Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -31,15 +31,25 @@ local_dir = snapshot_download(repo_id="hyperdemocracy/usc-chroma-vecs-v1-chunks-
|
|
| 31 |
client = chromadb.PersistentClient(path=local_dir + "/chromadb")
|
| 32 |
collection = client.get_collection("usc")
|
| 33 |
|
| 34 |
-
# Query the database
|
| 35 |
results = collection.query(
|
| 36 |
query_texts=["your query here"],
|
| 37 |
n_results=10
|
| 38 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
```
|
| 40 |
|
| 41 |
## Configuration
|
| 42 |
|
| 43 |
-
|
| 44 |
-
- Embedding model
|
| 45 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
client = chromadb.PersistentClient(path=local_dir + "/chromadb")
|
| 32 |
collection = client.get_collection("usc")
|
| 33 |
|
| 34 |
+
# Query the database (embedding function is already configured)
|
| 35 |
results = collection.query(
|
| 36 |
query_texts=["your query here"],
|
| 37 |
n_results=10
|
| 38 |
)
|
| 39 |
+
|
| 40 |
+
# Get collection metadata to see embedding model info
|
| 41 |
+
metadata = collection.metadata
|
| 42 |
+
print(f"Embedding model: {metadata['embedding_model']}")
|
| 43 |
+
print(f"Chunk size: {metadata['chunk_size']}")
|
| 44 |
```
|
| 45 |
|
| 46 |
## Configuration
|
| 47 |
|
| 48 |
+
This ChromaDB includes the following configuration stored as collection metadata:
|
| 49 |
+
- **Embedding model**: The SentenceTransformer model used for embeddings
|
| 50 |
+
- **Chunk size**: Character count for text chunking
|
| 51 |
+
- **Chunk overlap**: Overlap between adjacent chunks
|
| 52 |
+
- **Chunking version**: Version of the chunking algorithm
|
| 53 |
+
- **Embedding version**: Version of the embedding process
|
| 54 |
+
|
| 55 |
+
The embedding function is automatically configured when loading the collection, enabling direct text queries without manual embedding.
|