Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
SaylorTwift HF Staff commited on
Commit
64193bb
·
verified ·
1 Parent(s): 755b40a

Add 'neurips_impact_statement_risks' config data files

Browse files
.gitattributes CHANGED
@@ -19,3 +19,4 @@ tai_safety_research/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -t
19
  ade_corpus_v2/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
20
  banking_77/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
21
  terms_of_service/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
 
 
19
  ade_corpus_v2/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
20
  banking_77/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
21
  terms_of_service/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
22
+ neurips_impact_statement_risks/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -143,6 +143,32 @@ dataset_info:
143
  num_examples: 5000
144
  download_size: 214821
145
  dataset_size: 380138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  - config_name: tai_safety_research
147
  features:
148
  - name: Title
@@ -212,6 +238,12 @@ configs:
212
  path: banking_77/train-*
213
  - split: test
214
  path: banking_77/test-*
 
 
 
 
 
 
215
  - config_name: tai_safety_research
216
  data_files:
217
  - split: train
 
143
  num_examples: 5000
144
  download_size: 214821
145
  dataset_size: 380138
146
+ - config_name: neurips_impact_statement_risks
147
+ features:
148
+ - name: Paper title
149
+ dtype: string
150
+ - name: Paper link
151
+ dtype: string
152
+ - name: Impact statement
153
+ dtype: string
154
+ - name: ID
155
+ dtype: int32
156
+ - name: Label
157
+ dtype:
158
+ class_label:
159
+ names:
160
+ '0': Unlabeled
161
+ '1': doesn't mention a harmful application
162
+ '2': mentions a harmful application
163
+ splits:
164
+ - name: train
165
+ num_bytes: 69037
166
+ num_examples: 50
167
+ - name: test
168
+ num_bytes: 198699
169
+ num_examples: 150
170
+ download_size: 163355
171
+ dataset_size: 267736
172
  - config_name: tai_safety_research
173
  features:
174
  - name: Title
 
238
  path: banking_77/train-*
239
  - split: test
240
  path: banking_77/test-*
241
+ - config_name: neurips_impact_statement_risks
242
+ data_files:
243
+ - split: train
244
+ path: neurips_impact_statement_risks/train-*
245
+ - split: test
246
+ path: neurips_impact_statement_risks/test-*
247
  - config_name: tai_safety_research
248
  data_files:
249
  - split: train
dataset_infos.json CHANGED
@@ -306,44 +306,34 @@
306
  "features": {
307
  "Paper title": {
308
  "dtype": "string",
309
- "id": null,
310
  "_type": "Value"
311
  },
312
  "Paper link": {
313
  "dtype": "string",
314
- "id": null,
315
  "_type": "Value"
316
  },
317
  "Impact statement": {
318
  "dtype": "string",
319
- "id": null,
320
  "_type": "Value"
321
  },
322
  "ID": {
323
  "dtype": "int32",
324
- "id": null,
325
  "_type": "Value"
326
  },
327
  "Label": {
328
- "num_classes": 3,
329
  "names": [
330
  "Unlabeled",
331
  "doesn't mention a harmful application",
332
  "mentions a harmful application"
333
  ],
334
- "names_file": null,
335
- "id": null,
336
  "_type": "ClassLabel"
337
  }
338
  },
339
- "post_processed": null,
340
- "supervised_keys": null,
341
- "task_templates": null,
342
- "builder_name": "raft",
343
  "config_name": "neurips_impact_statement_risks",
344
  "version": {
345
  "version_str": "1.1.0",
346
- "description": null,
347
  "major": 1,
348
  "minor": 1,
349
  "patch": 0
@@ -351,111 +341,20 @@
351
  "splits": {
352
  "train": {
353
  "name": "train",
354
- "num_bytes": 69049,
355
  "num_examples": 50,
356
- "dataset_name": "raft"
357
  },
358
  "test": {
359
  "name": "test",
360
- "num_bytes": 198711,
361
  "num_examples": 150,
362
- "dataset_name": "raft"
363
- }
364
- },
365
- "download_checksums": {
366
- "data/ade_corpus_v2/train.csv": {
367
- "num_bytes": 7788,
368
- "checksum": "b6c1268b8ce0fbf4fcaa0ee88562354b65d7ebd2527c3c3cc875e3a47757ae36"
369
- },
370
- "data/ade_corpus_v2/test_unlabeled.csv": {
371
- "num_bytes": 661890,
372
- "checksum": "28981e898281755e1c2d460ab75cceb8f9d8ce0a88ff4636153cf8c393c6f99e"
373
- },
374
- "data/banking_77/train.csv": {
375
- "num_bytes": 3914,
376
- "checksum": "8c417cea66d12569cb3057b125a98358aea0642dda67cf6deea52d4ec1c28ae1"
377
- },
378
- "data/banking_77/test_unlabeled.csv": {
379
- "num_bytes": 327152,
380
- "checksum": "aebd62e56a3b8ebf618afa519cc261fedc7700d96053357ebff83fab44bbaeac"
381
- },
382
- "data/terms_of_service/train.csv": {
383
- "num_bytes": 11528,
384
- "checksum": "8b46784b1e601d753ad44ce33fced828ec3bea95b6b575a2195322ead807f6c7"
385
- },
386
- "data/terms_of_service/test_unlabeled.csv": {
387
- "num_bytes": 917272,
388
- "checksum": "491679e8c9303f825d341dcdfb0a5779a9d2f925744cc44c0039b219abf7d83f"
389
- },
390
- "data/tai_safety_research/train.csv": {
391
- "num_bytes": 54758,
392
- "checksum": "fac15dde8a9f5536424289aa707dcfe1fa3128a7ee2d813cf3251c53092f7dbc"
393
- },
394
- "data/tai_safety_research/test_unlabeled.csv": {
395
- "num_bytes": 1594375,
396
- "checksum": "e606d7858813490507d90d3d17830c6f1ebd8c777fc4a9f865699e375be355d0"
397
- },
398
- "data/neurips_impact_statement_risks/train.csv": {
399
- "num_bytes": 70008,
400
- "checksum": "76cd6aa2707cd99445ba69f8c392a89faa4bf718e967b07dc457f88529b3ff2e"
401
- },
402
- "data/neurips_impact_statement_risks/test_unlabeled.csv": {
403
- "num_bytes": 196429,
404
- "checksum": "5e4d1f313f92dad3e06e035eaff044f818b20ce1ed4d22fcd17e7756e54089a7"
405
- },
406
- "data/overruling/train.csv": {
407
- "num_bytes": 7585,
408
- "checksum": "617061ba0dbd501d74896ccf2f9ebed00c35c4c4057f74afdd94c96cb514130e"
409
- },
410
- "data/overruling/test_unlabeled.csv": {
411
- "num_bytes": 412483,
412
- "checksum": "c0a61fc8980b544611f8d662c752d88e2ed635146f2f3c72f16eec60e3ddb7fe"
413
- },
414
- "data/systematic_review_inclusion/train.csv": {
415
- "num_bytes": 52491,
416
- "checksum": "2d2acd76f6acf1fd1359cf07323586fa134bbe76689e112f5c213b63271e2318"
417
- },
418
- "data/systematic_review_inclusion/test_unlabeled.csv": {
419
- "num_bytes": 2309265,
420
- "checksum": "20710c15f7fda010a3a86a0eda52c5ceb6a709b626610d19e1fc353c42c2d955"
421
- },
422
- "data/one_stop_english/train.csv": {
423
- "num_bytes": 201489,
424
- "checksum": "8c0102ea703677c23c3525e3bc7504c4b734d9298c5d3a25403d274034cb9d89"
425
- },
426
- "data/one_stop_english/test_unlabeled.csv": {
427
- "num_bytes": 2085747,
428
- "checksum": "31e299f91925647744e998f221c0f66c2719df297a20d36d993c8892616a4a53"
429
- },
430
- "data/tweet_eval_hate/train.csv": {
431
- "num_bytes": 7642,
432
- "checksum": "ab091c90e8afbb0dabe17cc6be93b1b80fd914e00a12d66b2dd7b194f355ba65"
433
- },
434
- "data/tweet_eval_hate/test_unlabeled.csv": {
435
- "num_bytes": 412052,
436
- "checksum": "707e720c60f8beb359301994c691a609367cf3bf27d0c573d22f9e47ecc63204"
437
- },
438
- "data/twitter_complaints/train.csv": {
439
- "num_bytes": 5376,
440
- "checksum": "365b067c2d2a7f30128d766baf4901936e047295bb2a693878164dbb84d828fa"
441
- },
442
- "data/twitter_complaints/test_unlabeled.csv": {
443
- "num_bytes": 336272,
444
- "checksum": "7f6f975ec98a5b467b39c487bbc711b29e177119d12c49c79b31faba83609082"
445
- },
446
- "data/semiconductor_org_types/train.csv": {
447
- "num_bytes": 8120,
448
- "checksum": "b7e238cbfd0ed518c222b64e8656599ed13872de135c6e38d6f6123c355d2f64"
449
- },
450
- "data/semiconductor_org_types/test_unlabeled.csv": {
451
- "num_bytes": 68529,
452
- "checksum": "141d8b36685475310c98cdb16099acbf04498d80349f4434c2201deffd271f24"
453
  }
454
  },
455
- "download_size": 9752165,
456
- "post_processing_size": null,
457
- "dataset_size": 267760,
458
- "size_in_bytes": 10019925
459
  },
460
  "overruling": {
461
  "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
 
306
  "features": {
307
  "Paper title": {
308
  "dtype": "string",
 
309
  "_type": "Value"
310
  },
311
  "Paper link": {
312
  "dtype": "string",
 
313
  "_type": "Value"
314
  },
315
  "Impact statement": {
316
  "dtype": "string",
 
317
  "_type": "Value"
318
  },
319
  "ID": {
320
  "dtype": "int32",
 
321
  "_type": "Value"
322
  },
323
  "Label": {
 
324
  "names": [
325
  "Unlabeled",
326
  "doesn't mention a harmful application",
327
  "mentions a harmful application"
328
  ],
 
 
329
  "_type": "ClassLabel"
330
  }
331
  },
332
+ "builder_name": "parquet",
333
+ "dataset_name": "raft",
 
 
334
  "config_name": "neurips_impact_statement_risks",
335
  "version": {
336
  "version_str": "1.1.0",
 
337
  "major": 1,
338
  "minor": 1,
339
  "patch": 0
 
341
  "splits": {
342
  "train": {
343
  "name": "train",
344
+ "num_bytes": 69037,
345
  "num_examples": 50,
346
+ "dataset_name": null
347
  },
348
  "test": {
349
  "name": "test",
350
+ "num_bytes": 198699,
351
  "num_examples": 150,
352
+ "dataset_name": null
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353
  }
354
  },
355
+ "download_size": 163355,
356
+ "dataset_size": 267736,
357
+ "size_in_bytes": 431091
 
358
  },
359
  "overruling": {
360
  "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
neurips_impact_statement_risks/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:987ea82276a9f756f44dddfc0314e31bbadae1478f0985158a6e4fc7acb6a261
3
+ size 118917
neurips_impact_statement_risks/train-00000-of-00001.parquet ADDED
Binary file (44.4 kB). View file