| import os | |
| # os.environ['ATTN_BACKEND'] = 'xformers' # Can be 'flash-attn' or 'xformers', default is 'flash-attn' | |
| os.environ['SPCONV_ALGO'] = 'native' # Can be 'native' or 'auto', default is 'auto'. | |
| # 'auto' is faster but will do benchmarking at the beginning. | |
| # Recommended to set to 'native' if run only once. | |
| import imageio | |
| from PIL import Image | |
| from trellis.pipelines import TrellisImageTo3DPipeline | |
| from trellis.utils import render_utils, postprocessing_utils | |
| # Load a pipeline from a model folder or a Hugging Face model hub. | |
| pipeline = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS-image-large") | |
| pipeline.cuda() | |
| # Load an image | |
| image = Image.open("assets/example_image/T.png") | |
| # Run the pipeline | |
| outputs = pipeline.run( | |
| image, | |
| seed=1, | |
| # Optional parameters | |
| # sparse_structure_sampler_params={ | |
| # "steps": 12, | |
| # "cfg_strength": 7.5, | |
| # }, | |
| # slat_sampler_params={ | |
| # "steps": 12, | |
| # "cfg_strength": 3, | |
| # }, | |
| ) | |
| # outputs is a dictionary containing generated 3D assets in different formats: | |
| # - outputs['gaussian']: a list of 3D Gaussians | |
| # - outputs['radiance_field']: a list of radiance fields | |
| # - outputs['mesh']: a list of meshes | |
| # Render the outputs | |
| video = render_utils.render_video(outputs['gaussian'][0])['color'] | |
| imageio.mimsave("sample_gs.mp4", video, fps=30) | |
| video = render_utils.render_video(outputs['radiance_field'][0])['color'] | |
| imageio.mimsave("sample_rf.mp4", video, fps=30) | |
| video = render_utils.render_video(outputs['mesh'][0])['normal'] | |
| imageio.mimsave("sample_mesh.mp4", video, fps=30) | |
| # GLB files can be extracted from the outputs | |
| glb = postprocessing_utils.to_glb( | |
| outputs['gaussian'][0], | |
| outputs['mesh'][0], | |
| # Optional parameters | |
| simplify=0.95, # Ratio of triangles to remove in the simplification process | |
| texture_size=1024, # Size of the texture used for the GLB | |
| ) | |
| glb.export("sample.glb") | |
| # Save Gaussians as PLY files | |
| outputs['gaussian'][0].save_ply("sample.ply") | |