
processes), the Nash function is a simple maximiza-
tion. Thus, in this case, the update rule reduces to



Q-learning, which is known to converge to optimal val-
ues (Watkins & Dayan, 1992). Similarly, restricted to
zero-sum games, the Nash function is a minimax func-
tion. In this case, the update rule reduces to minimax-
Q, which is also known to converge to optimal values
(a Nash equilibrium; Littman & Szepesvari, 1996).

The major difference between the general Nash func-
tion and both maximization and minimax is that the
latter two have unique values whereas Nash does not.
Consider, for example, the example in Equation 4,
which can have value 0 or 2 depending on the Nash
equilibrium considered. As a result, the Nash-Q learn-
ing rule in Equation 6, where Nash returns the value
of an arbitrary equilibrium, cannot converge since it
may use a different value at each update.

Hu and Wellman (1998) recognized that adversarial
and coordination equilibria are unique.

Proposition 1 If a one-stage game has a coordina-
tion equilibrium, all of its coordination equilibria have
the same value.

Proof: This is fairly direct, as, in each equilibrium,
players get their unique maximum value. [ |

Proposition 2 If a one-stage game has an adversar-
ial equilibrium, all of its adversarial equilibria have the
same value.

Proof: Let m,...,m, and pq,...,p, be two ad-
versarial equilibria for a one-stage game with payoffs
Ry,...,R,. Comparing the expected payoff for player
i under the 7 equilibrium to that of the p equilibrium,

Ri(my,...,70)
> Ri(Ti,- oy M1, Ty M1, - - - Tp)
= Ri(pll7'"’p;717pi’p;:+1""’p’ln,)
> Ri(p1,---,pn)

These three statements follow from Equation 1 of the 7
equilibrium, setting the arbitrary one-stage policies to
particular values, and Equation 2 of the p equilibrium,
respectively. Repeating this argument reversing the
roles of m and p shows that the expected payoff to
player ¢ under both equilibria must be the same. ™

Because of the uniqueness of the value of adversarial
and coordination equilibria, their existence could pos-
sibly play a role in ensuring convergence of a general-
sum reinforcement-learning algorithm. Let us define
the following two conditions:

Condition A: There exists an adversarial equilibrium
for the entire game.

Condition B: There exists a coordination equilibrium
for the entire game.

In fact, it is not known whether Nash-Q converges un-
der these conditions. Hu and Wellman (1998) (clari-
fied by Bowling, 2000) used two stronger conditions to
prove convergence:

Condition A+: There exists an adversarial equilib-
rium for the entire game and for every game defined
by the Q functions encountered during learning.

Condition B+: There exists a coordination equilib-
rium for the entire game and for every game defined
by the Q functions encountered during learning.

As stated, even Conditions A+ and B+ are not suffi-
cient to guarantee convergence. It is necessary for the
same type of equilibrium to be returned by the Nash
subroutine and used in the value updates throughout
the learning process.

There are many ways to provide this strong consis-
tency guarantee. One is to assume that the algorithm
never encounters a one-stage game with multiple equi-
libria. This results in extremely restrictive conditions,
but no change in the algorithm. It is possible that
this is the interpretation intended by Hu and Wellman
(1998) as formalized in the following theorem.

Theorem 3 Under Conditions A+ or B+, Nash-Q
converges to a Nash equilibrium as long as all equilibria
encountered during learning are unique.

Another approach to guaranteeing update consistency
is to ensure that the learning algorithm knows pre-
cisely which type of equilibrium to use in value up-
dates. This approach requires weaker assumptions
than Theorem 3, but demands that the learning algo-
rithm be informed in advance as to which equilibrium
type to use in all value updates. This requirement is
formalized in the following theorem.

Theorem 4 Under Conditions A+ or B+, Nash-Q
converges to a Nash equilibrium as long as the corre-
sponding equilibrium type is always used in Equation 6.

3. Friend-or-Foe Q-learning

Friend-or-Foe Q-learning (FFQ) is motivated by the
idea that the conditions of Theorem 3 are too strict be-
cause of the requirements it places on the intermediate
values of learning. The conditions of Theorem 4 are
more realistic—as long as we let the algorithm know



what kind of opponent! to expect: “friend” (coordi-
nation equilibrium) or “foe” (adversarial equilibrium).
However, given this additional information about its
opponents, a more direct learning algorithm suffices,
as described next.

For simplicity, this section describes the two-player
version of FFQ from the perspective of player 1. In
FFQ, the learner maintains a Q function only for it-
self. The update performed is Equation 6 with

Nashy (s, Q1,Q2) = Qis,a1,a2]  (7)

max
a1€A1,a2€A>

if the opponent is considered a friend and

max min
m€ll(Ar) az€A2

NaShl (87 Ql: QQ) =
a1 €Ay

(8)
if the opponent is considered a foe. Equation 7 is just
ordinary Q-learning in the combined action space of
the two players. Equation 8 is minimax-Q and can be
implemented via a straightforward linear program.

For completeness, the following is FFQ’s replacement
for the Nash function in n-player games. Let Xj
through X be the actions available to the k friends of
player i and Y; through Y; be the actions available to
its [ foes. Then, the value for a state is calculated as

Nash;(s,Q1,...,Qn) =

max min E
II( X1 %X X e YIEYT XX Y]
mell(Xq k) Yl,--Y1EYL e XX X

77(561) "'F(mk)Qi[Saxla-"7mkay17'"7yl]'

The idea is simply that i’s friends are assumed to work
together to maximize i’s value, while i’s foes are work-
ing together to minimize i’s value. Thus, n-player FFQ
treats any game as a two-player zero-sum game with
an extended action set.

Theorem 5 Friend-or-foe Q-learning converges.

The theorem follows from the convergence of minimax-
Q. Of course, the standard assumptions on learning
rates are required. In brief, Littman and Szepesvéari
(1996) showed that the following non-expansion con-
dition is sufficient to guarantee convergence: for all

Ql: Qlly and S,
[Nash; (s, Q1,...) — Nashy (s,Q7,...)] <
max |Q1 (s, a1, a2) — Q) (s, a1,az)|-
a1,a2
!For lack of a better word, this paper uses “opponent”

to refer to the other player, independent of whether it acts
in an oppositional manner.

m(a1)@Q1s, a1, as]

This condition holds when Nash is max or minimax; it
does not hold for the general Nash function.

In general, the values learned by FFQ will not corre-
spond to those of any Nash equilibrium policy. How-
ever, there are special cases in which it will. Let
Friend-Q denote FFQ assuming all opponents are
friends and Foe-Q denote FFQ assuming all its oppo-
nents are foes. We have the following theorem, parallel
to Theorem 4.

Theorem 6 Foe-(Q) learns values for a Nash equilib-
rium policy if the game has an adversarial equilibrium
(Condition A) and Friend-Q learns values for a Nash
equilibrium policy if the game has a coordination equi-
librium (Condition B). This is true regardless of op-
ponent behavior.

Proof: Because of the connection between equilibria
in Markov games and one-stage games mentioned in
Section 1.2, it is sufficient to show that the value of
a coordination equilibrium in a one-stage game is the
maximum payoff (true by definition) and that value of
an adversarial equilibrium in a one-stage game is the
minimax value (shown next).

Let Ry, ..., R, be the payoffs in a one-stage game. Let
m, ..., Ty be one-stage policies that achieve the mini-
max value for player 1 (assuming all other players act
as a team). Thus, Ry (my,...,m,) > Ri(ny, 72, ..., 7p)
and Ry(my,...,m) < Ry(my, 7, ...,m,) for arbitrary
one-stage policy 7} and set of policies 7}, ..., w! . Let
p1,---,Pn be a set of one-stage policies in adversarial
equilibrium. Compare the expected payoff to player 1
under 7 and p:

R1(7T1,...,7Tn) Z Rl(ﬂ'i,ﬂ'Q,...,ﬂ'n)
= Rl(plapéa'--ap;)
Z Rl(pl,---,pn)-
The first inequality follows from the fact that m
is minimax, the equality from taking 7} = p; and
Phyeney Py = m2,...,mp, and the second inequality

from Equation 2.

Similarly, we have

Ri(p1,--spn) > Ri(pi,p2,---5pn)
= Rl(ﬂ'l,ﬂ'é,...,ﬂ';t)
> Ri(mi,...,mp)-

The first inequality follows from Equation 1, the equal-
ity from taking pj = m and @, ..., 7, = p2,-. -, Pn,
and the second inequality because 7 is minimax.

Thus, the value of an adversarial equilibrium for a
player can be found by a minimax calculation using
only its own payoffs. [ ]



Regardless of the game, there is an interpretation to
the values learned by Foe-Q.

Theorem 7 Foe-Q) learns a Q function whose corre-
sponding policy will achieve at least the learned values,
regardless of the opponent’s selected policy.

This is a straightforward consequence of the use of
minimax in the update rule of Foe-Q.

4. Examples

This section describes the behavior of FFQ and Nash-
Q in two simple 2-player games. Since FFQ’s conver-
gence is guaranteed, idealized results are given; empir-
ical results are cited for Nash-Q. The games are de-
scribed by Hu and Wellman (2000) and are depicted
in Figure 1. In both games, the players can move si-
multaneously in the four compass directions. Hitting
a wall is a no-op. The first player to reach its goal
receives 100 points. In the event of a tie, both players
are rewarded (non-zero sum). If two players collide
(try to enter the same grid position), each receives —1
and no motion occurs.

In grid game 1, both players can receive their max-
imum score. However, since their paths must cross,
they need to coordinate to ensure that they don’t col-
lide. The game has several non-trivial coordination
equilibria corresponding to the direct, collision-free
paths for the two players. Nash-Q consistently learns
correct values in this game (Hu & Wellman, 2000).

A Friend-Q learner finds the same values as Nash-Q.
Both Nash-Q and Friend-Q have the difficulty that the
existence of equal-valued non-compatible coordination
equilibria means that it is possible that following a
greedy policy with respect to the learned values may
not, achieve the learned value. For example, it is pos-
sible that player A chooses E from the start state and
player B chooses W. Although both of these actions
are part of coordination equilibria and are assigned
maximal value, their combination results in disaster—
neither player reaches the goal.

In grid game 1, a Foe-Q learner will assign a 0 value to
the start state, as the opponent can always prevent the
learner from reaching its goal. Although it is possible
that the learner will choose actions that will cause it
to reach the goal in a timely fashion (for example,
if it chooses N-N-W-W and the opponent chooses
E-E-N-N), it is just as likely that the learner will
simply remain “cowering” in its initial position while
the other player completes the game. However, the
worst that a Foe-Q learner will receive is 0, compared
to the substantial negative value possible of Friend-Q

if non-compatible actions are selected.

Grid game 2 is different in that it possesses neither a
coordination nor an adversarial equilibrium. A player
that chooses to pass through the barrier (heavy line
in figure) gets through with probability 1/2 and risks
being beaten to the goal half the time by an opponent
that uses the center passage. On the other hand, since
both players cannot use the center passage simultane-
ously, it is not possible for both players to receive their
maximum score. Bowling (2000) found that simple Q
learners consistently identify a Nash equilibrium (one
player uses the center passage, the other attempts to
pass through the barrier). Hu and Wellman (2000)
showed that Nash-Q learners will often identify equi-
libria, but the probability depended on how the Nash
function was implemented.

Friend-Q learns to use the center passage in grid
game 2. Whether this strategy is reasonable or not de-
pends on the behavior of the opponent. If both players
are Friend-Q learners, say, both will choose the center
passage to their mutual disadvantage.

A Foe-Q learner will avoid the possibility of conflict in
the center passage by attempting to cross the barrier.
Half of the time, this will be successful regardless of
the opponent’s choice of action.

In both of these examples, Friend-Q and Foe-Q behave
reasonably given their respective assumptions on the
behavior of their opponents. Nevertheless, neither is
ideal, as discussed in the next section.

5. Discussion

Simply put, the goal of learning is to maximize ex-
pected payoff. In a game, this goal is complicated by
the fact that opponents cannot be directly controlled
and may behave according to unknown policies. De-
pending on assumptions about opponents’ behavior,
there are many different ways to approach the learn-
ing problem.

To help explore the space of possible learning strate-
gies, consider again grid game 2, described in the pre-
vious section. The most critical decision a player must
make in the game is in the first step, when it decides
whether to move to the center (C) or through the bar-
rier (B). The game can be approximated by the simple
one-stage game defined by

C B
B = C [ —100 +100
1= B +50 466

and Ry = RY. This game is known in the game the-
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Figure 1. Two general-sum grid games.

ory literature as “chicken”, because the player that is
bold enough to use the center passage is the big win-
ner, while the “chicken” that goes through the barrier
scores less well. Of course, pairing off two center play-
ers is a disaster for all parties, as they collide entering
the center passage.

Depending on the opponent faced, the learner can ap-
proach this game in several different ways:

worst case opponent: An adversary chooses the op-
ponent used to evaluate the learner. Foe-Q finds the
optimal policy for this scenario, which is B. It is ex-
tremely pessimistic, which can lead to overly conser-
vative policies in some games.

best case opponent: The opponent will choose ac-
tions in a way that benefits the learner. This is appro-
priate only in purely cooperative settings, and is the
perspective taken by Friend-Q, which selects C here.

unknown fixed opponent: The opponent faced dur-
ing learning executes a fixed policy, which is used
to evaluate the learning player. Q-learning finds the
best response—the payoff maximizing policy with re-
spect to the fixed opponent—in this scenario. Unfortu-
nately, Q-learning need not learn an optimal policy if
its opponents are not fixed—if they are also Q-learners,
for example.

Nash opponent: In multiagent learning scenarios, it
is reasonable to imagine that all players will continue
adapting their behavior until they find a best response
to the others. Under this assumption, the end result
will be a Nash equilibrium. Therefore, finding a Nash
equilibrium is a reasonable goal for a learner. How-
ever, it is not justified for a player to choose actions
according to an arbitrary Nash equilibrium, since this
does not maximize payoff. A more sensible approach,
which has not been well explored, is choosing a Nash
equilibrium policy that is somehow “close” to a best

response to the observed behavior of the opponent.

best response opponent: If the learner assumes its
opponents will adopt best response policies to its ac-
tions, it can choose a policy that maximizes its pay-
off under this assumption. Some early explorations
of this approach in one-stage games indicate that all
players can benefit in this scenario (Littman & Stone,
2001). By including simple history features, players
can stabilize mutually beneficial strategies using the
“threat” of aggressive punishment actions. For exam-
ple, a player can propose to alternate between C and
B, making it possible for both players to average +75.
If the proposal is not accepted, the player can punish
the opponent by executing C. A smart opponent will
recognize that accepting this proposal is in its best in-
terest. It is a multi-step Nash equilibrium, somewhat
like tit-for-tat in the Prisoner’s dilemma.

fixed-or-best-response opponent: The opponent
types listed above can be roughly categorized into fixed
strategies and best-response strategies. Another ap-
proach is to assume opponents belong to one of these
two types and to attempt to identify which. Depend-
ing on the result, an appropriate learning strategy can
be adopted. This seems like a very promising ap-
proach, and it has not received much attention.

Each of these assumptions on opponent type has ben-
efits and drawbacks. If there is a single best assump-
tion, it has yet to be recognized.

It is worth mentioning that grid game 2 admits an
even more sophisticated strategy in which the C player
stalls until the B player clears the barrier. This allows
both players to receive a full payoff of +100 (minus
the small expected penalty caused by the delay). It
is possible that human beings would have a difficult
time learning this policy, but it is worth studying the
kinds of reasoning required for learning algorithms to
converge to this kind of mutually beneficial behavior.



In a repeated game scenario, “sharing the wealth” like
this can be in a player’s self-interest if it prevents other
players from becoming disgruntled and acting uncoop-
eratively.

6. Conclusions

Friend-or-foe Q-learning (FFQ) provides an approach
to reinforcement learning in general-sum games. Like
Nash-Q, it should not be expected to find a Nash equi-
librium unless either a coordination or an adversarial
equilibrium exists.

Compared to Nash-Q, FFQ does not require learn-
ing estimates to the Q functions for opposing players,
is easy to implement for multiplayer (n > 2) games,
and provides guaranteed convergence. An extension of
Theorem 4 shows that it can find equilibria in a large
range of multiplayer games by mixing friends and foes.
In contrast, Nash-Q does not necessarily require that
the agent be told whether it is facing a “friend” or a
“foe”.

Foe-Q provides strong guarantees on the learned pol-
icy, specifically that the learner will act in a way that
will achieve its learned value independent of its op-
ponents’ action choices. Furthermore, it chooses the
policy that provides the largest such guarantee. Poli-
cies learned by Nash-Q need not have this property.

However, Friend-Q’s guarantees are considerably
weaker. Because of the possibility of incompatible co-
ordination equilibria, the learner might not achieve its
learned value, even if its opponent is a friend. Nash-Q
also provides no answer to this problem.

In addition, neither Nash-Q nor FFQ address the prob-
lem of finding equilibria in cases where neither coor-
dination nor adversarial equilibria exist. These are
the most interesting games of all, since some degree
of compromise is needed—the learner must be willing
to accept an intermediate outcome between assuming
its opponents will help it achieve its maximum value
and assuming the opponents will force it to achieve its
minimum value. This type of reasoning is much more
subtle and remains to be addressed adequately in the
field of reinforcement learning.
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