Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Add 'terms_of_service' config data files
Browse files- .gitattributes +1 -0
- README.md +28 -0
- dataset_infos.json +9 -108
- terms_of_service/test-00000-of-00001.parquet +3 -0
- terms_of_service/train-00000-of-00001.parquet +0 -0
.gitattributes
CHANGED
|
@@ -18,3 +18,4 @@ data/ filter=lfs diff=lfs merge=lfs -text
|
|
| 18 |
tai_safety_research/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
ade_corpus_v2/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
| 20 |
banking_77/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 18 |
tai_safety_research/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
ade_corpus_v2/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
| 20 |
banking_77/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
terms_of_service/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -177,6 +177,28 @@ dataset_info:
|
|
| 177 |
num_examples: 1639
|
| 178 |
download_size: 948201
|
| 179 |
dataset_size: 1689786
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
configs:
|
| 181 |
- config_name: ade_corpus_v2
|
| 182 |
data_files:
|
|
@@ -197,6 +219,12 @@ configs:
|
|
| 197 |
- split: test
|
| 198 |
path: tai_safety_research/test-*
|
| 199 |
default: true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
---
|
| 201 |
|
| 202 |
# Dataset Card for RAFT
|
|
|
|
| 177 |
num_examples: 1639
|
| 178 |
download_size: 948201
|
| 179 |
dataset_size: 1689786
|
| 180 |
+
- config_name: terms_of_service
|
| 181 |
+
features:
|
| 182 |
+
- name: Sentence
|
| 183 |
+
dtype: string
|
| 184 |
+
- name: ID
|
| 185 |
+
dtype: int32
|
| 186 |
+
- name: Label
|
| 187 |
+
dtype:
|
| 188 |
+
class_label:
|
| 189 |
+
names:
|
| 190 |
+
'0': Unlabeled
|
| 191 |
+
'1': not potentially unfair
|
| 192 |
+
'2': potentially unfair
|
| 193 |
+
splits:
|
| 194 |
+
- name: train
|
| 195 |
+
num_bytes: 10948
|
| 196 |
+
num_examples: 50
|
| 197 |
+
- name: test
|
| 198 |
+
num_bytes: 961820
|
| 199 |
+
num_examples: 5000
|
| 200 |
+
download_size: 541547
|
| 201 |
+
dataset_size: 972768
|
| 202 |
configs:
|
| 203 |
- config_name: ade_corpus_v2
|
| 204 |
data_files:
|
|
|
|
| 219 |
- split: test
|
| 220 |
path: tai_safety_research/test-*
|
| 221 |
default: true
|
| 222 |
+
- config_name: terms_of_service
|
| 223 |
+
data_files:
|
| 224 |
+
- split: train
|
| 225 |
+
path: terms_of_service/train-*
|
| 226 |
+
- split: test
|
| 227 |
+
path: terms_of_service/test-*
|
| 228 |
---
|
| 229 |
|
| 230 |
# Dataset Card for RAFT
|
dataset_infos.json
CHANGED
|
@@ -182,34 +182,26 @@
|
|
| 182 |
"features": {
|
| 183 |
"Sentence": {
|
| 184 |
"dtype": "string",
|
| 185 |
-
"id": null,
|
| 186 |
"_type": "Value"
|
| 187 |
},
|
| 188 |
"ID": {
|
| 189 |
"dtype": "int32",
|
| 190 |
-
"id": null,
|
| 191 |
"_type": "Value"
|
| 192 |
},
|
| 193 |
"Label": {
|
| 194 |
-
"num_classes": 3,
|
| 195 |
"names": [
|
| 196 |
"Unlabeled",
|
| 197 |
"not potentially unfair",
|
| 198 |
"potentially unfair"
|
| 199 |
],
|
| 200 |
-
"names_file": null,
|
| 201 |
-
"id": null,
|
| 202 |
"_type": "ClassLabel"
|
| 203 |
}
|
| 204 |
},
|
| 205 |
-
"
|
| 206 |
-
"
|
| 207 |
-
"task_templates": null,
|
| 208 |
-
"builder_name": "raft",
|
| 209 |
"config_name": "terms_of_service",
|
| 210 |
"version": {
|
| 211 |
"version_str": "1.1.0",
|
| 212 |
-
"description": null,
|
| 213 |
"major": 1,
|
| 214 |
"minor": 1,
|
| 215 |
"patch": 0
|
|
@@ -217,111 +209,20 @@
|
|
| 217 |
"splits": {
|
| 218 |
"train": {
|
| 219 |
"name": "train",
|
| 220 |
-
"num_bytes":
|
| 221 |
"num_examples": 50,
|
| 222 |
-
"dataset_name":
|
| 223 |
},
|
| 224 |
"test": {
|
| 225 |
"name": "test",
|
| 226 |
-
"num_bytes":
|
| 227 |
"num_examples": 5000,
|
| 228 |
-
"dataset_name":
|
| 229 |
-
}
|
| 230 |
-
},
|
| 231 |
-
"download_checksums": {
|
| 232 |
-
"data/ade_corpus_v2/train.csv": {
|
| 233 |
-
"num_bytes": 7788,
|
| 234 |
-
"checksum": "b6c1268b8ce0fbf4fcaa0ee88562354b65d7ebd2527c3c3cc875e3a47757ae36"
|
| 235 |
-
},
|
| 236 |
-
"data/ade_corpus_v2/test_unlabeled.csv": {
|
| 237 |
-
"num_bytes": 661890,
|
| 238 |
-
"checksum": "28981e898281755e1c2d460ab75cceb8f9d8ce0a88ff4636153cf8c393c6f99e"
|
| 239 |
-
},
|
| 240 |
-
"data/banking_77/train.csv": {
|
| 241 |
-
"num_bytes": 3914,
|
| 242 |
-
"checksum": "8c417cea66d12569cb3057b125a98358aea0642dda67cf6deea52d4ec1c28ae1"
|
| 243 |
-
},
|
| 244 |
-
"data/banking_77/test_unlabeled.csv": {
|
| 245 |
-
"num_bytes": 327152,
|
| 246 |
-
"checksum": "aebd62e56a3b8ebf618afa519cc261fedc7700d96053357ebff83fab44bbaeac"
|
| 247 |
-
},
|
| 248 |
-
"data/terms_of_service/train.csv": {
|
| 249 |
-
"num_bytes": 11528,
|
| 250 |
-
"checksum": "8b46784b1e601d753ad44ce33fced828ec3bea95b6b575a2195322ead807f6c7"
|
| 251 |
-
},
|
| 252 |
-
"data/terms_of_service/test_unlabeled.csv": {
|
| 253 |
-
"num_bytes": 917272,
|
| 254 |
-
"checksum": "491679e8c9303f825d341dcdfb0a5779a9d2f925744cc44c0039b219abf7d83f"
|
| 255 |
-
},
|
| 256 |
-
"data/tai_safety_research/train.csv": {
|
| 257 |
-
"num_bytes": 54758,
|
| 258 |
-
"checksum": "fac15dde8a9f5536424289aa707dcfe1fa3128a7ee2d813cf3251c53092f7dbc"
|
| 259 |
-
},
|
| 260 |
-
"data/tai_safety_research/test_unlabeled.csv": {
|
| 261 |
-
"num_bytes": 1594375,
|
| 262 |
-
"checksum": "e606d7858813490507d90d3d17830c6f1ebd8c777fc4a9f865699e375be355d0"
|
| 263 |
-
},
|
| 264 |
-
"data/neurips_impact_statement_risks/train.csv": {
|
| 265 |
-
"num_bytes": 70008,
|
| 266 |
-
"checksum": "76cd6aa2707cd99445ba69f8c392a89faa4bf718e967b07dc457f88529b3ff2e"
|
| 267 |
-
},
|
| 268 |
-
"data/neurips_impact_statement_risks/test_unlabeled.csv": {
|
| 269 |
-
"num_bytes": 196429,
|
| 270 |
-
"checksum": "5e4d1f313f92dad3e06e035eaff044f818b20ce1ed4d22fcd17e7756e54089a7"
|
| 271 |
-
},
|
| 272 |
-
"data/overruling/train.csv": {
|
| 273 |
-
"num_bytes": 7585,
|
| 274 |
-
"checksum": "617061ba0dbd501d74896ccf2f9ebed00c35c4c4057f74afdd94c96cb514130e"
|
| 275 |
-
},
|
| 276 |
-
"data/overruling/test_unlabeled.csv": {
|
| 277 |
-
"num_bytes": 412483,
|
| 278 |
-
"checksum": "c0a61fc8980b544611f8d662c752d88e2ed635146f2f3c72f16eec60e3ddb7fe"
|
| 279 |
-
},
|
| 280 |
-
"data/systematic_review_inclusion/train.csv": {
|
| 281 |
-
"num_bytes": 52491,
|
| 282 |
-
"checksum": "2d2acd76f6acf1fd1359cf07323586fa134bbe76689e112f5c213b63271e2318"
|
| 283 |
-
},
|
| 284 |
-
"data/systematic_review_inclusion/test_unlabeled.csv": {
|
| 285 |
-
"num_bytes": 2309265,
|
| 286 |
-
"checksum": "20710c15f7fda010a3a86a0eda52c5ceb6a709b626610d19e1fc353c42c2d955"
|
| 287 |
-
},
|
| 288 |
-
"data/one_stop_english/train.csv": {
|
| 289 |
-
"num_bytes": 201489,
|
| 290 |
-
"checksum": "8c0102ea703677c23c3525e3bc7504c4b734d9298c5d3a25403d274034cb9d89"
|
| 291 |
-
},
|
| 292 |
-
"data/one_stop_english/test_unlabeled.csv": {
|
| 293 |
-
"num_bytes": 2085747,
|
| 294 |
-
"checksum": "31e299f91925647744e998f221c0f66c2719df297a20d36d993c8892616a4a53"
|
| 295 |
-
},
|
| 296 |
-
"data/tweet_eval_hate/train.csv": {
|
| 297 |
-
"num_bytes": 7642,
|
| 298 |
-
"checksum": "ab091c90e8afbb0dabe17cc6be93b1b80fd914e00a12d66b2dd7b194f355ba65"
|
| 299 |
-
},
|
| 300 |
-
"data/tweet_eval_hate/test_unlabeled.csv": {
|
| 301 |
-
"num_bytes": 412052,
|
| 302 |
-
"checksum": "707e720c60f8beb359301994c691a609367cf3bf27d0c573d22f9e47ecc63204"
|
| 303 |
-
},
|
| 304 |
-
"data/twitter_complaints/train.csv": {
|
| 305 |
-
"num_bytes": 5376,
|
| 306 |
-
"checksum": "365b067c2d2a7f30128d766baf4901936e047295bb2a693878164dbb84d828fa"
|
| 307 |
-
},
|
| 308 |
-
"data/twitter_complaints/test_unlabeled.csv": {
|
| 309 |
-
"num_bytes": 336272,
|
| 310 |
-
"checksum": "7f6f975ec98a5b467b39c487bbc711b29e177119d12c49c79b31faba83609082"
|
| 311 |
-
},
|
| 312 |
-
"data/semiconductor_org_types/train.csv": {
|
| 313 |
-
"num_bytes": 8120,
|
| 314 |
-
"checksum": "b7e238cbfd0ed518c222b64e8656599ed13872de135c6e38d6f6123c355d2f64"
|
| 315 |
-
},
|
| 316 |
-
"data/semiconductor_org_types/test_unlabeled.csv": {
|
| 317 |
-
"num_bytes": 68529,
|
| 318 |
-
"checksum": "141d8b36685475310c98cdb16099acbf04498d80349f4434c2201deffd271f24"
|
| 319 |
}
|
| 320 |
},
|
| 321 |
-
"download_size":
|
| 322 |
-
"
|
| 323 |
-
"
|
| 324 |
-
"size_in_bytes": 10724941
|
| 325 |
},
|
| 326 |
"tai_safety_research": {
|
| 327 |
"description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
|
|
|
|
| 182 |
"features": {
|
| 183 |
"Sentence": {
|
| 184 |
"dtype": "string",
|
|
|
|
| 185 |
"_type": "Value"
|
| 186 |
},
|
| 187 |
"ID": {
|
| 188 |
"dtype": "int32",
|
|
|
|
| 189 |
"_type": "Value"
|
| 190 |
},
|
| 191 |
"Label": {
|
|
|
|
| 192 |
"names": [
|
| 193 |
"Unlabeled",
|
| 194 |
"not potentially unfair",
|
| 195 |
"potentially unfair"
|
| 196 |
],
|
|
|
|
|
|
|
| 197 |
"_type": "ClassLabel"
|
| 198 |
}
|
| 199 |
},
|
| 200 |
+
"builder_name": "parquet",
|
| 201 |
+
"dataset_name": "raft",
|
|
|
|
|
|
|
| 202 |
"config_name": "terms_of_service",
|
| 203 |
"version": {
|
| 204 |
"version_str": "1.1.0",
|
|
|
|
| 205 |
"major": 1,
|
| 206 |
"minor": 1,
|
| 207 |
"patch": 0
|
|
|
|
| 209 |
"splits": {
|
| 210 |
"train": {
|
| 211 |
"name": "train",
|
| 212 |
+
"num_bytes": 10948,
|
| 213 |
"num_examples": 50,
|
| 214 |
+
"dataset_name": null
|
| 215 |
},
|
| 216 |
"test": {
|
| 217 |
"name": "test",
|
| 218 |
+
"num_bytes": 961820,
|
| 219 |
"num_examples": 5000,
|
| 220 |
+
"dataset_name": null
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
}
|
| 222 |
},
|
| 223 |
+
"download_size": 541547,
|
| 224 |
+
"dataset_size": 972768,
|
| 225 |
+
"size_in_bytes": 1514315
|
|
|
|
| 226 |
},
|
| 227 |
"tai_safety_research": {
|
| 228 |
"description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
|
terms_of_service/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1cfff8c8315b738997130336ffb913e1ab897021f4f4e5d1a38d089a972b0e0f
|
| 3 |
+
size 532667
|
terms_of_service/train-00000-of-00001.parquet
ADDED
|
Binary file (8.88 kB). View file
|
|
|