Datasets:
Include code snippet with the dataset creation
Browse files
README.md
CHANGED
|
@@ -265,6 +265,119 @@ The dataset contains a single split, which is `train`.
|
|
| 265 |
|
| 266 |
## Dataset Creation
|
| 267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
### Curation Rationale
|
| 269 |
|
| 270 |
[More Information Needed]
|
|
|
|
| 265 |
|
| 266 |
## Dataset Creation
|
| 267 |
|
| 268 |
+
### Script used for the generation
|
| 269 |
+
|
| 270 |
+
```python
|
| 271 |
+
import argilla as rg
|
| 272 |
+
from datasets import load_dataset
|
| 273 |
+
import uuid
|
| 274 |
+
from datasets import concatenate_datasets
|
| 275 |
+
|
| 276 |
+
ds = load_dataset("go_emotions", "raw", split="train")
|
| 277 |
+
ds_prepared = load_dataset("go_emotions")
|
| 278 |
+
|
| 279 |
+
_CLASS_NAMES = [
|
| 280 |
+
"admiration",
|
| 281 |
+
"amusement",
|
| 282 |
+
"anger",
|
| 283 |
+
"annoyance",
|
| 284 |
+
"approval",
|
| 285 |
+
"caring",
|
| 286 |
+
"confusion",
|
| 287 |
+
"curiosity",
|
| 288 |
+
"desire",
|
| 289 |
+
"disappointment",
|
| 290 |
+
"disapproval",
|
| 291 |
+
"disgust",
|
| 292 |
+
"embarrassment",
|
| 293 |
+
"excitement",
|
| 294 |
+
"fear",
|
| 295 |
+
"gratitude",
|
| 296 |
+
"grief",
|
| 297 |
+
"joy",
|
| 298 |
+
"love",
|
| 299 |
+
"nervousness",
|
| 300 |
+
"optimism",
|
| 301 |
+
"pride",
|
| 302 |
+
"realization",
|
| 303 |
+
"relief",
|
| 304 |
+
"remorse",
|
| 305 |
+
"sadness",
|
| 306 |
+
"surprise",
|
| 307 |
+
"neutral",
|
| 308 |
+
]
|
| 309 |
+
label_to_id = {label: i for i, label in enumerate(_CLASS_NAMES)}
|
| 310 |
+
id_to_label = {i: label for i, label in enumerate(_CLASS_NAMES)}
|
| 311 |
+
|
| 312 |
+
# Concatenate the datasets and transform to pd.DataFrame
|
| 313 |
+
|
| 314 |
+
ds_prepared = concatenate_datasets([ds_prepared["train"], ds_prepared["validation"], ds_prepared["test"]])
|
| 315 |
+
df_prepared = ds_prepared.to_pandas()
|
| 316 |
+
|
| 317 |
+
# Obtain the final labels as a dict, to later include these as suggestions
|
| 318 |
+
|
| 319 |
+
labels_prepared = {}
|
| 320 |
+
for idx in df_prepared.index:
|
| 321 |
+
labels = [id_to_label[label_id] for label_id in df_prepared['labels'][idx]]
|
| 322 |
+
labels_prepared[df_prepared['id'][idx]] = labels
|
| 323 |
+
|
| 324 |
+
# Add labels to the dataset and keep only the relevant columns
|
| 325 |
+
|
| 326 |
+
def add_labels(ex):
|
| 327 |
+
labels = []
|
| 328 |
+
for label in _CLASS_NAMES:
|
| 329 |
+
if ex[label] == 1:
|
| 330 |
+
labels.append(label)
|
| 331 |
+
ex["labels"] = labels
|
| 332 |
+
|
| 333 |
+
return ex
|
| 334 |
+
|
| 335 |
+
ds = ds.map(add_labels)
|
| 336 |
+
df = ds.select_columns(["text", "labels", "rater_id", "id"]).to_pandas()
|
| 337 |
+
|
| 338 |
+
# Create a FeedbackDataset for text classification
|
| 339 |
+
|
| 340 |
+
feedback_dataset = rg.FeedbackDataset.for_text_classification(labels=_CLASS_NAMES, multi_label=True)
|
| 341 |
+
|
| 342 |
+
# Create the records with the original responses, and use as suggestions
|
| 343 |
+
# the final labels in the "simplified" go_emotions dataset.
|
| 344 |
+
|
| 345 |
+
records = []
|
| 346 |
+
for text, df_text in df.groupby("text"):
|
| 347 |
+
responses = []
|
| 348 |
+
for rater_id, df_raters in df_text.groupby("rater_id"):
|
| 349 |
+
responses.append(
|
| 350 |
+
{
|
| 351 |
+
"values": {"label": {"value": df_raters["labels"].iloc[0].tolist()}},
|
| 352 |
+
"status": "submitted",
|
| 353 |
+
"user_id": uuid.UUID(int=rater_id),
|
| 354 |
+
}
|
| 355 |
+
)
|
| 356 |
+
suggested_labels = labels_prepared.get(df_raters["id"].iloc[0], None)
|
| 357 |
+
if not suggested_labels:
|
| 358 |
+
continue
|
| 359 |
+
suggestion = [
|
| 360 |
+
{
|
| 361 |
+
"question_name": "label",
|
| 362 |
+
"value": suggested_labels,
|
| 363 |
+
"type": "human",
|
| 364 |
+
}
|
| 365 |
+
]
|
| 366 |
+
records.append(
|
| 367 |
+
rg.FeedbackRecord(
|
| 368 |
+
fields={"text": df_raters["text"].iloc[0]},
|
| 369 |
+
responses=responses,
|
| 370 |
+
suggestions=suggestion
|
| 371 |
+
)
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
feedback_dataset.add_records(records)
|
| 376 |
+
|
| 377 |
+
# Push to the hub
|
| 378 |
+
feedback_dataset.push_to_huggingface("plaguss/go_emotions_raw")
|
| 379 |
+
```
|
| 380 |
+
|
| 381 |
### Curation Rationale
|
| 382 |
|
| 383 |
[More Information Needed]
|