Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Languages:
English
Size:
10K - 100K
License:
File size: 2,347 Bytes
a0828e1 2168352 a0828e1 909dbf6 84d4706 909dbf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
task_categories:
- image-classification
language:
- en
tags:
- B&W
- Colored
- Classification
- art
- BnW
- 10K
size_categories:
- 1K<n<10K
---

# **BnW-vs-Colored-10K**
**BnW-vs-Colored-10K** is a curated dataset of 10,000 images designed for binary **image classification** tasks distinguishing between black & white (BnW) and colored images. This dataset can be used for training models in visual recognition, restoration, or filtering pipelines involving grayscale and color detection.
## Dataset Summary
- **Task**: Binary Image Classification
- **Modalities**: Image
- **Formats**: Parquet
- **Split**: Train (10,000 images)
- **Labels**: `B & W` (Black and White), `Colored`
- **Language**: English
- **License**: Apache 2.0
- **Size**: 4.15 GB
## Features
| Column | Type | Description |
|--------|--------|-------------------------------------|
| image | Image | Input image (JPEG format) |
| label | Class | Binary label: `B & W` or `Colored` |
## Label Information
| Label ID | Class Name |
|----------|------------|
| 0 | B & W |
| 1 | Colored |
## Example Entries
| Image | Label |
|------------------------------|--------|
|  | B & W |
|  | Colored|
## Usage
You can load the dataset using the `datasets` library from Hugging Face:
```python
from datasets import load_dataset
dataset = load_dataset("prithivMLmods/BnW-vs-Colored-10K")
```
To visualize an example:
```python
import matplotlib.pyplot as plt
example = dataset["train"][0]
plt.imshow(example["image"])
plt.title(example["label"])
plt.axis("off")
plt.show()
```
## Applications
- Colorization model pre/post-processing
- Restoration of old photos
- Image enhancement and filtering
- Historical document processing
- AI art stylization models
## License
This dataset is made available under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
---
*Curated & Maintained by [@prithivMLmods](https://huggingface.co/prithivMLmods). For inquiries or contributions, please open an issue or submit a pull request.*
|