updating interface
Browse files- 000_preview.parquet +0 -3
- README.md +45 -12
- dataset_infos.json +2 -2
000_preview.parquet
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:90bcb110dcc8d1b54b2ec4ab071a3059e5b235959fb3c6fafb41a2f7c047c1cd
|
| 3 |
-
size 6180
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -53,6 +53,8 @@ print("Timeseries:", None if X is None else X.shape, " Connectivity:", None if
|
|
| 53 |
|
| 54 |
## Use with `datasets` (viewer‑ready, no scripts)
|
| 55 |
|
|
|
|
|
|
|
| 56 |
You can explore a tiny, fast preview split directly via the `datasets` library. The preview embeds a small 8×8 top‑left
|
| 57 |
slice of the correlation matrix so the Hugging Face viewer renders rows/columns quickly. Paths to the full on‑disk
|
| 58 |
arrays are included for downstream loading.
|
|
@@ -60,28 +62,31 @@ arrays are included for downstream loading.
|
|
| 60 |
```python
|
| 61 |
from datasets import load_dataset
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
)
|
| 69 |
row = ds[0]
|
| 70 |
print(row["parcellation"], row["subject"]) # e.g., 'AAL116', 'sub-control3351'
|
| 71 |
print(row["corr_shape"], row["ts_shape"]) # e.g., [116, 116], [116]
|
| 72 |
corr8 = row["correlation_matrix"] # 8×8 nested list (for display)
|
| 73 |
|
| 74 |
# Light dev slice (metadata+paths only). Stream to avoid downloads in CI.
|
| 75 |
-
dev = load_dataset(
|
| 76 |
-
"pakkinlau/multi-modal-derived-brain-network",
|
| 77 |
-
data_files="manifests/dev.parquet",
|
| 78 |
-
split="train",
|
| 79 |
-
streaming=True,
|
| 80 |
-
)
|
| 81 |
for ex in dev.take(3):
|
| 82 |
_ = (ex["parcellation"], ex["subject"], ex["corr_path"]) # no embedded arrays
|
| 83 |
```
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
To access the full arrays, load from the returned `corr_path` / `ts_path` using SciPy or `mat73` with variable name fallbacks:
|
| 86 |
|
| 87 |
```python
|
|
@@ -135,11 +140,39 @@ manifests/
|
|
| 135 |
dev.parquet # Parquet version (fast viewer)
|
| 136 |
```
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
### Integrity & Checksums
|
| 139 |
|
| 140 |
Rows in the preview/dev manifests include `*_sha256` and `*_bytes` for both `corr_path` and `ts_path`, derived from `manifests/manifest.jsonl`.
|
| 141 |
You can verify a local copy by recomputing SHA‑256 and matching the values.
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
### Scripts (optional)
|
| 144 |
|
| 145 |
- `scripts/enrich_manifests.py`: Enrich preview/dev JSONL with shapes (from sidecars), embedded 8×8 tiles (from `preview/`), and checksums (from `manifests/manifest.jsonl`).
|
|
|
|
| 53 |
|
| 54 |
## Use with `datasets` (viewer‑ready, no scripts)
|
| 55 |
|
| 56 |
+
Note: modern `datasets` (>= 3.x) does not execute local Python dataset scripts. Use `data_files=` with Parquet/JSONL as shown below.
|
| 57 |
+
|
| 58 |
You can explore a tiny, fast preview split directly via the `datasets` library. The preview embeds a small 8×8 top‑left
|
| 59 |
slice of the correlation matrix so the Hugging Face viewer renders rows/columns quickly. Paths to the full on‑disk
|
| 60 |
arrays are included for downstream loading.
|
|
|
|
| 62 |
```python
|
| 63 |
from datasets import load_dataset
|
| 64 |
|
| 65 |
+
# Root-level Viewer splits (recommended on the Hub):
|
| 66 |
+
# train.parquet — tiny preview with embedded 8×8 matrices
|
| 67 |
+
# validation.parquet — metadata-only dev slice
|
| 68 |
+
|
| 69 |
+
ds = load_dataset("pakkinlau/multi-modal-derived-brain-network", data_files="train.parquet", split="train")
|
|
|
|
| 70 |
row = ds[0]
|
| 71 |
print(row["parcellation"], row["subject"]) # e.g., 'AAL116', 'sub-control3351'
|
| 72 |
print(row["corr_shape"], row["ts_shape"]) # e.g., [116, 116], [116]
|
| 73 |
corr8 = row["correlation_matrix"] # 8×8 nested list (for display)
|
| 74 |
|
| 75 |
# Light dev slice (metadata+paths only). Stream to avoid downloads in CI.
|
| 76 |
+
dev = load_dataset("pakkinlau/multi-modal-derived-brain-network", data_files="validation.parquet", split="train", streaming=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
for ex in dev.take(3):
|
| 78 |
_ = (ex["parcellation"], ex["subject"], ex["corr_path"]) # no embedded arrays
|
| 79 |
```
|
| 80 |
|
| 81 |
+
You can also use the manifest entrypoints under `manifests/`:
|
| 82 |
+
|
| 83 |
+
```python
|
| 84 |
+
from datasets import load_dataset
|
| 85 |
+
|
| 86 |
+
preview = load_dataset("pakkinlau/multi-modal-derived-brain-network", data_files="manifests/preview.parquet", split="train")
|
| 87 |
+
dev = load_dataset("pakkinlau/multi-modal-derived-brain-network", data_files="manifests/dev.parquet", split="train", streaming=True)
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
To access the full arrays, load from the returned `corr_path` / `ts_path` using SciPy or `mat73` with variable name fallbacks:
|
| 91 |
|
| 92 |
```python
|
|
|
|
| 140 |
dev.parquet # Parquet version (fast viewer)
|
| 141 |
```
|
| 142 |
|
| 143 |
+
### Data files
|
| 144 |
+
|
| 145 |
+
- Root (used by the Viewer):
|
| 146 |
+
- `train.parquet` — tiny viewer‑ready preview with embedded 8×8 correlation matrices
|
| 147 |
+
- `validation.parquet` — dev metadata‑only slice (no embedded arrays)
|
| 148 |
+
- Manifests (secondary entrypoints):
|
| 149 |
+
- `manifests/preview.parquet` — same content as `train.parquet` (if duplicated)
|
| 150 |
+
- `manifests/dev.parquet` — same as `validation.parquet` (if duplicated)
|
| 151 |
+
|
| 152 |
### Integrity & Checksums
|
| 153 |
|
| 154 |
Rows in the preview/dev manifests include `*_sha256` and `*_bytes` for both `corr_path` and `ts_path`, derived from `manifests/manifest.jsonl`.
|
| 155 |
You can verify a local copy by recomputing SHA‑256 and matching the values.
|
| 156 |
|
| 157 |
+
Example (verify a correlation .mat):
|
| 158 |
+
|
| 159 |
+
```python
|
| 160 |
+
import hashlib
|
| 161 |
+
from pathlib import Path
|
| 162 |
+
|
| 163 |
+
def sha256(path: Path, buf=131072):
|
| 164 |
+
h = hashlib.sha256()
|
| 165 |
+
with open(path, 'rb') as f:
|
| 166 |
+
while True:
|
| 167 |
+
b = f.read(buf)
|
| 168 |
+
if not b:
|
| 169 |
+
break
|
| 170 |
+
h.update(b)
|
| 171 |
+
return h.hexdigest()
|
| 172 |
+
|
| 173 |
+
# compare with row['corr_sha256']
|
| 174 |
+
```
|
| 175 |
+
|
| 176 |
### Scripts (optional)
|
| 177 |
|
| 178 |
- `scripts/enrich_manifests.py`: Enrich preview/dev JSONL with shapes (from sidecars), embedded 8×8 tiles (from `preview/`), and checksums (from `manifests/manifest.jsonl`).
|
dataset_infos.json
CHANGED
|
@@ -23,8 +23,8 @@
|
|
| 23 |
"builder_name": "parquet",
|
| 24 |
"config_name": "default",
|
| 25 |
"version": {"version_str": "1.0.0", "major": 1, "minor": 0, "patch": 0},
|
| 26 |
-
"splits": {"train": {"name": "train", "num_examples": 5}},
|
| 27 |
-
"data_files": {"train": ["train.parquet"]},
|
| 28 |
"download_checksums": {},
|
| 29 |
"download_size": 0,
|
| 30 |
"dataset_size": 0,
|
|
|
|
| 23 |
"builder_name": "parquet",
|
| 24 |
"config_name": "default",
|
| 25 |
"version": {"version_str": "1.0.0", "major": 1, "minor": 0, "patch": 0},
|
| 26 |
+
"splits": {"train": {"name": "train", "num_examples": 5}, "validation": {"name": "validation", "num_examples": 20}},
|
| 27 |
+
"data_files": {"train": ["train.parquet"], "validation": ["validation.parquet"]},
|
| 28 |
"download_checksums": {},
|
| 29 |
"download_size": 0,
|
| 30 |
"dataset_size": 0,
|