Update README.md
Browse files
README.md
CHANGED
|
@@ -24,13 +24,21 @@ The audio samples are sourced from well-known open-source datasets, including se
|
|
| 24 |
|
| 25 |
## Dataset statistics
|
| 26 |
### Semantic Editing
|
|
|
|
| 27 |
| Task Types\ # samples \ Language | Zh deletion | Zh insertion | Zh substitution | En deletion | En insertion | En substitution |
|
| 28 |
| -------------------------------- | ----------: | -----------: | --------------: | ----------: | -----------: | --------------: |
|
| 29 |
| Index-based | 186 | 180 | 36 | 138 | 100 | 67 |
|
| 30 |
| Content-based | 95 | 110 | 289 | 62 | 99 | 189 |
|
| 31 |
| Total | 281 | 290 | 325 | 200 | 199 | 256 |
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
*Content-based*: targets specific characters or words for editing. (e.g. insert 'hello' before 'world')
|
| 36 |
### Acoustic Editing
|
|
@@ -42,6 +50,13 @@ The audio samples are sourced from well-known open-source datasets, including se
|
|
| 42 |
| Emotion Conversion | 84 | 72 |
|
| 43 |
| Volume Conversion | 50 | 50 |
|
| 44 |
## Evaluation Metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
### Semantic Editing
|
| 46 |
For the deletion, insertion, and substitution tasks, we evaluate the performance using four key metrics:
|
| 47 |
+ Word Error Rate (WER) of the Edited Region (wer)
|
|
@@ -49,44 +64,86 @@ For the deletion, insertion, and substitution tasks, we evaluate the performance
|
|
| 49 |
+ Edit Operation Accuracy (acc)
|
| 50 |
+ Speaker Similarity (sim)
|
| 51 |
|
| 52 |
-
|
| 53 |
-
```
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
│
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
Examples of test_parse.jsonl:
|
| 74 |
-
``` json
|
| 75 |
-
{"uid": "00107947-00000092", "input_wav_path": "wavs/00107947-00000092.wav","output_wav_path": "edited_wavs/00107947-00000092.wav", "instruction": "Please recognize the language of this speech and transcribe it. And delete '随着经济的发'.\n", "asr_label": "随着经济的发展食物浪费也随之增长", "asr_text": "随着经济的发展食物浪费也随之增长", "edited_text_label": "展食物浪费也随之增长", "edited_text": "<edit></edit>展食物浪费也随之增长", "origin_speech_url": null,}
|
| 76 |
|
| 77 |
-
{"uid": "00010823-00000019", "input_wav_path": "wavs/00010823-00000019.wav", "output_wav_path": "edited_wavs/00010823-00000019.wav", "instruction": "Please recognize the language of this speech and transcribe it. And delete the characters or words from index 4 to index 10.\n", "asr_label": "我们将为全球城市的可持续发展贡献力量", "asr_text": "我们将为全球城市的可持续发展贡献力量", "edited_text_label": "我们将持续发展贡献力量", "edited_text": "我们将<edit></edit>持续发展贡献力量", "origin_speech_url": null}
|
| 78 |
-
```
|
| 79 |
### Acoustic Editing
|
| 80 |
-
For the acoustic editing tasks, we use WER and SPK-SIM as the primary evaluation metrics.
|
| 81 |
-
```bash
|
| 82 |
-
bash eval_scripts/acoustic/cal_wer_sim.sh /path/contains/edited/audios
|
| 83 |
-
```
|
| 84 |
|
| 85 |
-
|
| 86 |
-
```bash
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
## Dataset statistics
|
| 26 |
### Semantic Editing
|
| 27 |
+
#### full version
|
| 28 |
| Task Types\ # samples \ Language | Zh deletion | Zh insertion | Zh substitution | En deletion | En insertion | En substitution |
|
| 29 |
| -------------------------------- | ----------: | -----------: | --------------: | ----------: | -----------: | --------------: |
|
| 30 |
| Index-based | 186 | 180 | 36 | 138 | 100 | 67 |
|
| 31 |
| Content-based | 95 | 110 | 289 | 62 | 99 | 189 |
|
| 32 |
| Total | 281 | 290 | 325 | 200 | 199 | 256 |
|
| 33 |
|
| 34 |
+
#### basic version
|
| 35 |
+
| Task Types\ # samples \ Language | Zh deletion | Zh insertion | Zh substitution | En deletion | En insertion | En substitution |
|
| 36 |
+
| -------------------------------- | ----------: | -----------: | --------------: | ----------: | -----------: | --------------: |
|
| 37 |
+
| Index-based | 92 | 65 | 29 | 47 | 79 | 29 |
|
| 38 |
+
| Content-based | 78 | 105 | 130 | 133 | 81 | 150 |
|
| 39 |
+
| Total | 170 | 170 | 159 | 180 | 160 | 179 |
|
| 40 |
+
|
| 41 |
+
*Index-based* instruction: specifies an operation on content at positions *i* to *j*. (e.g. delete the characters or words from index 3 to 12)
|
| 42 |
|
| 43 |
*Content-based*: targets specific characters or words for editing. (e.g. insert 'hello' before 'world')
|
| 44 |
### Acoustic Editing
|
|
|
|
| 50 |
| Emotion Conversion | 84 | 72 |
|
| 51 |
| Volume Conversion | 50 | 50 |
|
| 52 |
## Evaluation Metrics
|
| 53 |
+
### Environment Preparation
|
| 54 |
+
```bash
|
| 55 |
+
git clone https://github.com/inclusionAI/Ming-Freeform-Audio-Edit.git
|
| 56 |
+
cd Ming-Freeform-Audio-Edit
|
| 57 |
+
pip install -r requirements.txt
|
| 58 |
+
```
|
| 59 |
+
**Note**: Please download the audio and meta files from [HuggingFace](https://huggingface.co/datasets/inclusionAI/Ming-Freeform-Audio-Edit-Benchmark/tree/main) or [ModelScope](https://modelscope.cn/datasets/inclusionAI/Ming-Freeform-Audio-Edit-Benchmark/files) and put the `wavs` and `meta` directories under `Ming-Freeform-Audio-Edit`
|
| 60 |
### Semantic Editing
|
| 61 |
For the deletion, insertion, and substitution tasks, we evaluate the performance using four key metrics:
|
| 62 |
+ Word Error Rate (WER) of the Edited Region (wer)
|
|
|
|
| 64 |
+ Edit Operation Accuracy (acc)
|
| 65 |
+ Speaker Similarity (sim)
|
| 66 |
|
| 67 |
+
1. If you have organized the directories contain edited waveforms like below:
|
| 68 |
+
```
|
| 69 |
+
eval_path
|
| 70 |
+
|
|
| 71 |
+
├── del
|
| 72 |
+
│ └── edit_del_basic
|
| 73 |
+
│ └── tts/ # This is the actual directory contains the edited wavs
|
| 74 |
+
├── ins
|
| 75 |
+
│ └── edit_ins_basic
|
| 76 |
+
│ └── tts/ # This is the actual directory contains the edited wavs
|
| 77 |
+
├── sub
|
| 78 |
+
└── edit_sub_basic
|
| 79 |
+
└── tts/ # This is the actual directory contains the edited wavs
|
| 80 |
+
```
|
| 81 |
+
Then you can run the following command to get those metrics:
|
| 82 |
+
```bash
|
| 83 |
+
cd Ming-Freeform-Audio-Edit/eval_scripts
|
| 84 |
+
bash run_eval_semantic.sh eval_path \
|
| 85 |
+
whisper_path \
|
| 86 |
+
paraformer_path \
|
| 87 |
+
wavlm_path \
|
| 88 |
+
eval_mode \
|
| 89 |
+
lang
|
| 90 |
+
```
|
| 91 |
+
Here is a brief description of the parameters for the script above:
|
| 92 |
+
+ `eval_path`: The top-level directory containing subdirectories for each editing task
|
| 93 |
+
+ `whisper_path`:Path to the Whisper model, which is used to calculate WER for English audio. You can download it from [here](https://huggingface.co/openai/whisper-large-v3).
|
| 94 |
+
+ `paraformer_path`:Path to the Paraformer model, which is used to calculate WER for Chinese audio. You can download it from [here](https://huggingface.co/funasr/paraformer-zh).
|
| 95 |
+
+ `wavlm_path`: Path to the WavLM model, which is used to calculate speaker similarity. You can download it from [here](https://drive.google.com/file/d/1-aE1NfzpRCLxA4GUxX9ITI3F9LlbtEGP/view).
|
| 96 |
+
+ `eval_mode`: Used to specify which version of the evaluation set to use. Choose between `basic` and `open`
|
| 97 |
+
+ `lang`: supported language, choose between `zh` and `en`
|
| 98 |
+
|
| 99 |
+
2. If your directory for the edited audio is not organized in the format described above, you can run the following commands.
|
| 100 |
+
```bash
|
| 101 |
+
cd eval_scripts
|
| 102 |
+
# get wer, wer.noedit
|
| 103 |
+
bash cal_wer_edit.sh meta_file \
|
| 104 |
+
wav_dir \
|
| 105 |
+
lang \
|
| 106 |
+
num_jobs \
|
| 107 |
+
res_dir \
|
| 108 |
+
task_type \
|
| 109 |
+
eval_mode \
|
| 110 |
+
whisper_path \
|
| 111 |
+
paraformer_path \
|
| 112 |
+
edit_cat # use `semantic` here
|
| 113 |
+
# get sim
|
| 114 |
+
bash cal_sim_edit.sh meta_file \
|
| 115 |
+
wav_dir \
|
| 116 |
+
wavlm_path \
|
| 117 |
+
num_jobs \
|
| 118 |
+
res_dir \
|
| 119 |
+
lang
|
| 120 |
+
```
|
| 121 |
+
Here is a brief description of the parameters for the script above:
|
| 122 |
+
+ `meta_file`: The absolute path to the meta file for the corresponding task (e.g., `meta_en_deletion_basic.csv` or `meta_en_deletion.csv`).
|
| 123 |
+
+ `wav_dir`: The directory containing the edited audio files (the WAV files should be located directly in this directory).
|
| 124 |
+
+ `lang`: `zh` or `en`
|
| 125 |
+
+ `num_jobs`: number of process.
|
| 126 |
+
+ `res_dir`: The directory to save the metric results.
|
| 127 |
+
+ `task_type`: `del`, `ins` or `sub`
|
| 128 |
+
+ `eval_mode`: The same as the above.
|
| 129 |
+
+ `whisper_path`: The same as the above
|
| 130 |
+
+ `paraformer_path`: The same as the above
|
| 131 |
+
+ `edit_cat`: `semantic` or `acoustic`
|
| 132 |
|
|
|
|
|
|
|
|
|
|
| 133 |
|
|
|
|
|
|
|
| 134 |
### Acoustic Editing
|
| 135 |
+
For the acoustic editing tasks, we use WER and SPK-SIM as the primary evaluation metrics.
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
+
1. If the directory for the edited audio is structured, you can run the following command.
|
| 138 |
+
```bash
|
| 139 |
+
cd Ming-Freeform-Audio-Edit/eval_scripts
|
| 140 |
+
bash run_eval_acoustic.sh eval_path \
|
| 141 |
+
whisper_path \
|
| 142 |
+
paraformer_path \
|
| 143 |
+
wavlm_path \
|
| 144 |
+
eval_mode \
|
| 145 |
+
lang
|
| 146 |
+
```
|
| 147 |
+
2. Otherwise, you can run commands similar to the one for the semantic tasks, with the `edit_cat` parameter set to `acoustic`.
|
| 148 |
+
|
| 149 |
+
Additionally, for the dialect and emotion conversion tasks, we assess the conversion accuracy by leveraging a large language model (LLM) through API calls, refer to `eval_scripts/run_eval_acoustic.sh` for more details.
|