Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
Italian
Size:
10K<n<100K
ArXiv:
Tags:
question-generation
License:
| """ | |
| gsplit -l 1500 -d --additional-suffix=.jsonl test.jsonl test | |
| gsplit -l 1500 -d --additional-suffix=.jsonl train.jsonl train | |
| gsplit -l 1500 -d --additional-suffix=.jsonl validation.jsonl validation | |
| rm -rf test.jsonl | |
| rm -rf train.jsonl | |
| rm -rf validation.jsonl | |
| """ | |
| import json | |
| import os | |
| import re | |
| import spacy | |
| from random import seed, shuffle | |
| from tqdm import tqdm | |
| from datasets import load_dataset | |
| DATASET_NAME = "squad_it" | |
| DATASET_TYPES = None | |
| HIGHLIGHT_TOKEN = '<hl>' | |
| GENERATE_TEST_SPLIT = True | |
| SPLITTER = spacy.load('it_core_news_sm') | |
| def get_sentence(document: str): return [str(sent) for sent in SPLITTER(document).sents] | |
| def process_single_data(question: str, paragraph: str, answer: str): | |
| """ Convert single raw json data into QG format """ | |
| example = {'question': question, 'paragraph': paragraph, 'answer': answer} | |
| start = example['paragraph'].find(example['answer']) | |
| end = start + len(answer) | |
| assert paragraph[start:end] == answer | |
| # get sentence | |
| before_tmp = get_sentence(example['paragraph'][:start]) | |
| if len(before_tmp) == 0: | |
| before = '' | |
| before_sentence = '' | |
| else: | |
| if before_tmp[-1].endswith('.'): | |
| before = ' '.join(before_tmp) | |
| before_sentence = '' | |
| else: | |
| before = ' '.join(before_tmp[:-1]) | |
| before_sentence = before_tmp[-1] | |
| before_sentence = before_sentence if before_sentence.endswith(' ') else f'{before_sentence} ' | |
| after_tmp = get_sentence(example['paragraph'][start + len(example['answer']):]) | |
| if len(after_tmp) == 0: | |
| after = '' | |
| after_sentence = '' | |
| else: | |
| after = ' '.join(after_tmp[1:]) | |
| after_sentence = after_tmp[0] | |
| after_sentence = after_sentence if after_sentence.startswith(' ') else f' {after_sentence}' | |
| example['sentence'] = f"{before_sentence}{example['answer']}{after_sentence}" | |
| # get paragraph_sentence | |
| before = '' if before == '' else f'{before} ' | |
| after = '' if after == '' else f' {after}' | |
| source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['sentence'], after) | |
| example['paragraph_sentence'] = re.sub(r'\s+', ' ', source_text) | |
| # get paragraph_answer | |
| source_text = '{0}{1} {2} {1}{3}'.format( | |
| example['paragraph'][:start], HIGHLIGHT_TOKEN, example['answer'], | |
| example['paragraph'][start + len(example['answer']):]) | |
| example['paragraph_answer'] = re.sub(r'\s+', ' ', source_text) | |
| # get sentence_answer | |
| if len(before_tmp) == 0 or before_tmp[-1].endswith('.'): | |
| before = '' | |
| else: | |
| before = before_tmp[-1] if before_tmp[-1].endswith(' ') else f'{before_tmp[-1]} ' | |
| if len(after_tmp) == 0: | |
| after = '' | |
| else: | |
| after = after_tmp[0] if after_tmp[0].startswith(' ') else f' {after_tmp[0]}' | |
| source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['answer'], after) | |
| example['sentence_answer'] = re.sub(r'\s+', ' ', source_text) | |
| return example | |
| if __name__ == '__main__': | |
| output = './data/processed' | |
| os.makedirs(output, exist_ok=True) | |
| if DATASET_TYPES is not None: | |
| dataset = load_dataset(DATASET_NAME, DATASET_TYPES) | |
| else: | |
| dataset = load_dataset(DATASET_NAME) | |
| for _split in dataset.keys(): | |
| tmp_dataset = dataset[_split] | |
| with open(f'{output}/{_split}.jsonl', 'w') as f: | |
| for single_data in tqdm(tmp_dataset): | |
| question_str = single_data['question'] | |
| paragraph_str = single_data['context'] | |
| answer_str = single_data['answers']['text'] | |
| if type(answer_str) == list: | |
| answer_str = answer_str[0] | |
| assert type(answer_str) is str, answer_str | |
| assert type(question_str) is str, question_str | |
| assert type(paragraph_str) is str, paragraph_str | |
| tmp_data = process_single_data(question=question_str, paragraph=paragraph_str, answer=answer_str) | |
| tmp_data['paragraph_id'] = single_data['id'] | |
| f.write(json.dumps(tmp_data) + '\n') | |
| if GENERATE_TEST_SPLIT: | |
| # randomly sample for validation set | |
| with open(f'{output}/train.jsonl') as f: | |
| lines_train = [json.loads(i) for i in f.read().split('\n') if len(i) > 0] | |
| with open(f'{output}/test.jsonl') as f: | |
| size = len([i for i in f.read().split('\n') if len(i) > 0]) | |
| paragraph_ids = list(set([i['paragraph_id'] for i in lines_train])) | |
| data_train = {p: [i for i in lines_train if i['paragraph_id'] == p] for p in paragraph_ids} | |
| seed(0) | |
| shuffle(paragraph_ids) | |
| data_test = [] | |
| data_train_new = [] | |
| for i in paragraph_ids: | |
| if len(data_test) < size: | |
| data_test += data_train[i] | |
| else: | |
| data_train_new += data_train[i] | |
| with open(f'{output}/train.jsonl', 'w') as f: | |
| f.write('\n'.join([json.dumps(i) for i in data_train_new])) | |
| with open(f'{output}/validation.jsonl', 'w') as f: | |
| f.write('\n'.join([json.dumps(i) for i in data_test])) | |