Datasets:
Change to 0-based labels
Browse filesCorrespondingly out_of => scale_points
- cross_domain_reviews.py +41 -26
cross_domain_reviews.py
CHANGED
|
@@ -35,27 +35,17 @@ from datasets import concatenate_datasets, load_dataset
|
|
| 35 |
class SubDataset:
|
| 36 |
source: Any
|
| 37 |
nick: str
|
| 38 |
-
|
| 39 |
get_review: Callable[[Any], Any]
|
| 40 |
get_rating: Callable[[Any], Any]
|
| 41 |
|
| 42 |
|
| 43 |
-
gi = operator.itemgetter
|
| 44 |
-
|
| 45 |
-
|
| 46 |
def warn(msg):
|
| 47 |
print(file=sys.stderr)
|
| 48 |
print(f" ** Warning: {msg} **", file=sys.stderr)
|
| 49 |
print(file=sys.stderr)
|
| 50 |
|
| 51 |
|
| 52 |
-
def round_near(x, eps=0.001):
|
| 53 |
-
x_rnd = int(x + 0.5)
|
| 54 |
-
if abs(x_rnd - x) > eps:
|
| 55 |
-
warn("got {x_rnd} when rounding {x}")
|
| 56 |
-
return x_rnd
|
| 57 |
-
|
| 58 |
-
|
| 59 |
@dataclass
|
| 60 |
class SplitHFSrc:
|
| 61 |
name: str
|
|
@@ -120,17 +110,42 @@ def int_or_drop(col):
|
|
| 120 |
return inner
|
| 121 |
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
DATASETS = [
|
| 124 |
-
SubDataset(SplitHFSrc("juliensimon/amazon-shoe-reviews"), "amazon-shoes", 5, gi("text"),
|
| 125 |
# TODO: Appears to be corrupt
|
| 126 |
#SubDataset("florentgbelidji/edmunds-car-ratings", "car-ratings", 40, lambda row: row["Review"].strip(), lambda row: round_near(row["Rating"] * 8) - 7),
|
| 127 |
-
SubDataset(TrainOnlyHFSrc("florentgbelidji/car-reviews"), "car-ratings", 5, gi("Review"), gi("Rating")),
|
| 128 |
-
SubDataset(SplitHFSrc("codyburker/yelp_review_sampled"), "yelp", 5, gi("text"), gi("stars")),
|
| 129 |
-
SubDataset(SplitHFSrc("kkotkar1/course-reviews"), "course-reviews", 5, gi("review"), gi("label")),
|
| 130 |
-
SubDataset(TrainOnlyHFSrc("app_reviews"), "app-reviews", 5, gi("review"), gi("star")),
|
| 131 |
-
SubDataset(TrainOnlyHFSrc("LoganKells/amazon_product_reviews_video_games"), "amazon-games", 5, gi("reviewText"), lambda row: round_near(row["overall"])
|
| 132 |
-
SubDataset(KaggleSrc("zynicide/wine-reviews", "winemag-data-130k-v2.csv"), "wine-reviews", 100, gi("description"), gi("points")),
|
| 133 |
-
SubDataset(KaggleSrc("sadmadlad/imdb-user-reviews", "Pulp Fiction/movieReviews.csv"), "imdb-user-reviews", 10, gi("Review"), int_or_drop("User's Rating out of 10")),
|
| 134 |
# TODO: Unicode decoding error
|
| 135 |
#SubDataset(KaggleSrc("arushchillar/disneyland-reviews", "DisneylandReviews.csv"), "disneyland-reviews", 5, gi("Review_Text"), gi("Rating")),
|
| 136 |
]
|
|
@@ -152,7 +167,7 @@ class CrossDomainReviews(datasets.GeneratorBasedBuilder):
|
|
| 152 |
{
|
| 153 |
"text": datasets.Value("string"),
|
| 154 |
"rating": datasets.Value("uint8"),
|
| 155 |
-
"
|
| 156 |
"dataset": datasets.Value("string")
|
| 157 |
}
|
| 158 |
)
|
|
@@ -202,26 +217,26 @@ class CrossDomainReviews(datasets.GeneratorBasedBuilder):
|
|
| 202 |
rating = ds_info.get_rating(row)
|
| 203 |
if rating is None:
|
| 204 |
continue
|
| 205 |
-
assert
|
| 206 |
lowest = min(lowest, rating)
|
| 207 |
highest = max(highest, rating)
|
| 208 |
yield key, {
|
| 209 |
"text": review,
|
| 210 |
"rating": rating,
|
| 211 |
-
"
|
| 212 |
"dataset": ds_info.nick
|
| 213 |
}
|
| 214 |
key += 1
|
| 215 |
got += 1
|
| 216 |
if got >= 1000:
|
| 217 |
break
|
| 218 |
-
if lowest !=
|
| 219 |
warn(
|
| 220 |
f"Lowest rating in {ds_info.nick} was {lowest}, "
|
| 221 |
-
"would suppose it would be
|
| 222 |
)
|
| 223 |
-
if highest != ds_info.
|
| 224 |
warn(
|
| 225 |
f"Highest rating in {ds_info.nick} was {highest}, "
|
| 226 |
-
f"would suppose it would be {ds_info.
|
| 227 |
)
|
|
|
|
| 35 |
class SubDataset:
|
| 36 |
source: Any
|
| 37 |
nick: str
|
| 38 |
+
scale_points: int
|
| 39 |
get_review: Callable[[Any], Any]
|
| 40 |
get_rating: Callable[[Any], Any]
|
| 41 |
|
| 42 |
|
|
|
|
|
|
|
|
|
|
| 43 |
def warn(msg):
|
| 44 |
print(file=sys.stderr)
|
| 45 |
print(f" ** Warning: {msg} **", file=sys.stderr)
|
| 46 |
print(file=sys.stderr)
|
| 47 |
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
@dataclass
|
| 50 |
class SplitHFSrc:
|
| 51 |
name: str
|
|
|
|
| 110 |
return inner
|
| 111 |
|
| 112 |
|
| 113 |
+
gi = operator.itemgetter
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def round_near(x, eps=0.001):
|
| 117 |
+
x_rnd = int(x + 0.5)
|
| 118 |
+
if abs(x_rnd - x) > eps:
|
| 119 |
+
warn("got {x_rnd} when rounding {x}")
|
| 120 |
+
return x_rnd
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def dec(inner):
|
| 124 |
+
def wrap(x):
|
| 125 |
+
y = inner(x)
|
| 126 |
+
if y is None:
|
| 127 |
+
return None
|
| 128 |
+
res = y - 1
|
| 129 |
+
if res < 0:
|
| 130 |
+
warn(
|
| 131 |
+
"tried to convert 1-based index to 0-based index "
|
| 132 |
+
"but ended up with negative"
|
| 133 |
+
)
|
| 134 |
+
return res
|
| 135 |
+
return wrap
|
| 136 |
+
|
| 137 |
+
|
| 138 |
DATASETS = [
|
| 139 |
+
SubDataset(SplitHFSrc("juliensimon/amazon-shoe-reviews"), "amazon-shoes", 5, gi("text"), gi("labels")),
|
| 140 |
# TODO: Appears to be corrupt
|
| 141 |
#SubDataset("florentgbelidji/edmunds-car-ratings", "car-ratings", 40, lambda row: row["Review"].strip(), lambda row: round_near(row["Rating"] * 8) - 7),
|
| 142 |
+
SubDataset(TrainOnlyHFSrc("florentgbelidji/car-reviews"), "car-ratings", 5, gi("Review"), dec(gi("Rating"))),
|
| 143 |
+
SubDataset(SplitHFSrc("codyburker/yelp_review_sampled"), "yelp", 5, gi("text"), dec(gi("stars"))),
|
| 144 |
+
SubDataset(SplitHFSrc("kkotkar1/course-reviews"), "course-reviews", 5, gi("review"), dec(gi("label"))),
|
| 145 |
+
SubDataset(TrainOnlyHFSrc("app_reviews"), "app-reviews", 5, gi("review"), dec(gi("star"))),
|
| 146 |
+
SubDataset(TrainOnlyHFSrc("LoganKells/amazon_product_reviews_video_games"), "amazon-games", 5, gi("reviewText"), lambda row: round_near(row["overall"])),
|
| 147 |
+
SubDataset(KaggleSrc("zynicide/wine-reviews", "winemag-data-130k-v2.csv"), "wine-reviews", 100, gi("description"), dec(gi("points"))),
|
| 148 |
+
SubDataset(KaggleSrc("sadmadlad/imdb-user-reviews", "Pulp Fiction/movieReviews.csv"), "imdb-user-reviews", 10, gi("Review"), dec(int_or_drop("User's Rating out of 10"))),
|
| 149 |
# TODO: Unicode decoding error
|
| 150 |
#SubDataset(KaggleSrc("arushchillar/disneyland-reviews", "DisneylandReviews.csv"), "disneyland-reviews", 5, gi("Review_Text"), gi("Rating")),
|
| 151 |
]
|
|
|
|
| 167 |
{
|
| 168 |
"text": datasets.Value("string"),
|
| 169 |
"rating": datasets.Value("uint8"),
|
| 170 |
+
"scale_points": datasets.Value("uint8"),
|
| 171 |
"dataset": datasets.Value("string")
|
| 172 |
}
|
| 173 |
)
|
|
|
|
| 217 |
rating = ds_info.get_rating(row)
|
| 218 |
if rating is None:
|
| 219 |
continue
|
| 220 |
+
assert 0 <= rating < ds_info.scale_points, f"Expected {rating} in half-open (Python-style) range [0, {ds_info.scale_points})"
|
| 221 |
lowest = min(lowest, rating)
|
| 222 |
highest = max(highest, rating)
|
| 223 |
yield key, {
|
| 224 |
"text": review,
|
| 225 |
"rating": rating,
|
| 226 |
+
"scale_points": ds_info.scale_points,
|
| 227 |
"dataset": ds_info.nick
|
| 228 |
}
|
| 229 |
key += 1
|
| 230 |
got += 1
|
| 231 |
if got >= 1000:
|
| 232 |
break
|
| 233 |
+
if lowest != 0:
|
| 234 |
warn(
|
| 235 |
f"Lowest rating in {ds_info.nick} was {lowest}, "
|
| 236 |
+
"would suppose it would be 0"
|
| 237 |
)
|
| 238 |
+
if highest != ds_info.scale_points - 1:
|
| 239 |
warn(
|
| 240 |
f"Highest rating in {ds_info.nick} was {highest}, "
|
| 241 |
+
f"would suppose it would be {ds_info.scale_points - 1}"
|
| 242 |
)
|