#!/usr/bin/env python3 import os import pandas as pd import pyarrow as pa import pyarrow.parquet as pq # —— Inputs (adjust if paths differ) CAPTIONS_CSV = "captions.csv" META_CSV = "case_metadata.csv" GOLD_CSV = "bboxes_gold.csv" RATERS_CSV = "bboxes_raters.csv" IMAGES_DIR = "images" OUT_DIR = "data" OUT_PARQUET = os.path.join(OUT_DIR, "nova-v1.parquet") os.makedirs(OUT_DIR, exist_ok=True) # —— Load CSVs captions = pd.read_csv(CAPTIONS_CSV) meta = pd.read_csv(META_CSV) gold = pd.read_csv(GOLD_CSV) raters = pd.read_csv(RATERS_CSV) # —— Normalize key columns as strings for df in (captions, meta, gold, raters): if "case_id" in df.columns: df["case_id"] = df["case_id"].astype(str) if "scan_id" in df.columns: df["scan_id"] = df["scan_id"].astype(str) if "filename" in df.columns: df["filename"] = df["filename"].astype(str) # —— Build the master list of images (from captions) # If you prefer, you can take the union of filenames from all CSVs. images = captions[["filename", "case_id", "scan_id", "caption"]].copy() images["caption"] = images["caption"].fillna("").astype(str) images.rename(columns={"caption": "caption_text"}, inplace=True) # Add image_path and split images["image_path"] = IMAGES_DIR + "/" + images["filename"] images["split"] = "test" # —— Prepare per-case metadata as a dict so we can merge by case_id meta_cols = [ "title", "publication_date", "clinical_history", "differential_diagnosis", "final_diagnosis", "link" ] meta = meta[["case_id"] + meta_cols].copy() # Merge per-image with per-case meta (left join by case_id) df = images.merge(meta, on="case_id", how="left") # —— Prepare gold bboxes # Required columns: filename, x, y, width, height gold_cols = ["filename", "x", "y", "width", "height"] gold_use = gold[["filename", "x", "y", "width", "height"]].copy() gold_use["source"] = "gold" gold_use["label"] = "" # no label provided; keep empty string # —— Prepare rater bboxes # Required columns: filename, rater, x, y, width, height r_cols = ["filename", "rater", "x", "y", "width", "height"] raters_use = raters[r_cols].copy() raters_use.rename(columns={"rater": "source"}, inplace=True) raters_use["label"] = "" # —— Stack gold + raters, then group per filename into list[struct] all_boxes = pd.concat([gold_use, raters_use], ignore_index=True) def pack_boxes(group: pd.DataFrame): # Convert rows -> list of dicts with fixed keys return [ { "x": float(row["x"]), "y": float(row["y"]), "width": float(row["width"]), "height": float(row["height"]), "source": str(row["source"]), "label": str(row["label"]), } for _, row in group.iterrows() ] boxes_per_file = ( all_boxes .groupby("filename", sort=False, group_keys=False) .apply(pack_boxes) .rename("bboxes") .reset_index() ) # Attach bboxes to df by filename; missing -> empty list df = df.merge(boxes_per_file, on="filename", how="left") df["bboxes"] = df["bboxes"].apply(lambda v: v if isinstance(v, list) else []) # —— Build a nested Arrow schema for clean typing bbox_struct = pa.struct([ ("x", pa.float64()), ("y", pa.float64()), ("width", pa.float64()), ("height", pa.float64()), ("source", pa.string()), ("label", pa.string()), ]) meta_struct = pa.struct([ ("title", pa.string()), ("publication_date", pa.string()), # keep as-is (e.g., 30.03.2022); can normalize later ("clinical_history", pa.string()), ("differential_diagnosis", pa.string()), ("final_diagnosis", pa.string()), ("link", pa.string()), ]) schema = pa.schema([ ("image_path", pa.string()), ("filename", pa.string()), ("split", pa.string()), ("case_id", pa.string()), ("scan_id", pa.string()), ("caption_text", pa.string()), ("bboxes", pa.list_(bbox_struct)), ("meta", meta_struct), ]) for col in ["title", "publication_date", "clinical_history", "differential_diagnosis", "final_diagnosis", "link"]: if col in df.columns: df[col] = df[col].fillna("").astype(str) # —— Build Arrow arrays column by column def to_arrow_array_list_of_struct(list_of_dicts, struct_type): # list_of_dicts: python list of dicts with keys matching struct_type # returns: pa.Array(list) if not list_of_dicts: # represent empty with empty list return pa.array([], type=pa.list_(struct_type)) # we will build a ListArray from a chunk; handle per row later raise RuntimeError("This helper is row-wise; we will build below with pa.array on the full column.") # Build meta struct column meta_dicts = df[meta_cols].to_dict(orient="records") meta_array = pa.array(meta_dicts, type=meta_struct) # Build bboxes list column # Flatten per row using pa.array with explicit type bboxes_array = pa.array(df["bboxes"].tolist(), type=pa.list_(bbox_struct)) # Build the rest as Arrow arrays table = pa.Table.from_arrays( [ pa.array(df["image_path"].tolist(), type=pa.string()), pa.array(df["filename"].tolist(), type=pa.string()), pa.array(df["split"].tolist(), type=pa.string()), pa.array(df["case_id"].tolist(), type=pa.string()), pa.array(df["scan_id"].tolist(), type=pa.string()), pa.array(df["caption_text"].tolist(), type=pa.string()), bboxes_array, meta_array, ], schema=schema ) # —— Optional: sanity checks # - ensure files referenced actually exist missing = [p for p in df["image_path"] if not os.path.exists(p)] if missing: print(f"[WARN] {len(missing)} image paths do not exist locally. First few:", missing[:5]) # —— Write Parquet pq.write_table(table, OUT_PARQUET) print(f"Wrote {OUT_PARQUET} with {table.num_rows} rows.")