# Data Cleaning ![DataClean](img/clean.png) - [Data Cleaning](#data-cleaning) - [Silent Filtering](#silent-filtering) - [Static Frame Filtering](#static-frame-filtering) - [Audio-Visual Matching Filtering](#audio-visual-matching-filtering) - [Voice Detection Filtering](#voice-detection-filtering) ## Silent Filtering **Path:** [toolset/clean/silent/check_new_silent.py](../toolset/crawl/core/download/download_list.py) **Description:** Filters out audio clips where dBFS remains below -35 for over 90% of the duration. (Parameters are adjustable) **Usage Instructions:** 1. Modify the input_directory and output_txt_file parameters in [check_new_silent.py](../toolset/crawl/core/download/download_list.py). 2. Run: `python check_new_silent.py`. ## Static Frame Filtering **Path:** [toolset/clean/static/check_static_ffmpeg.py](../toolset/crawl/core/download/download_list.py) **Description:** Samples 2 frames per second. Consecutive frames are converted to grayscale and compared using MSE - frames with MSE <5 are considered static. Videos with over 85% static frames are filtered. (Parameters are adjustable) **Usage Instructions:** 1. Set the folder_path parameter in [check_static_ffmpeg.py](../toolset/crawl/core/download/download_list.py). 2. Execute: `python check_static_ffmpeg.py`. ## Audio-Visual Matching Filtering **Path:** [toolset/clean/ImageBind/test.py](../toolset/clean/ImageBind/test.py) **Description:** Uses [ImageBind](https://github.com/facebookresearch/ImageBind) to evaluate the match between video content and audio. **Usage Instructions:** 1. Clone the [ImageBind](https://github.com/facebookresearch/ImageBind) repository into `toolset/clean/ImageBind/` and configure python environment. 2. (Optional) Configure CUDA settings in `test.py`. 3. Run: `python test.py`. ## Voice Detection Filtering **Path:** [toolset/clean/SenseVoice/check_voice.py](../toolset/clean/SenseVoice/check_voice.py), [toolset/clean/SenseVoice/char_count.py](../toolset/clean/SenseVoice/char_count.py) **Description:** Uses SenseVoice for voice detection and analysis. **Usage Instructions:** 1. Clone the [SenseVoice](https://github.com/FunAudioLLM/SenseVoice) repository into `toolset/clean/SenseVoice/` and configure python environment. 2. Configure `audio_folder` in [check_voice.py](../toolset/clean/SenseVoice/check_voice.py). 3. Run [check_voice.py](../toolset/clean/SenseVoice/check_voice.py) to output recognized speech text 4. Execute [char_count.py]((../toolset/clean/SenseVoice/char_count.py)) for speech character analysis