Datasets:
albertvillanova
HF Staff
Host head_qa data on the Hub and fix NonMatchingChecksumError (#4588)
3f6b204
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """HEAD-QA: A Healthcare Dataset for Complex Reasoning""" | |
| import json | |
| import os | |
| import datasets | |
| _CITATION = """\ | |
| @inproceedings{vilares-gomez-rodriguez-2019-head, | |
| title = "{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning", | |
| author = "Vilares, David and | |
| G{\'o}mez-Rodr{\'i}guez, Carlos", | |
| booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", | |
| month = jul, | |
| year = "2019", | |
| address = "Florence, Italy", | |
| publisher = "Association for Computational Linguistics", | |
| url = "https://www.aclweb.org/anthology/P19-1092", | |
| doi = "10.18653/v1/P19-1092", | |
| pages = "960--966", | |
| abstract = "We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.", | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the | |
| Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the Ministerio | |
| de Sanidad, Consumo y Bienestar Social. | |
| The dataset contains questions about the following topics: medicine, nursing, psychology, chemistry, pharmacology and biology. | |
| """ | |
| _HOMEPAGE = "https://aghie.github.io/head-qa/" | |
| _LICENSE = "MIT License" | |
| _REPO = "https://huggingface.co/datasets/head_qa/resolve/main/data" | |
| _URL = f"{_REPO}/head-qa-es-en-pdfs.zip" | |
| _DIRS = {"es": "HEAD", "en": "HEAD_EN"} | |
| class HeadQA(datasets.GeneratorBasedBuilder): | |
| """HEAD-QA: A Healthcare Dataset for Complex Reasoning""" | |
| VERSION = datasets.Version("1.1.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig(name="es", version=VERSION, description="Spanish HEAD dataset"), | |
| datasets.BuilderConfig(name="en", version=VERSION, description="English HEAD dataset"), | |
| ] | |
| DEFAULT_CONFIG_NAME = "es" | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "name": datasets.Value("string"), | |
| "year": datasets.Value("string"), | |
| "category": datasets.Value("string"), | |
| "qid": datasets.Value("int32"), | |
| "qtext": datasets.Value("string"), | |
| "ra": datasets.Value("int32"), | |
| "image": datasets.Image(), | |
| "answers": [ | |
| { | |
| "aid": datasets.Value("int32"), | |
| "atext": datasets.Value("string"), | |
| } | |
| ], | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| data_dir = dl_manager.download_and_extract(_URL) | |
| dir = _DIRS[self.config.name] | |
| data_lang_dir = os.path.join(data_dir, dir) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"train_{dir}.json")}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"test_{dir}.json")}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"dev_{dir}.json")}, | |
| ), | |
| ] | |
| def _generate_examples(self, data_dir, filepath): | |
| """Yields examples.""" | |
| with open(filepath, encoding="utf-8") as f: | |
| head_qa = json.load(f) | |
| for exam_id, exam in enumerate(head_qa["exams"]): | |
| content = head_qa["exams"][exam] | |
| name = content["name"].strip() | |
| year = content["year"].strip() | |
| category = content["category"].strip() | |
| for question in content["data"]: | |
| qid = int(question["qid"].strip()) | |
| qtext = question["qtext"].strip() | |
| ra = int(question["ra"].strip()) | |
| image_path = question["image"].strip() | |
| aids = [answer["aid"] for answer in question["answers"]] | |
| atexts = [answer["atext"].strip() for answer in question["answers"]] | |
| answers = [{"aid": aid, "atext": atext} for aid, atext in zip(aids, atexts)] | |
| id_ = f"{exam_id}_{qid}" | |
| yield id_, { | |
| "name": name, | |
| "year": year, | |
| "category": category, | |
| "qid": qid, | |
| "qtext": qtext, | |
| "ra": ra, | |
| "image": os.path.join(data_dir, image_path) if image_path else None, | |
| "answers": answers, | |
| } | |