Datasets:
Tasks:
Question Answering
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
coreference-resolution
License:
| """TODO(quoref): Add a description here.""" | |
| import json | |
| import os | |
| import datasets | |
| # TODO(quoref): BibTeX citation | |
| _CITATION = """\ | |
| @article{allenai:quoref, | |
| author = {Pradeep Dasigi and Nelson F. Liu and Ana Marasovic and Noah A. Smith and Matt Gardner}, | |
| title = {Quoref: A Reading Comprehension Dataset with Questions Requiring Coreferential Reasoning}, | |
| journal = {arXiv:1908.05803v2 }, | |
| year = {2019}, | |
| } | |
| """ | |
| # TODO(quoref): | |
| _DESCRIPTION = """\ | |
| Quoref is a QA dataset which tests the coreferential reasoning capability of reading comprehension systems. In this | |
| span-selection benchmark containing 24K questions over 4.7K paragraphs from Wikipedia, a system must resolve hard | |
| coreferences before selecting the appropriate span(s) in the paragraphs for answering questions. | |
| """ | |
| _URL = "https://quoref-dataset.s3-us-west-2.amazonaws.com/train_and_dev/quoref-train-dev-v0.1.zip" | |
| class Quoref(datasets.GeneratorBasedBuilder): | |
| """TODO(quoref): Short description of my dataset.""" | |
| # TODO(quoref): Set up version. | |
| VERSION = datasets.Version("0.1.0") | |
| def _info(self): | |
| # TODO(quoref): Specifies the datasets.DatasetInfo object | |
| return datasets.DatasetInfo( | |
| # This is the description that will appear on the datasets page. | |
| description=_DESCRIPTION, | |
| # datasets.features.FeatureConnectors | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "question": datasets.Value("string"), | |
| "context": datasets.Value("string"), | |
| "title": datasets.Value("string"), | |
| "url": datasets.Value("string"), | |
| "answers": datasets.features.Sequence( | |
| { | |
| "answer_start": datasets.Value("int32"), | |
| "text": datasets.Value("string"), | |
| } | |
| ) | |
| # These are the features of your dataset like images, labels ... | |
| } | |
| ), | |
| # If there's a common (input, target) tuple from the features, | |
| # specify them here. They'll be used if as_supervised=True in | |
| # builder.as_dataset. | |
| supervised_keys=None, | |
| # Homepage of the dataset for documentation | |
| homepage="https://leaderboard.allenai.org/quoref/submissions/get-started", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| # TODO(quoref): Downloads the data and defines the splits | |
| # dl_manager is a datasets.download.DownloadManager that can be used to | |
| # download and extract URLs | |
| dl_dir = dl_manager.download_and_extract(_URL) | |
| data_dir = os.path.join(dl_dir, "quoref-train-dev-v0.1") | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": os.path.join(data_dir, "quoref-train-v0.1.json")}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": os.path.join(data_dir, "quoref-dev-v0.1.json")}, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| """Yields examples.""" | |
| # TODO(quoref): Yields (key, example) tuples from the dataset | |
| with open(filepath, encoding="utf-8") as f: | |
| data = json.load(f) | |
| for article in data["data"]: | |
| title = article.get("title", "").strip() | |
| url = article.get("url", "").strip() | |
| for paragraph in article["paragraphs"]: | |
| context = paragraph["context"].strip() | |
| for qa in paragraph["qas"]: | |
| question = qa["question"].strip() | |
| id_ = qa["id"] | |
| answer_starts = [answer["answer_start"] for answer in qa["answers"]] | |
| answers = [answer["text"].strip() for answer in qa["answers"]] | |
| # Features currently used are "context", "question", and "answers". | |
| # Others are extracted here for the ease of future expansions. | |
| yield id_, { | |
| "title": title, | |
| "context": context, | |
| "question": question, | |
| "id": id_, | |
| "answers": { | |
| "answer_start": answer_starts, | |
| "text": answers, | |
| }, | |
| "url": url, | |
| } | |