Datasets:
Parquet conversion and README yaml editing
Browse files- UsenetArchiveIT.py +188 -0
UsenetArchiveIT.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import DatasetBuilder, SplitGenerator, Split, Features, Value, ClassLabel, BuilderConfig, Version, DatasetInfo, DownloadManager, ArrowBasedBuilder
|
| 2 |
+
import glob
|
| 3 |
+
import json
|
| 4 |
+
import multiprocessing as mp
|
| 5 |
+
import os
|
| 6 |
+
import pyarrow as pa
|
| 7 |
+
import pyarrow.parquet as pq
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import pyarrow as pa
|
| 10 |
+
import pyarrow.json
|
| 11 |
+
# jsonl
|
| 12 |
+
|
| 13 |
+
pattern="*.bz2"
|
| 14 |
+
|
| 15 |
+
paths=glob.glob(pattern)
|
| 16 |
+
|
| 17 |
+
# exclude txt files
|
| 18 |
+
|
| 19 |
+
paths=[file for file in paths if not ".txt." in file]
|
| 20 |
+
|
| 21 |
+
n_files=len(paths)
|
| 22 |
+
|
| 23 |
+
# labels are file names without the extension .jsonl.bz2
|
| 24 |
+
|
| 25 |
+
labels=[file.replace(".jsonl.bz2","") for file in paths]
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
## handle parquet conversion
|
| 30 |
+
|
| 31 |
+
# create parquet directory
|
| 32 |
+
|
| 33 |
+
dl_manager = DownloadManager()
|
| 34 |
+
|
| 35 |
+
parquet_dir="parquet"
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def convert_jsonl_to_parquet(file_list, parquet_dir, chunk_size=100000):
|
| 41 |
+
"""Converts JSONL files to Parquet with memory efficiency.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
file_list (list): List of JSONL file paths.
|
| 45 |
+
parquet_dir (str): Path to store output Parquet files.
|
| 46 |
+
chunk_size (int): Number of records to write to each Parquet file.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
os.makedirs(parquet_dir, exist_ok=True) # Create output directory
|
| 50 |
+
|
| 51 |
+
parquet_file_index = 0
|
| 52 |
+
current_records = []
|
| 53 |
+
file_index = 0
|
| 54 |
+
for file in file_list:
|
| 55 |
+
# try:
|
| 56 |
+
reader = pa.json.read_json(file) # PyArrow JSON reader
|
| 57 |
+
|
| 58 |
+
for batch in reader:
|
| 59 |
+
pandas_df = batch.to_pandas()
|
| 60 |
+
print(pandas_df.shape)
|
| 61 |
+
current_records.extend(pandas_df.to_dict('list'))
|
| 62 |
+
if len(current_records) >= chunk_size:
|
| 63 |
+
table = pa.Table.from_pandas(pd.DataFrame(current_records))
|
| 64 |
+
parquet_filename = f"output_{parquet_file_index}.parquet"
|
| 65 |
+
parquet_path = os.path.join(parquet_dir, parquet_filename)
|
| 66 |
+
pq.write_table(table, parquet_path)
|
| 67 |
+
|
| 68 |
+
current_records = []
|
| 69 |
+
parquet_file_index += 1
|
| 70 |
+
# except Exception as e:
|
| 71 |
+
# print(f"Error in file {file} with error {e}")
|
| 72 |
+
file_index += 1
|
| 73 |
+
print(f"Finished processing file {file_index} of {len(file_list)}")
|
| 74 |
+
print(f"Writing last chunk to parquet file {parquet_file_index}")
|
| 75 |
+
# Write any remaining data in the last chunk
|
| 76 |
+
if current_records:
|
| 77 |
+
table = pa.Table.from_pandas(pd.DataFrame(current_records))
|
| 78 |
+
parquet_filename = f"output_{parquet_file_index}.parquet"
|
| 79 |
+
parquet_path = os.path.join(parquet_dir, parquet_filename)
|
| 80 |
+
pq.write_table(table, parquet_path)
|
| 81 |
+
|
| 82 |
+
print(f"Conversion complete, wrote {parquet_file_index + 1} Parquet files.")
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class UsenetConfig(BuilderConfig):
|
| 89 |
+
def __init__(self, version, **kwargs):
|
| 90 |
+
().__init__(version, **kwargs)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class UsenetArchiveIt(ArrowBasedBuilder):
|
| 101 |
+
VERSION = "1.0.0" # Example version
|
| 102 |
+
|
| 103 |
+
BUILDER_CONFIG_CLASS = UsenetConfig
|
| 104 |
+
|
| 105 |
+
BUILDER_CONFIGS = [
|
| 106 |
+
UsenetConfig(
|
| 107 |
+
name="usenet_archive_it",
|
| 108 |
+
version=Version("1.0.0"),
|
| 109 |
+
description="Usenet Archive-It dataset",
|
| 110 |
+
),
|
| 111 |
+
]
|
| 112 |
+
|
| 113 |
+
def _info(self):
|
| 114 |
+
# Specify dataset features here
|
| 115 |
+
return DatasetInfo(
|
| 116 |
+
features=Features({
|
| 117 |
+
"title": Value("string"),
|
| 118 |
+
"author": Value("string"),
|
| 119 |
+
"id": Value("int32"),
|
| 120 |
+
"timestamp": Value("string"),
|
| 121 |
+
"progressive_number": Value("int32"),
|
| 122 |
+
"original_url": Value("string"),
|
| 123 |
+
"newsgroup": Value("string"), # this could be a label but difficult to get all possible labels
|
| 124 |
+
"text": Value("string"),
|
| 125 |
+
}),)
|
| 126 |
+
|
| 127 |
+
def _split_generators(self, dl_manager):
|
| 128 |
+
n = mp.cpu_count()//10 # Number of paths to process at a time
|
| 129 |
+
print(f"Extracting {n} files at a time")
|
| 130 |
+
if not os.path.isdir('parquet'):
|
| 131 |
+
extracted_files = []
|
| 132 |
+
for i in range(0, len(paths), n):
|
| 133 |
+
|
| 134 |
+
files = paths[i:i+n]
|
| 135 |
+
extracted_files.extend(dl_manager.extract(files, num_proc=len(files)))
|
| 136 |
+
print(f"Extracted {files}")
|
| 137 |
+
else:
|
| 138 |
+
extracted_files = glob.glob(parquet_dir + "/*.parquet")
|
| 139 |
+
|
| 140 |
+
return [
|
| 141 |
+
SplitGenerator(
|
| 142 |
+
name=Split.TRAIN,
|
| 143 |
+
gen_kwargs={"filepath": extracted_files},
|
| 144 |
+
),
|
| 145 |
+
|
| 146 |
+
]
|
| 147 |
+
|
| 148 |
+
def _generate_tables(self, filepath):
|
| 149 |
+
|
| 150 |
+
# print("Filepath: ", filepath)
|
| 151 |
+
|
| 152 |
+
# if parquet files are not present, convert jsonl to parquet
|
| 153 |
+
if not os.path.exists(parquet_dir):
|
| 154 |
+
print("Generating parquet files from jsonl files...")
|
| 155 |
+
convert_jsonl_to_parquet(filepath, parquet_dir)
|
| 156 |
+
|
| 157 |
+
# read parquet files
|
| 158 |
+
parquet_files=glob.glob(parquet_dir+"/*.parquet")
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
for index, file in enumerate(parquet_files):
|
| 162 |
+
table = pq.read_table(file)
|
| 163 |
+
yield index, table
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
# for file in parquet_files:
|
| 167 |
+
# table = pq.read_table(file)
|
| 168 |
+
# df = table.to_pandas()
|
| 169 |
+
# for index, row in df.iterrows():
|
| 170 |
+
# yield index, row.to_dict()
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
# Yields (key, example) tuples from the dataset
|
| 174 |
+
# id=0
|
| 175 |
+
# for file in filepath:
|
| 176 |
+
# # Open and yield examples from the compressed JSON files
|
| 177 |
+
# with open(file, "r") as f:
|
| 178 |
+
# for i, line in enumerate(f):
|
| 179 |
+
# try:
|
| 180 |
+
# data = json.loads(line)
|
| 181 |
+
# yield id, data
|
| 182 |
+
# id+=1
|
| 183 |
+
# except Exception as e:
|
| 184 |
+
# print(f"Error in file {file} at line {i} with error {e}")
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
# Finally, set the name of the dataset to match the script name
|
| 188 |
+
datasets = UsenetArchiveIt
|