anonymous-nsc-author commited on
Commit
c5a4898
Β·
verified Β·
1 Parent(s): b5211c4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -3
README.md CHANGED
@@ -1,3 +1,78 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - audio
4
+ - speech-recognition
5
+ - neapolitan
6
+ - low-resource
7
+ license: cc-by-nc-4.0
8
+ ---
9
+ # Neapolitan-Spoken-Corpus (NSC)
10
+
11
+ **Neapolitan-Spoken-Corpus (NSC)** is the first publicly available speech corpus designed specifically for benchmarking Automatic Speech Recognition (ASR) systems on Neapolitan, a low-resource Romance dialect of Southern Italy. It includes 141 sentence-level audio recordings along with gold-standard orthographic transcriptions.
12
+
13
+ The dataset was created to address the lack of computational resources for dialectological research and the development of equitable speech technologies.
14
+
15
+ ## Dataset Description
16
+
17
+ - **Language:** Neapolitan (ISO 639-3: nap)
18
+ - **Audio Format:** `.m4a`
19
+ - **Number of Samples:** 141
20
+ - **Domains Covered:** Traditional plays, regional poetry, community blogs
21
+ - **Transcriptions:** Orthographic Neapolitan sentences provided by native speakers
22
+ - **Ethical Considerations:** All participants provided informed consent; dataset contains no personal or sensitive information.
23
+
24
+ ## Dataset Structure
25
+ ```
26
+ Neapolitan-Spoken-Corpus/
27
+ β”œβ”€β”€ audioData/
28
+ β”‚ β”œβ”€β”€ 002.m4a
29
+ β”‚ β”œβ”€β”€ 003.m4a
30
+ β”‚ β”œβ”€β”€ ...
31
+ β”‚ └── 142.m4a
32
+ β”œβ”€β”€ code/
33
+ β”‚ β”œβ”€β”€ generate_json.py
34
+ β”‚ β”œβ”€β”€ transcribe_whisper.py
35
+ β”‚ └── evaluate_metrics.py
36
+ β”œβ”€β”€ .gitattributes
37
+ β”œβ”€β”€ README.md
38
+ β”œβ”€β”€ requirements.txt
39
+ └── transcripts.csv
40
+ ```
41
+
42
+ ## Intended Uses & Limitations
43
+
44
+ The dataset is primarily intended for evaluating and developing ASR systems that support dialectal languages, particularly those with minimal computational resources. It provides a benchmark for dialect-aware speech recognition and can also support linguistic research in computational dialectology and language preservation.
45
+
46
+ ## How to Use
47
+
48
+ To use this dataset and its associated scripts:
49
+
50
+ ```bash
51
+ # Clone repository
52
+ git clone https://huggingface.co/datasets/anonymous-nsc-author/neapolitan-spoken-corpus
53
+ cd neapolitan-spoken-corpus
54
+ # Install dependencies
55
+ pip install -r requirements.txt
56
+ # (Optional) Generate sentences.json
57
+ python code/generate_json.py
58
+ # Transcribe audio files with Whisper ASR (requires OPENAI_API_KEY)
59
+ export OPENAI_API_KEY=your-key-here
60
+ python code/transcribe_whisper.py
61
+ # Evaluate transcription accuracy metrics (WER, BLEU, etc.)
62
+ python code/evaluate_metrics.py
63
+ ```
64
+
65
+ ## Evaluation Results
66
+
67
+ The dataset was evaluated using OpenAI's Whisper model with the language set to Standard Italian. The results indicate significant performance degradation on Neapolitan dialect speech:
68
+
69
+ | Metric | Mean | Std Dev | Min | Max |
70
+ |-------------------------|-------|---------|--------|--------|
71
+ | WER (1 - WER similarity)| 0.1306| 0.1654 | 0.0000 | 0.9091 |
72
+ | Levenshtein (normalized)| 0.6360| 0.1375 | 0.0870 | 0.9804 |
73
+ | BLEU | 0.0436| 0.0961 | 0.0000 | 0.8932 |
74
+ | Jaccard | 0.1078| 0.1294 | 0.0000 | 0.8333 |
75
+
76
+ ## Ethical Considerations
77
+
78
+ All participants involved in creating this dataset provided explicit informed consent. Audio and transcription data include no sensitive, private, or personally identifiable information.