Matej Klemen
commited on
Commit
·
b3d2e59
1
Parent(s):
c8f8673
Add paragraph-level aggregation
Browse files
README.md
CHANGED
|
@@ -41,7 +41,12 @@ document available at https://www.clarin.si/repository/xmlui/bitstream/handle/11
|
|
| 41 |
|
| 42 |
By default the dataset is provided at **sentence-level** (125867 instances): each instance contains a source (the original) and a target (the corrected) sentence. Note that either the source or the target sentence in an instance may be missing - this usually happens when a source sentence is marked as redundant or when a new sentence is added by the teacher. Additionally, a source or a target sentence may appear in multiple instances - for example, this happens when one sentence gets divided into multiple sentences.
|
| 43 |
|
| 44 |
-
There is also an option to aggregate the instances at the **document-level**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
### Supported Tasks and Leaderboards
|
| 47 |
|
|
|
|
| 41 |
|
| 42 |
By default the dataset is provided at **sentence-level** (125867 instances): each instance contains a source (the original) and a target (the corrected) sentence. Note that either the source or the target sentence in an instance may be missing - this usually happens when a source sentence is marked as redundant or when a new sentence is added by the teacher. Additionally, a source or a target sentence may appear in multiple instances - for example, this happens when one sentence gets divided into multiple sentences.
|
| 43 |
|
| 44 |
+
There is also an option to aggregate the instances at the **document-level** or **paragraph-level**
|
| 45 |
+
by explicitly providing the correct config:
|
| 46 |
+
```
|
| 47 |
+
datasets.load_dataset("cjvt/solar3", "paragraph_level")`
|
| 48 |
+
datasets.load_dataset("cjvt/solar3", "document_level")`
|
| 49 |
+
```
|
| 50 |
|
| 51 |
### Supported Tasks and Leaderboards
|
| 52 |
|
solar3.py
CHANGED
|
@@ -126,6 +126,7 @@ def read_data(data_path):
|
|
| 126 |
data[id_sent] = {
|
| 127 |
"id_doc": id_text,
|
| 128 |
"doc_title": text_title,
|
|
|
|
| 129 |
"id_token": ids, "form": forms, "lemma": lemmas, "ana": msds_jos, "msd": msds_ud, "ne_tag": nes, "space_after": spaces_after,
|
| 130 |
"is_manually_validated": is_manually_validated
|
| 131 |
}
|
|
@@ -142,6 +143,8 @@ class Solar3(datasets.GeneratorBasedBuilder):
|
|
| 142 |
BUILDER_CONFIGS = [
|
| 143 |
datasets.BuilderConfig(name="sentence_level", version=VERSION,
|
| 144 |
description="Annotations at sentence-level."),
|
|
|
|
|
|
|
| 145 |
datasets.BuilderConfig(name="document_level", version=VERSION,
|
| 146 |
description="Annotations at document-level."),
|
| 147 |
]
|
|
@@ -225,10 +228,14 @@ class Solar3(datasets.GeneratorBasedBuilder):
|
|
| 225 |
|
| 226 |
if len(involved_src_sents) > 0:
|
| 227 |
src_sent_data = deepcopy(source_data[involved_src_sents[0]])
|
|
|
|
|
|
|
| 228 |
|
| 229 |
for src_sent_id in involved_src_sents[1:]:
|
| 230 |
curr_sent_data = source_data[src_sent_id]
|
|
|
|
| 231 |
src_sent_data["id_token"].extend(curr_sent_data["id_token"])
|
|
|
|
| 232 |
src_sent_data["form"].extend(curr_sent_data["form"])
|
| 233 |
src_sent_data["lemma"].extend(curr_sent_data["lemma"])
|
| 234 |
src_sent_data["ana"].extend(curr_sent_data["ana"])
|
|
@@ -244,10 +251,14 @@ class Solar3(datasets.GeneratorBasedBuilder):
|
|
| 244 |
|
| 245 |
if len(involved_tgt_sents) > 0:
|
| 246 |
tgt_sent_data = deepcopy(target_data[involved_tgt_sents[0]])
|
|
|
|
|
|
|
| 247 |
|
| 248 |
for tgt_sent_id in involved_tgt_sents[1:]:
|
| 249 |
curr_sent_data = target_data[tgt_sent_id]
|
|
|
|
| 250 |
tgt_sent_data["id_token"].extend(curr_sent_data["id_token"])
|
|
|
|
| 251 |
tgt_sent_data["form"].extend(curr_sent_data["form"])
|
| 252 |
tgt_sent_data["lemma"].extend(curr_sent_data["lemma"])
|
| 253 |
tgt_sent_data["ana"].extend(curr_sent_data["ana"])
|
|
@@ -288,6 +299,7 @@ class Solar3(datasets.GeneratorBasedBuilder):
|
|
| 288 |
"id_doc": id_doc[:-1], # doc ID without the "s" or "t" info
|
| 289 |
"doc_title": doc_title,
|
| 290 |
"is_manually_validated": is_manually_validated,
|
|
|
|
| 291 |
"id_src_tokens": src_sent_data.get("id_token", []),
|
| 292 |
"src_tokens": src_sent_data.get("form", []),
|
| 293 |
"src_ling_annotations": {
|
|
@@ -297,6 +309,7 @@ class Solar3(datasets.GeneratorBasedBuilder):
|
|
| 297 |
"ne_tag": src_sent_data.get("ne_tag", []),
|
| 298 |
"space_after": src_sent_data.get("space_after", [])
|
| 299 |
},
|
|
|
|
| 300 |
"id_tgt_tokens": tgt_sent_data.get("id_token", []),
|
| 301 |
"tgt_tokens": tgt_sent_data.get("form", []),
|
| 302 |
"tgt_ling_annotations": {
|
|
@@ -309,6 +322,94 @@ class Solar3(datasets.GeneratorBasedBuilder):
|
|
| 309 |
"corrections": corr_data
|
| 310 |
}
|
| 311 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
@staticmethod
|
| 313 |
def aggregate_docs(sent_level_data):
|
| 314 |
# NOTE: assuming here that `sent_level_data` is pre-sorted by id_doc, which is done in the raw data
|
|
@@ -397,9 +498,12 @@ class Solar3(datasets.GeneratorBasedBuilder):
|
|
| 397 |
sent_level_data = list(Solar3.generate_sentences(source_path, target_path, links_path))
|
| 398 |
|
| 399 |
if self.config.name == "sentence_level":
|
| 400 |
-
# Remove IDs that are only useful for aggregating the document-level data
|
| 401 |
for i, instance in sent_level_data:
|
| 402 |
-
yield i, {_k: _v for _k, _v in instance.items() if _k not in {"id_src_tokens", "id_tgt_tokens"
|
|
|
|
|
|
|
|
|
|
| 403 |
else:
|
| 404 |
yield from list(Solar3.aggregate_docs(sent_level_data))
|
| 405 |
|
|
|
|
| 126 |
data[id_sent] = {
|
| 127 |
"id_doc": id_text,
|
| 128 |
"doc_title": text_title,
|
| 129 |
+
"idx_par": idx_par,
|
| 130 |
"id_token": ids, "form": forms, "lemma": lemmas, "ana": msds_jos, "msd": msds_ud, "ne_tag": nes, "space_after": spaces_after,
|
| 131 |
"is_manually_validated": is_manually_validated
|
| 132 |
}
|
|
|
|
| 143 |
BUILDER_CONFIGS = [
|
| 144 |
datasets.BuilderConfig(name="sentence_level", version=VERSION,
|
| 145 |
description="Annotations at sentence-level."),
|
| 146 |
+
datasets.BuilderConfig(name="paragraph_level", version=VERSION,
|
| 147 |
+
description="Annotations at paragraph-level."),
|
| 148 |
datasets.BuilderConfig(name="document_level", version=VERSION,
|
| 149 |
description="Annotations at document-level."),
|
| 150 |
]
|
|
|
|
| 228 |
|
| 229 |
if len(involved_src_sents) > 0:
|
| 230 |
src_sent_data = deepcopy(source_data[involved_src_sents[0]])
|
| 231 |
+
if not isinstance(src_sent_data["idx_par"], list):
|
| 232 |
+
src_sent_data["idx_par"] = [src_sent_data["idx_par"]]
|
| 233 |
|
| 234 |
for src_sent_id in involved_src_sents[1:]:
|
| 235 |
curr_sent_data = source_data[src_sent_id]
|
| 236 |
+
|
| 237 |
src_sent_data["id_token"].extend(curr_sent_data["id_token"])
|
| 238 |
+
src_sent_data["idx_par"].append(curr_sent_data["idx_par"])
|
| 239 |
src_sent_data["form"].extend(curr_sent_data["form"])
|
| 240 |
src_sent_data["lemma"].extend(curr_sent_data["lemma"])
|
| 241 |
src_sent_data["ana"].extend(curr_sent_data["ana"])
|
|
|
|
| 251 |
|
| 252 |
if len(involved_tgt_sents) > 0:
|
| 253 |
tgt_sent_data = deepcopy(target_data[involved_tgt_sents[0]])
|
| 254 |
+
if not isinstance(tgt_sent_data["idx_par"], list):
|
| 255 |
+
tgt_sent_data["idx_par"] = [tgt_sent_data["idx_par"]]
|
| 256 |
|
| 257 |
for tgt_sent_id in involved_tgt_sents[1:]:
|
| 258 |
curr_sent_data = target_data[tgt_sent_id]
|
| 259 |
+
|
| 260 |
tgt_sent_data["id_token"].extend(curr_sent_data["id_token"])
|
| 261 |
+
tgt_sent_data["idx_par"].append(curr_sent_data["idx_par"])
|
| 262 |
tgt_sent_data["form"].extend(curr_sent_data["form"])
|
| 263 |
tgt_sent_data["lemma"].extend(curr_sent_data["lemma"])
|
| 264 |
tgt_sent_data["ana"].extend(curr_sent_data["ana"])
|
|
|
|
| 299 |
"id_doc": id_doc[:-1], # doc ID without the "s" or "t" info
|
| 300 |
"doc_title": doc_title,
|
| 301 |
"is_manually_validated": is_manually_validated,
|
| 302 |
+
"idx_src_par": src_sent_data.get("idx_par", []),
|
| 303 |
"id_src_tokens": src_sent_data.get("id_token", []),
|
| 304 |
"src_tokens": src_sent_data.get("form", []),
|
| 305 |
"src_ling_annotations": {
|
|
|
|
| 309 |
"ne_tag": src_sent_data.get("ne_tag", []),
|
| 310 |
"space_after": src_sent_data.get("space_after", [])
|
| 311 |
},
|
| 312 |
+
"idx_tgt_par": tgt_sent_data.get("idx_par", []),
|
| 313 |
"id_tgt_tokens": tgt_sent_data.get("id_token", []),
|
| 314 |
"tgt_tokens": tgt_sent_data.get("form", []),
|
| 315 |
"tgt_ling_annotations": {
|
|
|
|
| 322 |
"corrections": corr_data
|
| 323 |
}
|
| 324 |
|
| 325 |
+
@staticmethod
|
| 326 |
+
def aggregate_pars(sent_level_data):
|
| 327 |
+
# TODO: the code is a copypaste of the document aggregation, with an additional groupby - could use a refactor
|
| 328 |
+
uniq_idx_par = 0
|
| 329 |
+
for idx_doc, (curr_id, curr_group) in enumerate(groupby(sent_level_data, key=lambda tup: tup[1]["id_doc"])):
|
| 330 |
+
curr_instances = list(map(lambda tup: tup[1], curr_group)) # remove the redundant index info from datasets
|
| 331 |
+
|
| 332 |
+
# Some sentences have no `idx_src_par` because they are added by the teacher (not present in the source)
|
| 333 |
+
for idx_par, curr_par_group in groupby(
|
| 334 |
+
curr_instances,
|
| 335 |
+
key=lambda _inst: _inst["idx_src_par"][0] if len(_inst["idx_src_par"]) > 0 else
|
| 336 |
+
_inst["idx_tgt_par"][0]
|
| 337 |
+
):
|
| 338 |
+
src_tokens, tgt_tokens, mapped_corrections = [], [], []
|
| 339 |
+
src_ling_anns = {"lemma": [], "ana": [], "msd": [], "ne_tag": [], "space_after": []}
|
| 340 |
+
tgt_ling_anns = {"lemma": [], "ana": [], "msd": [], "ne_tag": [], "space_after": []}
|
| 341 |
+
seen_src_tokens, seen_tgt_tokens = {}, {}
|
| 342 |
+
src_base, tgt_base = 0, 0
|
| 343 |
+
prev_src_base, prev_tgt_base = 0, 0
|
| 344 |
+
|
| 345 |
+
doc_title, is_validated = None, None
|
| 346 |
+
for curr_inst in curr_par_group:
|
| 347 |
+
doc_title, is_validated = curr_inst["doc_title"], curr_inst["is_manually_validated"]
|
| 348 |
+
|
| 349 |
+
id_src_toks, id_tgt_toks = curr_inst["id_src_tokens"], curr_inst["id_tgt_tokens"]
|
| 350 |
+
curr_src_toks, curr_tgt_toks = curr_inst["src_tokens"], curr_inst["tgt_tokens"]
|
| 351 |
+
curr_src_anns, curr_tgt_anns = curr_inst["src_ling_annotations"], curr_inst["tgt_ling_annotations"]
|
| 352 |
+
curr_corrs = curr_inst["corrections"]
|
| 353 |
+
|
| 354 |
+
num_added_src, num_added_tgt = 0, 0
|
| 355 |
+
for idx_position, (id_tok, tok) in enumerate(zip(id_src_toks, curr_src_toks)):
|
| 356 |
+
if id_tok not in seen_src_tokens:
|
| 357 |
+
src_tokens.append(tok)
|
| 358 |
+
src_ling_anns["lemma"].append(curr_src_anns["lemma"][idx_position])
|
| 359 |
+
src_ling_anns["ana"].append(curr_src_anns["ana"][idx_position])
|
| 360 |
+
src_ling_anns["msd"].append(curr_src_anns["msd"][idx_position])
|
| 361 |
+
src_ling_anns["ne_tag"].append(curr_src_anns["ne_tag"][idx_position])
|
| 362 |
+
src_ling_anns["space_after"].append(curr_src_anns["space_after"][idx_position])
|
| 363 |
+
|
| 364 |
+
seen_src_tokens[id_tok] = tok
|
| 365 |
+
num_added_src += 1
|
| 366 |
+
|
| 367 |
+
for idx_position, (id_tok, tok) in enumerate(zip(id_tgt_toks, curr_tgt_toks)):
|
| 368 |
+
if id_tok not in seen_tgt_tokens:
|
| 369 |
+
tgt_tokens.append(tok)
|
| 370 |
+
tgt_ling_anns["lemma"].append(curr_tgt_anns["lemma"][idx_position])
|
| 371 |
+
tgt_ling_anns["ana"].append(curr_tgt_anns["ana"][idx_position])
|
| 372 |
+
tgt_ling_anns["msd"].append(curr_tgt_anns["msd"][idx_position])
|
| 373 |
+
tgt_ling_anns["ne_tag"].append(curr_tgt_anns["ne_tag"][idx_position])
|
| 374 |
+
tgt_ling_anns["space_after"].append(curr_tgt_anns["space_after"][idx_position])
|
| 375 |
+
|
| 376 |
+
seen_tgt_tokens[id_tok] = tok
|
| 377 |
+
num_added_tgt += 1
|
| 378 |
+
|
| 379 |
+
if num_added_src == 0:
|
| 380 |
+
src_base, prev_src_base = prev_src_base, src_base
|
| 381 |
+
|
| 382 |
+
if num_added_tgt == 0:
|
| 383 |
+
tgt_base, prev_tgt_base = prev_tgt_base, tgt_base
|
| 384 |
+
|
| 385 |
+
for corr in curr_corrs:
|
| 386 |
+
mapped_corrections.append({
|
| 387 |
+
"idx_src": list(map(lambda _i: src_base + _i, corr["idx_src"])),
|
| 388 |
+
"idx_tgt": list(map(lambda _i: tgt_base + _i, corr["idx_tgt"])),
|
| 389 |
+
"corr_types": corr["corr_types"]
|
| 390 |
+
})
|
| 391 |
+
|
| 392 |
+
src_base += num_added_src
|
| 393 |
+
tgt_base += num_added_tgt
|
| 394 |
+
|
| 395 |
+
if num_added_src == 0:
|
| 396 |
+
src_base, prev_src_base = prev_src_base, src_base
|
| 397 |
+
|
| 398 |
+
if num_added_tgt == 0:
|
| 399 |
+
tgt_base, prev_tgt_base = prev_tgt_base, tgt_base
|
| 400 |
+
|
| 401 |
+
yield uniq_idx_par, {
|
| 402 |
+
"id_doc": curr_id,
|
| 403 |
+
"doc_title": doc_title,
|
| 404 |
+
"is_manually_validated": is_validated,
|
| 405 |
+
"src_tokens": src_tokens,
|
| 406 |
+
"src_ling_annotations": src_ling_anns,
|
| 407 |
+
"tgt_tokens": tgt_tokens,
|
| 408 |
+
"tgt_ling_annotations": tgt_ling_anns,
|
| 409 |
+
"corrections": mapped_corrections
|
| 410 |
+
}
|
| 411 |
+
uniq_idx_par += 1
|
| 412 |
+
|
| 413 |
@staticmethod
|
| 414 |
def aggregate_docs(sent_level_data):
|
| 415 |
# NOTE: assuming here that `sent_level_data` is pre-sorted by id_doc, which is done in the raw data
|
|
|
|
| 498 |
sent_level_data = list(Solar3.generate_sentences(source_path, target_path, links_path))
|
| 499 |
|
| 500 |
if self.config.name == "sentence_level":
|
| 501 |
+
# Remove IDs and indices that are only useful for aggregating the document-level data
|
| 502 |
for i, instance in sent_level_data:
|
| 503 |
+
yield i, {_k: _v for _k, _v in instance.items() if _k not in {"id_src_tokens", "id_tgt_tokens",
|
| 504 |
+
"idx_src_par", "idx_tgt_par"}}
|
| 505 |
+
elif self.config.name == "paragraph_level":
|
| 506 |
+
yield from list(Solar3.aggregate_pars(sent_level_data))
|
| 507 |
else:
|
| 508 |
yield from list(Solar3.aggregate_docs(sent_level_data))
|
| 509 |
|