metadata
license: mit
task_categories:
- reinforcement-learning
- game-simulation
- agent-training
tags:
- babylon
- prediction-markets
- game-worlds
- agent-trajectories
- offline-simulation
size_categories:
- 10K<n<100K
elizaos/babylon-game-data
Dataset Description
Complete Babylon game data for reinforcement learning and offline simulation.
Version: 1.0.0
Collected: 2025-11-16T04:18:42.175Z
Game Worlds: 2
Agent Trajectories: 20
Benchmarks: 4
What's Included
1. Complete Game Worlds
- Prediction market scenarios
- 30-day timelines with events
- NPC conversations and interactions
- Feed posts and social dynamics
- Ground truth outcomes
2. Agent Trajectories
- Complete agent decision sequences
- LLM calls (prompts and responses)
- Game environment at each step
- Actions taken and outcomes
- Rewards and ground truth
3. Benchmark Results
- Model performance evaluations
- Comparison to baselines
- Detailed metrics
Data Organization
By Month
by-month/
2025-10.json - October 2025 data
2025-11.json - November 2025 data
2025-12.json - December 2025 data
...
Each month file contains:
- Game worlds generated that month
- Agent trajectories from that month
- Benchmark results from that month
Offline Simulation
This dataset enables offline, faster-than-real-time simulation:
# Download dataset
from datasets import load_dataset
dataset = load_dataset("elizaos/babylon-game-data")
# Load into Babylon offline simulator
bun run scripts/run-offline-simulation.ts \
--data=path/to/downloaded/data.json \
--fast-forward \
--agent=my-agent
Use Cases
- RL Training - Train agents on historical gameplay
- Model Evaluation - Test agents on past scenarios
- Offline Development - Develop without live system
- Research - Analyze agent behavior and game dynamics
- Faster Testing - Run simulations at high speed
Data Format
Game World
{
"worldId": "...",
"month": "2025-11",
"question": "Will Bitcoin reach $100k?",
"outcome": true,
"timeline": [ /* 30 days of events */ ],
"npcs": [ /* NPC data */ ],
"events": [ /* All events */ ],
"feedPosts": [ /* Social feed */ ]
}
Agent Trajectory
{
"trajectoryId": "...",
"month": "2025-11",
"steps": [
{
"environment_state": { /* game state */ },
"llm_calls": [ /* agent decisions */ ],
"action": { /* what agent did */ },
"reward": 50
}
],
"totalReward": 1500,
"finalPnL": 1500
}
Citation
@dataset{babylon_game_data_2025,
title = {Babylon Game Data - Complete RL Dataset},
author = {Babylon Labs},
year = {2025},
url = {https://huggingface.co/datasets/elizaos/babylon-game-data}
}
License
MIT