Datasets:
Tasks:
Audio Classification
Formats:
parquet
Sub-tasks:
keyword-spotting
Languages:
English
Size:
100K - 1M
ArXiv:
License:
Upload exploration.ipynb with huggingface_hub
Browse files- exploration.ipynb +410 -0
exploration.ipynb
ADDED
|
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "4991385a-1cc9-4cd7-b144-36dc0478fafe",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"#!pip install renumics-spotlight datasets[audio]"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": 1,
|
| 16 |
+
"id": "a32c61a3-b0f8-430b-9c4d-ff27a1a7942e",
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"import datasets\n",
|
| 21 |
+
"from renumics import spotlight"
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "code",
|
| 26 |
+
"execution_count": 2,
|
| 27 |
+
"id": "fada8bfa-c2ea-441a-9d07-f67fa8047138",
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [
|
| 30 |
+
{
|
| 31 |
+
"data": {
|
| 32 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 33 |
+
"model_id": "793bc6d31f7c430f99c5a535c9f810e2",
|
| 34 |
+
"version_major": 2,
|
| 35 |
+
"version_minor": 0
|
| 36 |
+
},
|
| 37 |
+
"text/plain": [
|
| 38 |
+
"Downloading readme: 0%| | 0.00/782 [00:00<?, ?B/s]"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
"metadata": {},
|
| 42 |
+
"output_type": "display_data"
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"data": {
|
| 46 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 47 |
+
"model_id": "d5a8278532bf48669b3c6322184f4a08",
|
| 48 |
+
"version_major": 2,
|
| 49 |
+
"version_minor": 0
|
| 50 |
+
},
|
| 51 |
+
"text/plain": [
|
| 52 |
+
"Downloading data files: 0%| | 0/3 [00:00<?, ?it/s]"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"output_type": "display_data"
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"data": {
|
| 60 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 61 |
+
"model_id": "fc555fe7338e4e2283195c5fcd197383",
|
| 62 |
+
"version_major": 2,
|
| 63 |
+
"version_minor": 0
|
| 64 |
+
},
|
| 65 |
+
"text/plain": [
|
| 66 |
+
"Downloading data: 0%| | 0.00/10.6M [00:00<?, ?B/s]"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
"metadata": {},
|
| 70 |
+
"output_type": "display_data"
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"data": {
|
| 74 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 75 |
+
"model_id": "f562fcb145974bacb44deb1601095a22",
|
| 76 |
+
"version_major": 2,
|
| 77 |
+
"version_minor": 0
|
| 78 |
+
},
|
| 79 |
+
"text/plain": [
|
| 80 |
+
"Downloading data: 0%| | 0.00/1.41M [00:00<?, ?B/s]"
|
| 81 |
+
]
|
| 82 |
+
},
|
| 83 |
+
"metadata": {},
|
| 84 |
+
"output_type": "display_data"
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"data": {
|
| 88 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 89 |
+
"model_id": "4574322be3824d749649a01ddc28ca82",
|
| 90 |
+
"version_major": 2,
|
| 91 |
+
"version_minor": 0
|
| 92 |
+
},
|
| 93 |
+
"text/plain": [
|
| 94 |
+
"Downloading data: 0%| | 0.00/638k [00:00<?, ?B/s]"
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"output_type": "display_data"
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"data": {
|
| 102 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 103 |
+
"model_id": "ef4f9b9247e545759e5c2d5b40315de7",
|
| 104 |
+
"version_major": 2,
|
| 105 |
+
"version_minor": 0
|
| 106 |
+
},
|
| 107 |
+
"text/plain": [
|
| 108 |
+
"Extracting data files: 0%| | 0/3 [00:00<?, ?it/s]"
|
| 109 |
+
]
|
| 110 |
+
},
|
| 111 |
+
"metadata": {},
|
| 112 |
+
"output_type": "display_data"
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"data": {
|
| 116 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 117 |
+
"model_id": "fdc18a8dc915447486fb922ba67d7299",
|
| 118 |
+
"version_major": 2,
|
| 119 |
+
"version_minor": 0
|
| 120 |
+
},
|
| 121 |
+
"text/plain": [
|
| 122 |
+
"Generating train split: 0%| | 0/51093 [00:00<?, ? examples/s]"
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
"metadata": {},
|
| 126 |
+
"output_type": "display_data"
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"data": {
|
| 130 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 131 |
+
"model_id": "844dede7e86d48449b913bbf105aa355",
|
| 132 |
+
"version_major": 2,
|
| 133 |
+
"version_minor": 0
|
| 134 |
+
},
|
| 135 |
+
"text/plain": [
|
| 136 |
+
"Generating validation split: 0%| | 0/6799 [00:00<?, ? examples/s]"
|
| 137 |
+
]
|
| 138 |
+
},
|
| 139 |
+
"metadata": {},
|
| 140 |
+
"output_type": "display_data"
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"data": {
|
| 144 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 145 |
+
"model_id": "6e988cd434ea4f10bfc5709b100a1a06",
|
| 146 |
+
"version_major": 2,
|
| 147 |
+
"version_minor": 0
|
| 148 |
+
},
|
| 149 |
+
"text/plain": [
|
| 150 |
+
"Generating test split: 0%| | 0/3081 [00:00<?, ? examples/s]"
|
| 151 |
+
]
|
| 152 |
+
},
|
| 153 |
+
"metadata": {},
|
| 154 |
+
"output_type": "display_data"
|
| 155 |
+
}
|
| 156 |
+
],
|
| 157 |
+
"source": [
|
| 158 |
+
"dataset = datasets.load_dataset(\"renumics/speech_commands_enrichment_only\")\n",
|
| 159 |
+
"raw_dataset = datasets.load_dataset(\"speech_commands\", 'v0.01')"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "code",
|
| 164 |
+
"execution_count": 3,
|
| 165 |
+
"id": "7e486382-31cd-4b69-8a9e-fe3d7ac94b41",
|
| 166 |
+
"metadata": {},
|
| 167 |
+
"outputs": [
|
| 168 |
+
{
|
| 169 |
+
"data": {
|
| 170 |
+
"text/plain": [
|
| 171 |
+
"DatasetDict({\n",
|
| 172 |
+
" train: Dataset({\n",
|
| 173 |
+
" features: ['label_string', 'probability', 'probability_vector', 'prediction', 'prediction_string', 'embedding_reduced', '__index_level_0__'],\n",
|
| 174 |
+
" num_rows: 51093\n",
|
| 175 |
+
" })\n",
|
| 176 |
+
" validation: Dataset({\n",
|
| 177 |
+
" features: ['label_string', 'probability', 'probability_vector', 'prediction', 'prediction_string', 'embedding_reduced', '__index_level_0__'],\n",
|
| 178 |
+
" num_rows: 6799\n",
|
| 179 |
+
" })\n",
|
| 180 |
+
" test: Dataset({\n",
|
| 181 |
+
" features: ['label_string', 'probability', 'probability_vector', 'prediction', 'prediction_string', 'embedding_reduced', '__index_level_0__'],\n",
|
| 182 |
+
" num_rows: 3081\n",
|
| 183 |
+
" })\n",
|
| 184 |
+
"})"
|
| 185 |
+
]
|
| 186 |
+
},
|
| 187 |
+
"execution_count": 3,
|
| 188 |
+
"metadata": {},
|
| 189 |
+
"output_type": "execute_result"
|
| 190 |
+
}
|
| 191 |
+
],
|
| 192 |
+
"source": [
|
| 193 |
+
"dataset"
|
| 194 |
+
]
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"cell_type": "code",
|
| 198 |
+
"execution_count": 4,
|
| 199 |
+
"id": "9594c54a-c024-4492-af7b-f1c25bb4de6b",
|
| 200 |
+
"metadata": {},
|
| 201 |
+
"outputs": [
|
| 202 |
+
{
|
| 203 |
+
"data": {
|
| 204 |
+
"text/plain": [
|
| 205 |
+
"DatasetDict({\n",
|
| 206 |
+
" train: Dataset({\n",
|
| 207 |
+
" features: ['file', 'audio', 'label', 'is_unknown', 'speaker_id', 'utterance_id'],\n",
|
| 208 |
+
" num_rows: 51093\n",
|
| 209 |
+
" })\n",
|
| 210 |
+
" validation: Dataset({\n",
|
| 211 |
+
" features: ['file', 'audio', 'label', 'is_unknown', 'speaker_id', 'utterance_id'],\n",
|
| 212 |
+
" num_rows: 6799\n",
|
| 213 |
+
" })\n",
|
| 214 |
+
" test: Dataset({\n",
|
| 215 |
+
" features: ['file', 'audio', 'label', 'is_unknown', 'speaker_id', 'utterance_id'],\n",
|
| 216 |
+
" num_rows: 3081\n",
|
| 217 |
+
" })\n",
|
| 218 |
+
"})"
|
| 219 |
+
]
|
| 220 |
+
},
|
| 221 |
+
"execution_count": 4,
|
| 222 |
+
"metadata": {},
|
| 223 |
+
"output_type": "execute_result"
|
| 224 |
+
}
|
| 225 |
+
],
|
| 226 |
+
"source": [
|
| 227 |
+
"raw_dataset"
|
| 228 |
+
]
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"cell_type": "code",
|
| 232 |
+
"execution_count": 5,
|
| 233 |
+
"id": "ddda31eb-fdab-4ed3-81cc-88506ae0d7d5",
|
| 234 |
+
"metadata": {},
|
| 235 |
+
"outputs": [],
|
| 236 |
+
"source": [
|
| 237 |
+
"joined_dataset_enrichment = datasets.concatenate_datasets([dataset[\"train\"], dataset[\"validation\"], dataset[\"test\"]])\n",
|
| 238 |
+
"raw_dataset_joined = datasets.concatenate_datasets([raw_dataset[\"train\"].sort(\"file\"), raw_dataset[\"validation\"].sort(\"file\"), \n",
|
| 239 |
+
" raw_dataset[\"test\"].sort(\"file\")])"
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"cell_type": "code",
|
| 244 |
+
"execution_count": 6,
|
| 245 |
+
"id": "2b8918a3-5037-4062-b9cd-40b4a8a4d6c0",
|
| 246 |
+
"metadata": {},
|
| 247 |
+
"outputs": [
|
| 248 |
+
{
|
| 249 |
+
"data": {
|
| 250 |
+
"text/plain": [
|
| 251 |
+
"Dataset({\n",
|
| 252 |
+
" features: ['label_string', 'probability', 'probability_vector', 'prediction', 'prediction_string', 'embedding_reduced', '__index_level_0__'],\n",
|
| 253 |
+
" num_rows: 60973\n",
|
| 254 |
+
"})"
|
| 255 |
+
]
|
| 256 |
+
},
|
| 257 |
+
"execution_count": 6,
|
| 258 |
+
"metadata": {},
|
| 259 |
+
"output_type": "execute_result"
|
| 260 |
+
}
|
| 261 |
+
],
|
| 262 |
+
"source": [
|
| 263 |
+
"joined_dataset_enrichment"
|
| 264 |
+
]
|
| 265 |
+
},
|
| 266 |
+
{
|
| 267 |
+
"cell_type": "code",
|
| 268 |
+
"execution_count": 7,
|
| 269 |
+
"id": "fa6ca118-3df0-4b6b-a036-4c70544500e3",
|
| 270 |
+
"metadata": {},
|
| 271 |
+
"outputs": [
|
| 272 |
+
{
|
| 273 |
+
"data": {
|
| 274 |
+
"text/plain": [
|
| 275 |
+
"Dataset({\n",
|
| 276 |
+
" features: ['file', 'audio', 'label', 'is_unknown', 'speaker_id', 'utterance_id'],\n",
|
| 277 |
+
" num_rows: 60973\n",
|
| 278 |
+
"})"
|
| 279 |
+
]
|
| 280 |
+
},
|
| 281 |
+
"execution_count": 7,
|
| 282 |
+
"metadata": {},
|
| 283 |
+
"output_type": "execute_result"
|
| 284 |
+
}
|
| 285 |
+
],
|
| 286 |
+
"source": [
|
| 287 |
+
"#raw_dataset_joined = raw_dataset_joined.sort(\"file\")\n",
|
| 288 |
+
"raw_dataset_joined"
|
| 289 |
+
]
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"cell_type": "code",
|
| 293 |
+
"execution_count": 8,
|
| 294 |
+
"id": "0a56d781-5b5c-4deb-aa4f-c9a1a96ac650",
|
| 295 |
+
"metadata": {},
|
| 296 |
+
"outputs": [
|
| 297 |
+
{
|
| 298 |
+
"data": {
|
| 299 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 300 |
+
"model_id": "4daa94720e334ecd9c1d3cc679bc1ee5",
|
| 301 |
+
"version_major": 2,
|
| 302 |
+
"version_minor": 0
|
| 303 |
+
},
|
| 304 |
+
"text/plain": [
|
| 305 |
+
"Flattening the indices: 0%| | 0/60973 [00:00<?, ? examples/s]"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
"metadata": {},
|
| 309 |
+
"output_type": "display_data"
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"data": {
|
| 313 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 314 |
+
"model_id": "5a7effce6372433b814701d1a0a51e05",
|
| 315 |
+
"version_major": 2,
|
| 316 |
+
"version_minor": 0
|
| 317 |
+
},
|
| 318 |
+
"text/plain": [
|
| 319 |
+
"Flattening the indices: 0%| | 0/60973 [00:00<?, ? examples/s]"
|
| 320 |
+
]
|
| 321 |
+
},
|
| 322 |
+
"metadata": {},
|
| 323 |
+
"output_type": "display_data"
|
| 324 |
+
}
|
| 325 |
+
],
|
| 326 |
+
"source": [
|
| 327 |
+
"complete_dataset = datasets.concatenate_datasets([raw_dataset_joined, joined_dataset_enrichment], axis=1)"
|
| 328 |
+
]
|
| 329 |
+
},
|
| 330 |
+
{
|
| 331 |
+
"cell_type": "code",
|
| 332 |
+
"execution_count": 9,
|
| 333 |
+
"id": "cb487431-8bc6-483a-bf25-a917278b6781",
|
| 334 |
+
"metadata": {},
|
| 335 |
+
"outputs": [
|
| 336 |
+
{
|
| 337 |
+
"data": {
|
| 338 |
+
"text/plain": [
|
| 339 |
+
"Dataset({\n",
|
| 340 |
+
" features: ['file', 'audio', 'label', 'is_unknown', 'speaker_id', 'utterance_id', 'label_string', 'probability', 'probability_vector', 'prediction', 'prediction_string', 'embedding_reduced', '__index_level_0__'],\n",
|
| 341 |
+
" num_rows: 60973\n",
|
| 342 |
+
"})"
|
| 343 |
+
]
|
| 344 |
+
},
|
| 345 |
+
"execution_count": 9,
|
| 346 |
+
"metadata": {},
|
| 347 |
+
"output_type": "execute_result"
|
| 348 |
+
}
|
| 349 |
+
],
|
| 350 |
+
"source": [
|
| 351 |
+
"complete_dataset"
|
| 352 |
+
]
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"cell_type": "code",
|
| 356 |
+
"execution_count": 11,
|
| 357 |
+
"id": "a11fefeb-9fd1-4500-9b9f-3275207b1cde",
|
| 358 |
+
"metadata": {},
|
| 359 |
+
"outputs": [
|
| 360 |
+
{
|
| 361 |
+
"name": "stderr",
|
| 362 |
+
"output_type": "stream",
|
| 363 |
+
"text": [
|
| 364 |
+
"\n",
|
| 365 |
+
"KeyboardInterrupt\n",
|
| 366 |
+
"\n"
|
| 367 |
+
]
|
| 368 |
+
}
|
| 369 |
+
],
|
| 370 |
+
"source": [
|
| 371 |
+
"spotlight.show(\n",
|
| 372 |
+
" complete_dataset,\n",
|
| 373 |
+
" #layout= layout.parse(\"spotlight-layout.json\"),\n",
|
| 374 |
+
" port=7860, \n",
|
| 375 |
+
" host=\"0.0.0.0\",\n",
|
| 376 |
+
" allow_filebrowsing=False \n",
|
| 377 |
+
" )"
|
| 378 |
+
]
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"cell_type": "code",
|
| 382 |
+
"execution_count": null,
|
| 383 |
+
"id": "f1e38449-7bc1-4ae5-a754-a914a808a534",
|
| 384 |
+
"metadata": {},
|
| 385 |
+
"outputs": [],
|
| 386 |
+
"source": []
|
| 387 |
+
}
|
| 388 |
+
],
|
| 389 |
+
"metadata": {
|
| 390 |
+
"kernelspec": {
|
| 391 |
+
"display_name": "Python 3 (ipykernel)",
|
| 392 |
+
"language": "python",
|
| 393 |
+
"name": "python3"
|
| 394 |
+
},
|
| 395 |
+
"language_info": {
|
| 396 |
+
"codemirror_mode": {
|
| 397 |
+
"name": "ipython",
|
| 398 |
+
"version": 3
|
| 399 |
+
},
|
| 400 |
+
"file_extension": ".py",
|
| 401 |
+
"mimetype": "text/x-python",
|
| 402 |
+
"name": "python",
|
| 403 |
+
"nbconvert_exporter": "python",
|
| 404 |
+
"pygments_lexer": "ipython3",
|
| 405 |
+
"version": "3.10.12"
|
| 406 |
+
}
|
| 407 |
+
},
|
| 408 |
+
"nbformat": 4,
|
| 409 |
+
"nbformat_minor": 5
|
| 410 |
+
}
|