Datasets:
File size: 6,179 Bytes
ddbed1e 5cb3369 ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a 3af1f3a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a 4f4592a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 413331a ddbed1e 4d73ace ddbed1e 8bbe39a ddbed1e 8bbe39a ddbed1e 8bbe39a ddbed1e 8bbe39a ddbed1e 47c2af6 ddbed1e 8bbe39a ddbed1e fc4b566 ddbed1e fc4b566 ddbed1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
license: apache-2.0
task_categories:
- text-generation
language:
- en
tags:
- code
- python
- long-context
- coding
size_categories:
- 1K<n<10K
configs:
- config_name: 0k
data_files:
- split: test
path: data/0k/test/data-*
- split: train
path: data/0k/train/data-*
- split: validation
path: data/0k/validation/data-*
- split: prompt
path: data/0k/prompt/data-*
- config_name: 1k
data_files:
- split: test
path: data/1k/test/data-*
- split: train
path: data/1k/train/data-*
- split: validation
path: data/1k/validation/data-*
- split: prompt
path: data/1k/prompt/data-*
- config_name: 2k
data_files:
- split: test
path: data/2k/test/data-*
- split: train
path: data/2k/train/data-*
- split: validation
path: data/2k/validation/data-*
- split: prompt
path: data/2k/prompt/data-*
- config_name: 4k
data_files:
- split: test
path: data/4k/test/data-*
- split: train
path: data/4k/train/data-*
- split: validation
path: data/4k/validation/data-*
- split: prompt
path: data/4k/prompt/data-*
- config_name: 8k
data_files:
- split: test
path: data/8k/test/data-*
- split: train
path: data/8k/train/data-*
- split: validation
path: data/8k/validation/data-*
- split: prompt
path: data/8k/prompt/data-*
- config_name: 16k
data_files:
- split: test
path: data/16k/test/data-*
- split: train
path: data/16k/train/data-*
- split: validation
path: data/16k/validation/data-*
- split: prompt
path: data/16k/prompt/data-*
- config_name: 32k
data_files:
- split: test
path: data/32k/test/data-*
- split: train
path: data/32k/train/data-*
- split: validation
path: data/32k/validation/data-*
- split: prompt
path: data/32k/prompt/data-*
- config_name: 64k
data_files:
- split: test
path: data/64k/test/data-*
- split: train
path: data/64k/train/data-*
- split: validation
path: data/64k/validation/data-*
- split: prompt
path: data/64k/prompt/data-*
- config_name: 128k
data_files:
- split: test
path: data/128k/test/data-*
- split: train
path: data/128k/train/data-*
- split: validation
path: data/128k/validation/data-*
- split: prompt
path: data/128k/prompt/data-*
- config_name: 196k
data_files:
- split: test
path: data/196k/test/data-*
- split: train
path: data/196k/train/data-*
- split: validation
path: data/196k/validation/data-*
- split: prompt
path: data/196k/prompt/data-*
- config_name: 256k
data_files:
- split: test
path: data/256k/test/data-*
- split: train
path: data/256k/train/data-*
- split: validation
path: data/256k/validation/data-*
- split: prompt
path: data/256k/prompt/data-*
- config_name: 512k
data_files:
- split: test
path: data/512k/test/data-*
- split: train
path: data/512k/train/data-*
- split: validation
path: data/512k/validation/data-*
- split: prompt
path: data/512k/prompt/data-*
- config_name: 1m
data_files:
- split: test
path: data/1m/test/data-*
- split: train
path: data/1m/train/data-*
- split: validation
path: data/1m/validation/data-*
- split: prompt
path: data/1m/prompt/data-*
dataset_info:
features:
- name: task_id
dtype: int64
- name: text
dtype: string
- name: code
dtype: string
- name: test_list
sequence: string
- name: test_setup_code
dtype: string
- name: challenge_test_list
sequence: string
- name: context
dtype: string
- name: context_id
dtype: string
- name: context_length_tokens
dtype: int64
- name: code_length_chars
dtype: int64
- name: dataset_version
dtype: string
splits:
- name: test
num_examples: 500
- name: train
num_examples: 374
- name: validation
num_examples: 90
- name: prompt
num_examples: 10
---
# MBPP Long-Context Dataset
## Overview
MBPP Long-Context is a benchmark dataset that combines coding problems from the [MBPP (Mostly Basic Python Problems)](https://github.com/google-research/google-research/tree/master/mbpp) dataset with long-context distractors from [BABILong](https://github.com/booydar/babilong). This dataset evaluates code generation performance under long-context conditions, testing whether models can maintain coding ability with stuffed context.
## Dataset Structure
### Data Fields
Each sample contains:
#### Original MBPP Fields
- `task_id` (int): Unique task identifier
- `text` (str): Problem description
- `code` (str): Reference solution
- `test_list` (List[str]): Test cases (assertions)
- `test_setup_code` (str): Optional setup code
- `challenge_test_list` (List[str]): Additional test cases
#### Long-Context Fields
- `context` (str): Prepended distractor text from BABILong, ranging from 0k to 1M.
- `context_id` (str): BABILong source identifier (e.g., "babilong_128k_qa1_sample_42")
- `context_length_tokens` (int): Token count using Llama tokenizer
#### Metadata
- `code_length_chars` (int): Reference solution length for difficulty tracking
### Data Splits
All configurations follow the original MBPP split structure:
- **test**: 500 samples (primary evaluation set)
- **train**: 374 samples
- **validation**: 90 samples
- **prompt**: 10 samples (few-shot examples)
## Creating the dataset
To avoid confounding variables, this dataset uses stratified random assignment, where:
1. Sort MBPP tasks by code length
2. Get text from BABILong qa1-qa10 splits
3. Duplicate contexts to match task count (974 samples)
4. Shuffle contexts and assign to sorted tasks
## Source Datasets
### MBPP (Mostly Basic Python Problems)
- **Source**: [google-research-datasets/mbpp](https://huggingface.co/datasets/google-research-datasets/mbpp)
- **Size**: 974 problems
- **Paper**: [Program Synthesis with Large Language Models](https://arxiv.org/abs/2108.07732)
### BABILong
- **Source**: [RMT-team/babilong](https://huggingface.co/datasets/RMT-team/babilong)
- **Content**: `input` field from qa1-qa10 splits
- **Paper**: [BABILong: Testing the Limits of LLMs with Long Context Reasoning-in-a-Haystack](https://arxiv.org/abs/2406.10149)
|