Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
SaylorTwift HF Staff commited on
Commit
102f26c
·
verified ·
1 Parent(s): 5ddd536

Delete legacy dataset_infos.json

Browse files
Files changed (1) hide show
  1. dataset_infos.json +0 -677
dataset_infos.json DELETED
@@ -1,677 +0,0 @@
1
- {
2
- "ade_corpus_v2": {
3
- "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
4
- "citation": "@InProceedings{huggingface:dataset,\ntitle = {A great new dataset},\nauthor={huggingface, Inc.\n},\nyear={2020}\n}\n",
5
- "homepage": "https://raft.elicit.org",
6
- "license": "",
7
- "features": {
8
- "Sentence": {
9
- "dtype": "string",
10
- "_type": "Value"
11
- },
12
- "ID": {
13
- "dtype": "int32",
14
- "_type": "Value"
15
- },
16
- "Label": {
17
- "names": [
18
- "Unlabeled",
19
- "ADE-related",
20
- "not ADE-related"
21
- ],
22
- "_type": "ClassLabel"
23
- }
24
- },
25
- "builder_name": "parquet",
26
- "dataset_name": "raft",
27
- "config_name": "ade_corpus_v2",
28
- "version": {
29
- "version_str": "1.1.0",
30
- "major": 1,
31
- "minor": 1,
32
- "patch": 0
33
- },
34
- "splits": {
35
- "train": {
36
- "name": "train",
37
- "num_bytes": 7602,
38
- "num_examples": 50,
39
- "dataset_name": null
40
- },
41
- "test": {
42
- "name": "test",
43
- "num_bytes": 709087,
44
- "num_examples": 5000,
45
- "dataset_name": null
46
- }
47
- },
48
- "download_size": 445823,
49
- "dataset_size": 716689,
50
- "size_in_bytes": 1162512
51
- },
52
- "banking_77": {
53
- "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
54
- "citation": "@InProceedings{huggingface:dataset,\ntitle = {A great new dataset},\nauthor={huggingface, Inc.\n},\nyear={2020}\n}\n",
55
- "homepage": "https://raft.elicit.org",
56
- "license": "",
57
- "features": {
58
- "Query": {
59
- "dtype": "string",
60
- "_type": "Value"
61
- },
62
- "ID": {
63
- "dtype": "int32",
64
- "_type": "Value"
65
- },
66
- "Label": {
67
- "names": [
68
- "Unlabeled",
69
- "Refund_not_showing_up",
70
- "activate_my_card",
71
- "age_limit",
72
- "apple_pay_or_google_pay",
73
- "atm_support",
74
- "automatic_top_up",
75
- "balance_not_updated_after_bank_transfer",
76
- "balance_not_updated_after_cheque_or_cash_deposit",
77
- "beneficiary_not_allowed",
78
- "cancel_transfer",
79
- "card_about_to_expire",
80
- "card_acceptance",
81
- "card_arrival",
82
- "card_delivery_estimate",
83
- "card_linking",
84
- "card_not_working",
85
- "card_payment_fee_charged",
86
- "card_payment_not_recognised",
87
- "card_payment_wrong_exchange_rate",
88
- "card_swallowed",
89
- "cash_withdrawal_charge",
90
- "cash_withdrawal_not_recognised",
91
- "change_pin",
92
- "compromised_card",
93
- "contactless_not_working",
94
- "country_support",
95
- "declined_card_payment",
96
- "declined_cash_withdrawal",
97
- "declined_transfer",
98
- "direct_debit_payment_not_recognised",
99
- "disposable_card_limits",
100
- "edit_personal_details",
101
- "exchange_charge",
102
- "exchange_rate",
103
- "exchange_via_app",
104
- "extra_charge_on_statement",
105
- "failed_transfer",
106
- "fiat_currency_support",
107
- "get_disposable_virtual_card",
108
- "get_physical_card",
109
- "getting_spare_card",
110
- "getting_virtual_card",
111
- "lost_or_stolen_card",
112
- "lost_or_stolen_phone",
113
- "order_physical_card",
114
- "passcode_forgotten",
115
- "pending_card_payment",
116
- "pending_cash_withdrawal",
117
- "pending_top_up",
118
- "pending_transfer",
119
- "pin_blocked",
120
- "receiving_money",
121
- "request_refund",
122
- "reverted_card_payment?",
123
- "supported_cards_and_currencies",
124
- "terminate_account",
125
- "top_up_by_bank_transfer_charge",
126
- "top_up_by_card_charge",
127
- "top_up_by_cash_or_cheque",
128
- "top_up_failed",
129
- "top_up_limits",
130
- "top_up_reverted",
131
- "topping_up_by_card",
132
- "transaction_charged_twice",
133
- "transfer_fee_charged",
134
- "transfer_into_account",
135
- "transfer_not_received_by_recipient",
136
- "transfer_timing",
137
- "unable_to_verify_identity",
138
- "verify_my_identity",
139
- "verify_source_of_funds",
140
- "verify_top_up",
141
- "virtual_card_not_working",
142
- "visa_or_mastercard",
143
- "why_verify_identity",
144
- "wrong_amount_of_cash_received",
145
- "wrong_exchange_rate_for_cash_withdrawal"
146
- ],
147
- "_type": "ClassLabel"
148
- }
149
- },
150
- "builder_name": "parquet",
151
- "dataset_name": "raft",
152
- "config_name": "banking_77",
153
- "version": {
154
- "version_str": "1.1.0",
155
- "major": 1,
156
- "minor": 1,
157
- "patch": 0
158
- },
159
- "splits": {
160
- "train": {
161
- "name": "train",
162
- "num_bytes": 3373,
163
- "num_examples": 50,
164
- "dataset_name": null
165
- },
166
- "test": {
167
- "name": "test",
168
- "num_bytes": 376765,
169
- "num_examples": 5000,
170
- "dataset_name": null
171
- }
172
- },
173
- "download_size": 214821,
174
- "dataset_size": 380138,
175
- "size_in_bytes": 594959
176
- },
177
- "terms_of_service": {
178
- "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
179
- "citation": "@InProceedings{huggingface:dataset,\ntitle = {A great new dataset},\nauthor={huggingface, Inc.\n},\nyear={2020}\n}\n",
180
- "homepage": "https://raft.elicit.org",
181
- "license": "",
182
- "features": {
183
- "Sentence": {
184
- "dtype": "string",
185
- "_type": "Value"
186
- },
187
- "ID": {
188
- "dtype": "int32",
189
- "_type": "Value"
190
- },
191
- "Label": {
192
- "names": [
193
- "Unlabeled",
194
- "not potentially unfair",
195
- "potentially unfair"
196
- ],
197
- "_type": "ClassLabel"
198
- }
199
- },
200
- "builder_name": "parquet",
201
- "dataset_name": "raft",
202
- "config_name": "terms_of_service",
203
- "version": {
204
- "version_str": "1.1.0",
205
- "major": 1,
206
- "minor": 1,
207
- "patch": 0
208
- },
209
- "splits": {
210
- "train": {
211
- "name": "train",
212
- "num_bytes": 10948,
213
- "num_examples": 50,
214
- "dataset_name": null
215
- },
216
- "test": {
217
- "name": "test",
218
- "num_bytes": 961820,
219
- "num_examples": 5000,
220
- "dataset_name": null
221
- }
222
- },
223
- "download_size": 541547,
224
- "dataset_size": 972768,
225
- "size_in_bytes": 1514315
226
- },
227
- "tai_safety_research": {
228
- "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
229
- "citation": "@InProceedings{huggingface:dataset,\ntitle = {A great new dataset},\nauthor={huggingface, Inc.\n},\nyear={2020}\n}\n",
230
- "homepage": "https://raft.elicit.org",
231
- "license": "",
232
- "features": {
233
- "Title": {
234
- "dtype": "string",
235
- "_type": "Value"
236
- },
237
- "Abstract Note": {
238
- "dtype": "string",
239
- "_type": "Value"
240
- },
241
- "Url": {
242
- "dtype": "string",
243
- "_type": "Value"
244
- },
245
- "Publication Year": {
246
- "dtype": "string",
247
- "_type": "Value"
248
- },
249
- "Item Type": {
250
- "dtype": "string",
251
- "_type": "Value"
252
- },
253
- "Author": {
254
- "dtype": "string",
255
- "_type": "Value"
256
- },
257
- "Publication Title": {
258
- "dtype": "string",
259
- "_type": "Value"
260
- },
261
- "ID": {
262
- "dtype": "int32",
263
- "_type": "Value"
264
- },
265
- "Label": {
266
- "names": [
267
- "Unlabeled",
268
- "TAI safety research",
269
- "not TAI safety research"
270
- ],
271
- "_type": "ClassLabel"
272
- }
273
- },
274
- "builder_name": "parquet",
275
- "dataset_name": "raft",
276
- "config_name": "tai_safety_research",
277
- "version": {
278
- "version_str": "1.1.0",
279
- "major": 1,
280
- "minor": 1,
281
- "patch": 0
282
- },
283
- "splits": {
284
- "train": {
285
- "name": "train",
286
- "num_bytes": 54910,
287
- "num_examples": 50,
288
- "dataset_name": null
289
- },
290
- "test": {
291
- "name": "test",
292
- "num_bytes": 1634876,
293
- "num_examples": 1639,
294
- "dataset_name": null
295
- }
296
- },
297
- "download_size": 948201,
298
- "dataset_size": 1689786,
299
- "size_in_bytes": 2637987
300
- },
301
- "neurips_impact_statement_risks": {
302
- "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
303
- "citation": "@InProceedings{huggingface:dataset,\ntitle = {A great new dataset},\nauthor={huggingface, Inc.\n},\nyear={2020}\n}\n",
304
- "homepage": "https://raft.elicit.org",
305
- "license": "",
306
- "features": {
307
- "Paper title": {
308
- "dtype": "string",
309
- "_type": "Value"
310
- },
311
- "Paper link": {
312
- "dtype": "string",
313
- "_type": "Value"
314
- },
315
- "Impact statement": {
316
- "dtype": "string",
317
- "_type": "Value"
318
- },
319
- "ID": {
320
- "dtype": "int32",
321
- "_type": "Value"
322
- },
323
- "Label": {
324
- "names": [
325
- "Unlabeled",
326
- "doesn't mention a harmful application",
327
- "mentions a harmful application"
328
- ],
329
- "_type": "ClassLabel"
330
- }
331
- },
332
- "builder_name": "parquet",
333
- "dataset_name": "raft",
334
- "config_name": "neurips_impact_statement_risks",
335
- "version": {
336
- "version_str": "1.1.0",
337
- "major": 1,
338
- "minor": 1,
339
- "patch": 0
340
- },
341
- "splits": {
342
- "train": {
343
- "name": "train",
344
- "num_bytes": 69037,
345
- "num_examples": 50,
346
- "dataset_name": null
347
- },
348
- "test": {
349
- "name": "test",
350
- "num_bytes": 198699,
351
- "num_examples": 150,
352
- "dataset_name": null
353
- }
354
- },
355
- "download_size": 163355,
356
- "dataset_size": 267736,
357
- "size_in_bytes": 431091
358
- },
359
- "overruling": {
360
- "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
361
- "citation": "@InProceedings{huggingface:dataset,\ntitle = {A great new dataset},\nauthor={huggingface, Inc.\n},\nyear={2020}\n}\n",
362
- "homepage": "https://raft.elicit.org",
363
- "license": "",
364
- "features": {
365
- "Sentence": {
366
- "dtype": "string",
367
- "_type": "Value"
368
- },
369
- "ID": {
370
- "dtype": "int32",
371
- "_type": "Value"
372
- },
373
- "Label": {
374
- "names": [
375
- "Unlabeled",
376
- "not overruling",
377
- "overruling"
378
- ],
379
- "_type": "ClassLabel"
380
- }
381
- },
382
- "builder_name": "parquet",
383
- "dataset_name": "raft",
384
- "config_name": "overruling",
385
- "version": {
386
- "version_str": "1.1.0",
387
- "major": 1,
388
- "minor": 1,
389
- "patch": 0
390
- },
391
- "splits": {
392
- "train": {
393
- "name": "train",
394
- "num_bytes": 7424,
395
- "num_examples": 50,
396
- "dataset_name": null
397
- },
398
- "test": {
399
- "name": "test",
400
- "num_bytes": 431790,
401
- "num_examples": 2350,
402
- "dataset_name": null
403
- }
404
- },
405
- "download_size": 277926,
406
- "dataset_size": 439214,
407
- "size_in_bytes": 717140
408
- },
409
- "systematic_review_inclusion": {
410
- "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
411
- "citation": "@InProceedings{huggingface:dataset,\ntitle = {A great new dataset},\nauthor={huggingface, Inc.\n},\nyear={2020}\n}\n",
412
- "homepage": "https://raft.elicit.org",
413
- "license": "",
414
- "features": {
415
- "Title": {
416
- "dtype": "string",
417
- "_type": "Value"
418
- },
419
- "Abstract": {
420
- "dtype": "string",
421
- "_type": "Value"
422
- },
423
- "Authors": {
424
- "dtype": "string",
425
- "_type": "Value"
426
- },
427
- "Journal": {
428
- "dtype": "string",
429
- "_type": "Value"
430
- },
431
- "ID": {
432
- "dtype": "int32",
433
- "_type": "Value"
434
- },
435
- "Label": {
436
- "names": [
437
- "Unlabeled",
438
- "included",
439
- "not included"
440
- ],
441
- "_type": "ClassLabel"
442
- }
443
- },
444
- "builder_name": "parquet",
445
- "dataset_name": "raft",
446
- "config_name": "systematic_review_inclusion",
447
- "version": {
448
- "version_str": "1.1.0",
449
- "major": 1,
450
- "minor": 1,
451
- "patch": 0
452
- },
453
- "splits": {
454
- "train": {
455
- "name": "train",
456
- "num_bytes": 52677,
457
- "num_examples": 50,
458
- "dataset_name": null
459
- },
460
- "test": {
461
- "name": "test",
462
- "num_bytes": 2344244,
463
- "num_examples": 2243,
464
- "dataset_name": null
465
- }
466
- },
467
- "download_size": 1357407,
468
- "dataset_size": 2396921,
469
- "size_in_bytes": 3754328
470
- },
471
- "one_stop_english": {
472
- "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
473
- "citation": "@InProceedings{huggingface:dataset,\ntitle = {A great new dataset},\nauthor={huggingface, Inc.\n},\nyear={2020}\n}\n",
474
- "homepage": "https://raft.elicit.org",
475
- "license": "",
476
- "features": {
477
- "Article": {
478
- "dtype": "string",
479
- "_type": "Value"
480
- },
481
- "ID": {
482
- "dtype": "int32",
483
- "_type": "Value"
484
- },
485
- "Label": {
486
- "names": [
487
- "Unlabeled",
488
- "advanced",
489
- "elementary",
490
- "intermediate"
491
- ],
492
- "_type": "ClassLabel"
493
- }
494
- },
495
- "builder_name": "parquet",
496
- "dataset_name": "raft",
497
- "config_name": "one_stop_english",
498
- "version": {
499
- "version_str": "1.1.0",
500
- "major": 1,
501
- "minor": 1,
502
- "patch": 0
503
- },
504
- "splits": {
505
- "train": {
506
- "name": "train",
507
- "num_bytes": 201444,
508
- "num_examples": 50,
509
- "dataset_name": null
510
- },
511
- "test": {
512
- "name": "test",
513
- "num_bytes": 2090429,
514
- "num_examples": 516,
515
- "dataset_name": null
516
- }
517
- },
518
- "download_size": 1409192,
519
- "dataset_size": 2291873,
520
- "size_in_bytes": 3701065
521
- },
522
- "tweet_eval_hate": {
523
- "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
524
- "citation": "@InProceedings{huggingface:dataset,\ntitle = {A great new dataset},\nauthor={huggingface, Inc.\n},\nyear={2020}\n}\n",
525
- "homepage": "https://raft.elicit.org",
526
- "license": "",
527
- "features": {
528
- "Tweet": {
529
- "dtype": "string",
530
- "_type": "Value"
531
- },
532
- "ID": {
533
- "dtype": "int32",
534
- "_type": "Value"
535
- },
536
- "Label": {
537
- "names": [
538
- "Unlabeled",
539
- "hate speech",
540
- "not hate speech"
541
- ],
542
- "_type": "ClassLabel"
543
- }
544
- },
545
- "builder_name": "parquet",
546
- "dataset_name": "raft",
547
- "config_name": "tweet_eval_hate",
548
- "version": {
549
- "version_str": "1.1.0",
550
- "major": 1,
551
- "minor": 1,
552
- "patch": 0
553
- },
554
- "splits": {
555
- "train": {
556
- "name": "train",
557
- "num_bytes": 7488,
558
- "num_examples": 50,
559
- "dataset_name": null
560
- },
561
- "test": {
562
- "name": "test",
563
- "num_bytes": 440048,
564
- "num_examples": 2966,
565
- "dataset_name": null
566
- }
567
- },
568
- "download_size": 300542,
569
- "dataset_size": 447536,
570
- "size_in_bytes": 748078
571
- },
572
- "twitter_complaints": {
573
- "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
574
- "citation": "@InProceedings{huggingface:dataset,\ntitle = {A great new dataset},\nauthor={huggingface, Inc.\n},\nyear={2020}\n}\n",
575
- "homepage": "https://raft.elicit.org",
576
- "license": "",
577
- "features": {
578
- "Tweet text": {
579
- "dtype": "string",
580
- "_type": "Value"
581
- },
582
- "ID": {
583
- "dtype": "int32",
584
- "_type": "Value"
585
- },
586
- "Label": {
587
- "names": [
588
- "Unlabeled",
589
- "complaint",
590
- "no complaint"
591
- ],
592
- "_type": "ClassLabel"
593
- }
594
- },
595
- "builder_name": "parquet",
596
- "dataset_name": "raft",
597
- "config_name": "twitter_complaints",
598
- "version": {
599
- "version_str": "1.1.0",
600
- "major": 1,
601
- "minor": 1,
602
- "patch": 0
603
- },
604
- "splits": {
605
- "train": {
606
- "name": "train",
607
- "num_bytes": 5348,
608
- "num_examples": 50,
609
- "dataset_name": null
610
- },
611
- "test": {
612
- "name": "test",
613
- "num_bytes": 369564,
614
- "num_examples": 3399,
615
- "dataset_name": null
616
- }
617
- },
618
- "download_size": 270136,
619
- "dataset_size": 374912,
620
- "size_in_bytes": 645048
621
- },
622
- "semiconductor_org_types": {
623
- "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
624
- "citation": "@InProceedings{huggingface:dataset,\ntitle = {A great new dataset},\nauthor={huggingface, Inc.\n},\nyear={2020}\n}\n",
625
- "homepage": "https://raft.elicit.org",
626
- "license": "",
627
- "features": {
628
- "Paper title": {
629
- "dtype": "string",
630
- "_type": "Value"
631
- },
632
- "Organization name": {
633
- "dtype": "string",
634
- "_type": "Value"
635
- },
636
- "ID": {
637
- "dtype": "int32",
638
- "_type": "Value"
639
- },
640
- "Label": {
641
- "names": [
642
- "Unlabeled",
643
- "company",
644
- "research institute",
645
- "university"
646
- ],
647
- "_type": "ClassLabel"
648
- }
649
- },
650
- "builder_name": "parquet",
651
- "dataset_name": "raft",
652
- "config_name": "semiconductor_org_types",
653
- "version": {
654
- "version_str": "1.1.0",
655
- "major": 1,
656
- "minor": 1,
657
- "patch": 0
658
- },
659
- "splits": {
660
- "train": {
661
- "name": "train",
662
- "num_bytes": 8243,
663
- "num_examples": 50,
664
- "dataset_name": null
665
- },
666
- "test": {
667
- "name": "test",
668
- "num_bytes": 73864,
669
- "num_examples": 449,
670
- "dataset_name": null
671
- }
672
- },
673
- "download_size": 53204,
674
- "dataset_size": 82107,
675
- "size_in_bytes": 135311
676
- }
677
- }