--- dataset_info: features: - name: question_id dtype: string - name: question dtype: string - name: options struct: - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: E dtype: string - name: F dtype: string - name: G dtype: string - name: answer dtype: string - name: src dtype: string splits: - name: test num_bytes: 109817 num_examples: 100 download_size: 49322 dataset_size: 109817 configs: - config_name: default data_files: - split: test path: data/test-* license: apache-2.0 --- # M-ARC HuggingFace upload of a clinical QA benchmark designed to exploit LLMs' "inductive biases toward inflexible pattern matching from their training data rather than engaging in flexible reasoning." If used, please cite the original authors using the citation below. ## Dataset Details ### Dataset Description The dataset contains one split: - **test**: up to seven-option multiple-choice QA (choices A-G) ### Dataset Sources - **Repository:** https://github.com/dbernardo05/medARC-QA - **Paper:** https://arxiv.org/pdf/2502.04381 ### Direct Use ```python import json from datasets import load_dataset if __name__ == "__main__": # load the test split dataset_test = load_dataset("mkieffer/M-ARC", split="test") print("\test split:\n", dataset_test) print("\ntest sample:\n", json.dumps(dataset_test[0], indent=2)) ``` ## Citation ``` @misc{kim2025limitationslargelanguagemodels, title={Limitations of Large Language Models in Clinical Problem-Solving Arising from Inflexible Reasoning}, author={Jonathan Kim and Anna Podlasek and Kie Shidara and Feng Liu and Ahmed Alaa and Danilo Bernardo}, year={2025}, eprint={2502.04381}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2502.04381}, } ```