skeletal-muscle-atlas / data_processing.py
jkh's picture
Upload data_processing.py with huggingface_hub
78792a7 verified
#!/usr/bin/env python3
"""
Phase 2: Data Processing for Human Skeletal Muscle Aging Atlas
==============================================================
Processes the H5AD file into HuggingFace-compatible parquet files:
- Expression matrix (sparse -> dense conversion)
- Sample metadata (cell-level information)
- Feature metadata (gene information)
- Dimensionality reduction projections (scVI, UMAP, PCA, t-SNE)
- Unstructured metadata (all additional data)
Requirements:
- Large memory for 183K × 29K matrix processing
- Sparse matrix handling for efficiency
- Proper data type optimization
"""
import logging
import json
import time
from pathlib import Path
from typing import Dict, Any, Optional
import shutil
import numpy as np
import pandas as pd
import scanpy as sc
from scipy import sparse
import pyarrow.parquet as pq
import warnings
# Configure scanpy
sc.settings.verbosity = 3
sc.settings.set_figure_params(dpi=80, facecolor='white')
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def make_json_serializable(obj: Any) -> Any:
"""Convert numpy arrays and other non-serializable objects for JSON"""
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, dict):
return {k: make_json_serializable(v) for k, v in obj.items()}
elif isinstance(obj, (list, tuple)):
return [make_json_serializable(i) for i in obj]
elif isinstance(obj, (np.integer, np.floating)):
return obj.item()
else:
return obj
def log_memory_usage(stage: str, adata: sc.AnnData) -> None:
"""Log memory usage and dataset info"""
memory_mb = adata.X.data.nbytes / 1024**2 if sparse.issparse(adata.X) else adata.X.nbytes / 1024**2
logger.info(f"{stage}: Shape {adata.shape}, Memory: {memory_mb:.1f}MB")
def fix_pandas_index_column_bug(parquet_file: Path) -> bool:
"""
Fix the pandas __index_level_0__ bug in parquet files
This is a known bug in pandas/PyArrow where pandas saves the index as an extra
'__index_level_0__' column when writing to parquet format.
This is a known upstream issue with no planned fix
References:
- https://github.com/pandas-dev/pandas/issues/51664
- https://github.com/pola-rs/polars/issues/7291
Args:
parquet_file: Path to the parquet file to fix
Returns:
bool: True if fix was applied successfully, False otherwise
"""
logger.info(f"🔧 Checking for pandas __index_level_0__ bug in {parquet_file.name}")
try:
# Check if the bug exists
pf = pq.ParquetFile(parquet_file)
schema_names = pf.schema_arrow.names
if '__index_level_0__' not in schema_names:
logger.info("✅ No __index_level_0__ column found - file is clean")
return True
logger.warning(f"🐛 Found pandas __index_level_0__ bug - fixing...")
logger.info(f" Current columns: {len(schema_names)} (expected: {len(schema_names)-1})")
# Create backup
backup_file = parquet_file.with_suffix('.backup.parquet')
if not backup_file.exists():
shutil.copy2(parquet_file, backup_file)
logger.info(f"📦 Backup created: {backup_file.name}")
# Apply fix using PyArrow
table = pq.read_table(parquet_file)
# Filter out the problematic column
columns_to_keep = [name for name in table.column_names if name != '__index_level_0__']
clean_table = table.select(columns_to_keep)
# Write clean table to temporary file first
temp_file = parquet_file.with_suffix('.temp.parquet')
pq.write_table(clean_table, temp_file, compression='snappy')
# Verify the fix
temp_pf = pq.ParquetFile(temp_file)
temp_schema_names = temp_pf.schema_arrow.names
if '__index_level_0__' not in temp_schema_names:
# Replace original with fixed version
shutil.move(temp_file, parquet_file)
logger.info(f"✅ Fixed pandas __index_level_0__ bug")
logger.info(f" Column count: {len(schema_names)}{len(temp_schema_names)}")
return True
else:
# Fix failed, clean up
temp_file.unlink()
logger.error("❌ Fix verification failed")
return False
except Exception as e:
logger.error(f"❌ Error fixing pandas index bug: {e}")
return False
def process_expression_matrix(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]:
"""
Process and save expression matrix
Strategy:
- Check sparsity and memory requirements
- Convert to dense if manageable, keep sparse if too large
- Use appropriate data types (float32) for efficiency
"""
logger.info("Starting expression matrix processing...")
log_memory_usage("Expression matrix", adata)
# Calculate memory requirements for dense conversion
dense_memory_gb = (adata.n_obs * adata.n_vars * 4) / (1024**3) # float32 = 4 bytes
sparsity = 1.0 - (adata.X.nnz / (adata.n_obs * adata.n_vars))
logger.info(f"Dense conversion would require: {dense_memory_gb:.2f}GB")
logger.info(f"Current sparsity: {sparsity:.2%}")
output_file = output_dir / f"skeletal_muscle_{method}_expression.parquet"
if dense_memory_gb > 8.0: # If >8GB, process in chunks
logger.info("Large matrix detected, processing in chunks...")
chunk_size = 10000
chunks = []
for i in range(0, adata.n_obs, chunk_size):
end_idx = min(i + chunk_size, adata.n_obs)
chunk = adata[i:end_idx, :].copy()
if sparse.issparse(chunk.X):
chunk_dense = chunk.X.toarray().astype(np.float32)
else:
chunk_dense = chunk.X.astype(np.float32)
chunk_df = pd.DataFrame(
chunk_dense,
index=chunk.obs_names,
columns=chunk.var_names
)
chunks.append(chunk_df)
logger.info(f"Processed chunk {i//chunk_size + 1}/{(adata.n_obs-1)//chunk_size + 1}")
# Combine chunks
expression_df = pd.concat(chunks, axis=0)
del chunks # Free memory
else:
# Convert to dense in one go
logger.info("Converting to dense matrix...")
if sparse.issparse(adata.X):
expression_data = adata.X.toarray().astype(np.float32)
else:
expression_data = adata.X.astype(np.float32)
expression_df = pd.DataFrame(
expression_data,
index=adata.obs_names,
columns=adata.var_names
)
# Save with compression
logger.info(f"Saving expression matrix: {expression_df.shape}")
expression_df.to_parquet(output_file, compression='snappy')
# Apply pandas __index_level_0__ bug fix
# This is a known issue where pandas saves the index as an extra column
fix_success = fix_pandas_index_column_bug(output_file)
stats = {
'file': str(output_file),
'shape': list(expression_df.shape),
'memory_gb': dense_memory_gb,
'sparsity_percent': sparsity * 100,
'dtype': str(expression_df.dtypes.iloc[0]),
'pandas_index_bug_fixed': fix_success
}
logger.info(f"✅ Expression matrix saved: {expression_df.shape}")
return stats
def process_sample_metadata(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]:
"""Process and save sample (cell) metadata"""
logger.info("Processing sample metadata...")
sample_metadata = adata.obs.copy()
# Verify critical columns exist
critical_cols = ['Age_group', 'Sex', 'annotation_level0', 'DonorID', 'batch']
missing_cols = [col for col in critical_cols if col not in sample_metadata.columns]
if missing_cols:
logger.warning(f"Missing critical columns: {missing_cols}")
else:
logger.info("✅ All critical metadata columns present")
# Add standardized age column if needed
if 'age_numeric' not in sample_metadata.columns and 'Age_group' in sample_metadata.columns:
# Convert age groups to numeric (use midpoint of range)
age_mapping = {
'15-20': 17.5, '20-25': 22.5, '25-30': 27.5, '35-40': 37.5,
'50-55': 52.5, '55-60': 57.5, '60-65': 62.5, '70-75': 72.5
}
sample_metadata['age_numeric'] = sample_metadata['Age_group'].map(age_mapping)
logger.info("Added numeric age column")
# Optimize data types
for col in sample_metadata.columns:
if sample_metadata[col].dtype == 'object':
# Convert categorical strings to category type for efficiency
if sample_metadata[col].nunique() < len(sample_metadata) * 0.5:
sample_metadata[col] = sample_metadata[col].astype('category')
output_file = output_dir / f"skeletal_muscle_{method}_sample_metadata.parquet"
sample_metadata.to_parquet(output_file, compression='snappy')
stats = {
'file': str(output_file),
'shape': list(sample_metadata.shape),
'columns': list(sample_metadata.columns),
'missing_columns': missing_cols,
'age_groups': sample_metadata['Age_group'].value_counts().to_dict() if 'Age_group' in sample_metadata.columns else {},
'cell_types': sample_metadata['annotation_level0'].value_counts().head(10).to_dict() if 'annotation_level0' in sample_metadata.columns else {}
}
logger.info(f"✅ Sample metadata saved: {sample_metadata.shape}")
return stats
def process_feature_metadata(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]:
"""Process and save feature (gene) metadata"""
logger.info("Processing feature metadata...")
feature_metadata = adata.var.copy()
# Ensure gene IDs are present
if 'gene_ids' not in feature_metadata.columns:
feature_metadata['gene_ids'] = feature_metadata.index
logger.info("Added gene_ids column from index")
# Verify gene symbols
if 'SYMBOL' in feature_metadata.columns:
n_symbols = feature_metadata['SYMBOL'].notna().sum()
logger.info(f"Gene symbols available for {n_symbols}/{len(feature_metadata)} genes")
output_file = output_dir / f"skeletal_muscle_{method}_feature_metadata.parquet"
feature_metadata.to_parquet(output_file, compression='snappy')
stats = {
'file': str(output_file),
'shape': list(feature_metadata.shape),
'columns': list(feature_metadata.columns),
'has_symbols': 'SYMBOL' in feature_metadata.columns,
'has_ensembl': 'ENSEMBL' in feature_metadata.columns
}
logger.info(f"✅ Feature metadata saved: {feature_metadata.shape}")
return stats
def compute_missing_projections(adata: sc.AnnData) -> Dict[str, bool]:
"""Compute missing dimensionality reductions"""
logger.info("Checking and computing missing projections...")
computed = {}
# Check PCA
if 'X_pca' not in adata.obsm:
logger.info("Computing PCA (50 components)...")
try:
sc.pp.pca(adata, n_comps=50, svd_solver='arpack')
computed['X_pca'] = True
logger.info("✅ PCA computed")
except Exception as e:
logger.error(f"PCA computation failed: {e}")
computed['X_pca'] = False
else:
computed['X_pca'] = True
logger.info("✅ PCA already exists")
# Check t-SNE
if 'X_tsne' not in adata.obsm:
logger.info("Computing t-SNE...")
try:
# Use existing neighbors if available, otherwise compute
if 'neighbors' not in adata.uns:
logger.info("Computing neighbors for t-SNE...")
sc.pp.neighbors(adata, n_neighbors=15, n_pcs=40)
sc.tl.tsne(adata, perplexity=30, n_jobs=8)
computed['X_tsne'] = True
logger.info("✅ t-SNE computed")
except Exception as e:
logger.error(f"t-SNE computation failed: {e}")
computed['X_tsne'] = False
else:
computed['X_tsne'] = True
logger.info("✅ t-SNE already exists")
return computed
def process_projections(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]:
"""Process and save all dimensionality reduction projections"""
logger.info("Processing dimensionality reduction projections...")
# First compute any missing projections
computed_status = compute_missing_projections(adata)
projection_stats = {}
expected_projections = ['X_scVI', 'X_umap', 'X_pca', 'X_tsne']
for proj_name in expected_projections:
if proj_name in adata.obsm:
proj_data = adata.obsm[proj_name]
# Convert to DataFrame
proj_df = pd.DataFrame(
proj_data,
index=adata.obs_names,
columns=[f"{proj_name.split('_')[1].upper()}{i+1}" for i in range(proj_data.shape[1])]
)
# Save projection
output_file = output_dir / f"skeletal_muscle_{method}_projection_{proj_name}.parquet"
proj_df.to_parquet(output_file, compression='snappy')
projection_stats[proj_name] = {
'file': str(output_file),
'shape': list(proj_df.shape),
'computed_now': computed_status.get(proj_name, False)
}
logger.info(f"✅ Saved {proj_name}: {proj_df.shape}")
else:
logger.warning(f"❌ {proj_name} not available")
projection_stats[proj_name] = {'available': False}
return projection_stats
def process_unstructured_metadata(adata: sc.AnnData, method: str, output_dir: Path) -> Dict[str, Any]:
"""Process and save unstructured metadata (uns)"""
logger.info("Processing unstructured metadata...")
try:
# Make data JSON serializable
unstructured_data = make_json_serializable(adata.uns)
output_file = output_dir / f"skeletal_muscle_{method}_unstructured_metadata.json"
with open(output_file, 'w') as f:
json.dump(unstructured_data, f, indent=2)
# Count keys and estimate size
key_count = len(unstructured_data) if isinstance(unstructured_data, dict) else 0
file_size_mb = output_file.stat().st_size / (1024**2)
stats = {
'file': str(output_file),
'key_count': key_count,
'file_size_mb': round(file_size_mb, 2),
'top_keys': list(unstructured_data.keys())[:10] if isinstance(unstructured_data, dict) else []
}
logger.info(f"✅ Unstructured metadata saved: {key_count} keys, {file_size_mb:.1f}MB")
return stats
except Exception as e:
logger.error(f"Failed to process unstructured metadata: {e}")
return {'error': str(e)}
def main():
"""Main processing function"""
start_time = time.time()
logger.info("=== Phase 2: Data Processing Started ===")
# Paths
data_file = Path("data/SKM_human_pp_cells2nuclei_2023-06-22.h5ad")
output_dir = Path("processed")
output_dir.mkdir(exist_ok=True)
# Configuration
method = "10x" # From exploration results
# Load data
logger.info(f"Loading data from {data_file}...")
try:
adata = sc.read_h5ad(data_file)
logger.info(f"✅ Data loaded: {adata.shape}")
log_memory_usage("Initial", adata)
except Exception as e:
logger.error(f"Failed to load data: {e}")
return
# Processing results tracking
processing_results = {
'dataset_info': {
'shape': list(adata.shape),
'method': method,
'processing_time': None,
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
}
}
try:
# Task 2.1: Expression Matrix
logger.info("\n🧬 Task 2.1: Processing Expression Matrix")
processing_results['expression'] = process_expression_matrix(adata, method, output_dir)
# Task 2.2: Sample Metadata
logger.info("\n📊 Task 2.2: Processing Sample Metadata")
processing_results['sample_metadata'] = process_sample_metadata(adata, method, output_dir)
# Task 2.3: Feature Metadata
logger.info("\n🧪 Task 2.3: Processing Feature Metadata")
processing_results['feature_metadata'] = process_feature_metadata(adata, method, output_dir)
# Task 2.4: Dimensionality Reductions
logger.info("\n📈 Task 2.4: Processing Projections")
processing_results['projections'] = process_projections(adata, method, output_dir)
# Task 2.5: Unstructured Metadata
logger.info("\n📋 Task 2.5: Processing Unstructured Metadata")
processing_results['unstructured'] = process_unstructured_metadata(adata, method, output_dir)
# Save processing summary
processing_time = time.time() - start_time
processing_results['dataset_info']['processing_time'] = f"{processing_time:.1f}s"
summary_file = output_dir / "phase2_processing_summary.json"
with open(summary_file, 'w') as f:
json.dump(processing_results, f, indent=2)
logger.info(f"\n✅ Phase 2 Processing Complete!")
logger.info(f"⏱️ Total time: {processing_time:.1f}s")
logger.info(f"📄 Summary saved: {summary_file}")
# List all created files
logger.info("\n📁 Created Files:")
for file_path in output_dir.glob("skeletal_muscle_*.parquet"):
size_mb = file_path.stat().st_size / (1024**2)
logger.info(f" {file_path.name} ({size_mb:.1f}MB)")
for file_path in output_dir.glob("skeletal_muscle_*.json"):
size_mb = file_path.stat().st_size / (1024**2)
logger.info(f" {file_path.name} ({size_mb:.1f}MB)")
except Exception as e:
logger.error(f"Processing failed: {e}")
processing_results['error'] = str(e)
# Save error summary
error_file = output_dir / "phase2_error_summary.json"
with open(error_file, 'w') as f:
json.dump(processing_results, f, indent=2)
raise
if __name__ == "__main__":
main()