tianyumyum commited on
Commit
be8f366
·
verified ·
1 Parent(s): 9c35825

Update README for github link

Browse files
Files changed (1) hide show
  1. README.md +246 -204
README.md CHANGED
@@ -1,204 +1,246 @@
1
- ---
2
- datasets:
3
- - dataset: tianyumyum/AOE
4
- data_files:
5
- - split: all
6
- path: table_data/all_AOE_tables.jsonl
7
- ---
8
-
9
-
10
- # The AOE (Arranged and Organized Extraction) Benchmark
11
-
12
- ## 1. Introduction
13
-
14
- The AOE benchmark was created to overcome the limitations of existing text-to-table benchmarks, which often rely on synthetic data or overly simple tasks. Our goal is to challenge modern LLMs with realistic, complex, and solvable data extraction tasks.
15
-
16
- **Core Principles:**
17
- * **Source Authenticity:** All documents are from real-world sources, not synthetically generated.
18
- * **Content Integrity:** We preserve the original length, structure, and complexity of the documents. Models must locate and integrate information that may be scattered across the text.
19
- * **Challenging Yet Solvable:** The tasks require a range of skills, including schema construction, information extraction, comparison, and numerical reasoning.
20
-
21
- ![Construction process of our AOE Benchmark.](fig_data_process-0516-v4.jpg)
22
-
23
- ## 2. Data Sources and Collection
24
-
25
- We collected public, long-form documents in PDF format and parsed them into markdown. The data spans three distinct domains.
26
-
27
- ### Academic Domain
28
- * **Sources:** Semantic Scholar, Papers With Code.
29
- * **Content:** Research papers, citation metadata, and leaderboard results.
30
-
31
- ### Financial Domain
32
- * **Source:** CNINFO.
33
- * **Content:** Annual reports (2020-2023) of A-share companies.
34
-
35
- ### Legal Domain
36
- * **Sources:** People's Court Case Library, China National Database of Laws and Regulations.
37
- * **Content:** Chinese civil law judgments and official statutes.
38
-
39
- ## 3. Data Processing and Annotation
40
-
41
- * **Table Preservation:** For academic and financial papers, we used tools like `markitdown`, `Marker`, and OCR to accurately extract and preserve tables from the original PDFs.
42
- * **Information Annotation:** For legal documents, we used a human-in-the-loop process to extract key information and remove irrelevant details, ensuring the data contains only final judgments and principal legal codes.
43
-
44
- ## 4. Benchmark Tasks
45
-
46
- ### Academic Domain Tasks
47
- * **$Aca_0$: Citation Context Extraction:** Given multiple papers, identify citation relationships and extract the exact text where one paper references another.
48
- * **$Aca_1$: Methodology Performance Extraction:** From a research paper, extract the performance metrics of a specific method on a given dataset.
49
-
50
- ### Legal Domain Tasks
51
- * **$Legal_0$: Legal Provision Retrieval from Cases:** Given the facts of a legal case, retrieve the most relevant articles from legal statutes, requiring reasoning beyond simple keyword matching.
52
- * **$Legal_1$: Defendant Verdict Extraction:** From case documents, extract detailed verdict information for each defendant, including their charge, sentence, probation, and fines.
53
-
54
- ### Financial Domain Tasks
55
- * **$Fin_{0-3}$: Longitudinal Analysis of Single Company:** Analyze a company's annual reports from 2020-2023 to calculate financial trends over time (e.g., asset growth rate, net profit margin).
56
- * **$Fin_{4-6}$: Cross-Company Analysis:** Compare financial reports from multiple companies in the same industry for a single year, requiring calculations for comparative analysis (e.g., debt-to-asset ratios, earnings per share).
57
-
58
- ## Examples
59
- ### Case1: financial_34_4_en
60
- ```json
61
- {
62
- "doc_length": {
63
- "GONGNIU GROUP CO., LTD.Annual Report 2023.md": 1187338,
64
- "Gree Electric Appliances, Inc. of Zhuhai 2023 Annual Report.md": 1671502,
65
- "Haier Smart Home Co., Ltd.2023 Annual Report.md": 1402616,
66
- "Midea Group Co., Ltd. 2023 Annual Report.md": 1682367,
67
- "TCL Technology Group Corporation ANNUAL REPORT 2023.md": 1566527
68
- },
69
- "answers": [
70
- {
71
- "Filename": "Gree Electric Appliances, Inc. of Zhuhai 2023 Annual Report",
72
- "Reporting Period": 2023,
73
- "Revenue (CNY)": "203,979,266,387",
74
- "Net Profit (CNY)": "29,017,387,604",
75
- "Net cash provided by operating activities (CNY)": "56,398,426,354"
76
- },
77
- {
78
- "Filename": "Midea Group Co., Ltd. 2023 Annual Report",
79
- "Reporting Period": 2023,
80
- "Revenue (CNY)": "372,037,280,000",
81
- "Net Profit (CNY)": "33,719,935,000",
82
- "Net cash provided by operating activities (CNY)": "57,902,611,000"
83
- },
84
- {
85
- "Filename": "Haier Smart Home Co., Ltd.2023 Annual Report",
86
- "Reporting Period": 2023,
87
- "Revenue (CNY)": "261,427,783,050",
88
- "Net Profit (CNY)": "16,596,615,046",
89
- "Net cash provided by operating activities (CNY)": "25,262,376,228"
90
- },
91
- {
92
- "Filename": "TCL Technology Group Corporation ANNUAL REPORT 2023",
93
- "Reporting Period": 2023,
94
- "Revenue (CNY)": "174,366,657,015",
95
- "Net Profit (CNY)": "4,781,000,000",
96
- "Net cash provided by operating activities (CNY)": "25,314,756,105"
97
- },
98
- {
99
- "Filename": "GONGNIU GROUP CO., LTD.Annual Report 2023",
100
- "Reporting Period": 2023,
101
- "Revenue (CNY)": "15,694,755,600",
102
- "Net Profit (CNY)": "3,870,135,376",
103
- "Net cash provided by operating activities (CNY)": "4,827,282,090"
104
- }
105
- ]
106
- }
107
- ```
108
- | Filename | Reporting Period | Revenue (CNY) | Net Profit (CNY) | Net cash provided by operating activities (CNY) |
109
- | :--- | :---: | ---: | ---: | ---: |
110
- | Gree Electric Appliances, Inc. of Zhuhai 2023 Annual Report | 2023 | 203,979,266,387 | 29,017,387,604 | 56,398,426,354 |
111
- | Midea Group Co., Ltd. 2023 Annual Report | 2023 | 372,037,280,000 | 33,719,935,000 | 57,902,611,000 |
112
- | Haier Smart Home Co., Ltd.2023 Annual Report | 2023 | 261,427,783,050 | 16,596,615,046 | 25,262,376,228 |
113
- | TCL Technology Group Corporation ANNUAL REPORT 2023 | 2023 | 174,366,657,015 | 4,781,000,000 | 25,314,756,105 |
114
- | GONGNIU GROUP CO., LTD.Annual Report 2023 | 2023 | 15,694,755,600 | 3,870,135,376 | 4,827,282,090 |
115
-
116
-
117
- ### Case2: legal_29_1_zh
118
- ```json
119
- {"doc_length": {
120
- "卫某臣编造虚假恐怖信息案": 674,
121
- "吴某某诽谤案": 749,
122
- "张某伟、陈某宇编造、故意传播虚假信息案": 753,
123
- "曹某某寻衅滋事案": 1231,
124
- "李某强编造、故意传播虚假恐怖信息案": 627,
125
- "王某某编造、故意传播虚假信息案": 884,
126
- "贾某非法持有宣扬恐怖主义、极端主义物品,宣扬恐怖主义、极端主义案": 1051,
127
- "郎某涛、何某凯诽谤案": 1412
128
- },
129
- "answers": [
130
- {
131
- "案件名": "卫某臣编造虚假恐怖信息案",
132
- "被告": "卫某臣",
133
- "基本案情": "卫某臣,大连市某旅行社导游,2010年6月13日14时46分,向大连某国际机场谎报3Uxx4航班有两名恐怖分子,导致机场启动防恐预案,航班晚点33分钟。",
134
- "罪名": "编造虚假恐怖信息罪",
135
- "刑期": "有期徒刑一年六个月",
136
- "缓刑": "",
137
- "处罚金": "",
138
- "其他判决": ""
139
- },
140
- {
141
- "案件名": "吴某某诽谤案",
142
- "被告": "吴某某",
143
- "基本案情": "2021年5月起,吴某某以“飞哥在东莞”账号编发故事吸引粉丝,后于2021年11月19日,下载莫某发布的照片,捏造不实信息并发布,致其被谩骂、诋毁,造成恶劣社会影响,贴文讨论量75608条、转发量31485次、阅读量4.7亿余次。吴某某还捏造谣言诽谤华某,侵犯其名誉权。东莞市第一市区人民检察院以诽谤罪对吴某某提起公诉。",
144
- "罪名": "诽谤罪",
145
- "刑期": "有期徒刑一年",
146
- "缓刑": "",
147
- "处罚金": "",
148
- "其他判决": ""
149
- },
150
- {
151
- "案件名": "张某伟、陈某宇编造、故意传播虚假信息案",
152
- "被告": "张某伟",
153
- "基本案情": "2022年10月,张某伟、陈某宇在山东滕州市成立某网络科技有限公司,张某伟负责公司整体运行,陈某宇负责技术开发。2023年5月起,陈某宇购买多个网络平台账号,用于生成AI视频和图文,发布至网络平台,共计1万余条。其中20余条为虚假造谣视频,累计阅读观看量超167万次,造成恶劣社会影响,如《浙江工业园现场大火浓烟滚滚,目击者称有爆炸声!》。相关职能部门在多个平台进行辟谣。",
154
- "罪名": "编造、故意传播虚假信息罪",
155
- "刑期": "有期徒刑一年一个月",
156
- "缓刑": "缓刑一年六个月",
157
- "处罚金": "",
158
- "其他判决": ""
159
- },
160
- {
161
- "案件名": "张某伟、陈某宇编造、故意传播虚假信息案",
162
- "被告": "陈某宇",
163
- "基本案情": "2022年10月,张某伟、陈某宇在山东滕州市成立某网络科技有限公司,张某伟负责公司整体运行,陈某宇负责技术开发。2023年5月起,陈某宇购买多个网络平台账号,用于生成AI视频和图文,发布至网络平台,共计1万余条。其中20余条为虚假造谣视频,累计阅读观看量超167万次,造成恶劣社会影响,如《浙江工业园现场大火浓烟滚滚,目击者称有爆炸声!》。相关职能部门在多个平台进行辟谣。",
164
- "罪名": "编造、故意传播虚假信息罪",
165
- "刑期": "有期徒刑一年一个月",
166
- "缓刑": "缓刑一年六个月",
167
- "处罚金": "",
168
- "其他判决": ""
169
- },
170
- {
171
- "案件名": "曹某某寻衅滋事案",
172
- "被告": "曹某某",
173
- "基本案情": "2022年11月下旬至2023年3月,曹某某为增加个人自媒体流量和直播收益,编造并散布关于胡鑫宇事件的虚假信息,涉及96个视频和111场直播,获取近5万元收益。2023年2月2日,官方通报胡鑫宇自缢死亡,曹某某仍继续造谣,造成广泛社会影响,影响政府公信力,引发大量投诉举报,严重扰乱公共秩序。",
174
- "罪名": "寻衅滋事罪",
175
- "刑期": "有期徒刑八个月",
176
- "缓刑": "",
177
- "处罚金": "",
178
- "其他判决": ""
179
- },
180
- {
181
- "案件名": "李某强编造、故意传播虚假恐怖信息案",
182
- "被告": "李某强",
183
- "基本案情": "2010年8月4日22时,李某强在北京市朝阳区小营北路某工地用手机编发“今晚要炸北京首都机场”的短信,向数十个手机号码发送。8月5日,天津彭某报案,首都机场启动紧急预案,排查航站楼和机坪,加强行李检查,耗费大量资源,影响机场正常秩序。",
184
- "罪名": "编造、故意传播虚假恐怖信息罪",
185
- "刑期": "有期徒刑一年",
186
- "缓刑": "",
187
- "处罚金": "",
188
- "其他判决": ""
189
- },
190
- ……
191
- }
192
- ```
193
- | 案件名 | 被告 | 基本案情 | 罪名 | 刑期 | 缓刑 | 处罚金 | 其他判决 |
194
- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
195
- | 卫某臣编造虚假恐怖信息案 | 卫某臣 | 卫某臣,大连市某旅行社导游,2010年6月13日14时46分,向大连某国际机场谎报3Uxx4航班有两名恐怖分子,导致机场启动防恐预案,航班晚点33分钟。 | 编造虚假恐怖信息罪 | 有期徒刑一年六个月 | | | |
196
- | 吴某某诽谤案 | 吴某某 | 2021年5月起,吴某某以“飞哥在东莞”账号编发故事吸引粉丝,后于2021年11月19日,下载莫某发布的照片,捏造不实信息并发布,致其被谩骂、诋毁,造成恶劣社会影响,贴文讨论量75608条、转发量31485次、阅读量4.7亿余次。吴某某还捏造谣言诽谤华某,侵犯其名誉权。东莞市第一市区人民检察院以诽谤罪对吴某某提起公诉。 | 诽谤罪 | 有期徒刑一年 | | | |
197
- | 张某伟、陈某宇编造、故意传播虚假信息案 | 张某伟 | 2022年10月,张某伟、陈某宇在山东滕州市成立某网络科技有限公司,张某伟负责公司整体运行,陈某宇负责技术开发。2023年5月起,陈某宇购买多个网络平台账号,用于生成AI视频和图文,发布至网络平台,共计1万余条。其中20余条为虚假造谣视频,累计阅读观看量超167万次,造成恶劣社会影响,如《浙江工业园现场大火浓烟滚滚,目击者称有爆炸声!》。相关职能部门在多个平台进行辟谣。 | 编造、故意传播虚假信息罪 | 有期徒刑一年一个月 | 缓刑一年六个月 | | |
198
- | 张某伟、陈某宇编造、故意传播虚假信息案 | 陈某宇 | 2022年10月,张某伟、陈某宇在山东滕州市成立某网络科技有限公司,张某伟负责公司整体运行,陈某宇负责技术开发。2023年5月起,陈某宇购买多个网络平台账号,用于生成AI视频和图文,发布至网络平台,共计1万余条。其中20余条为虚假造谣视频,累计阅读观看量超167万次,造成恶劣社会影响,如《浙江工业园现场大火浓烟滚滚,目击者称有爆炸声!》。相关职能部门在多个平台进行辟谣。 | 编造、故意传播虚假信息罪 | 有期徒刑一年一个月 | 缓刑一年六个月 | | |
199
- | 曹某某寻衅滋事案 | 曹某某 | 2022年11月下旬至2023年3月,曹某某为增加个人自媒体流量和直播收益,编造并散布关于胡鑫宇事件的虚假信息,涉及96个视频和111场直播,获取近5万元收益。2023年2月2日,官方通报胡鑫宇自缢死亡,曹某某仍继续造谣,造成广泛社会影响,影响政府公信力,引发大量投诉举报,严重扰乱公共秩序。 | 寻衅滋事罪 | 有期徒刑八个月 | | | |
200
- | 李某强编造、故意传播虚假恐怖信息案 | 李某强 | 2010年8月4日22时,李某强在北京市朝阳区小营北路某工地用手机编发“今晚要炸北京首都机场”的短信,向数十个手机号码发送。8月5日,天津彭某报案,首都机场启动紧急预案,排查航站楼和机坪,加强行李检查,耗费大量资源,影响机场正常秩序。 | 编造、故意传播虚假恐怖信息罪 | 有期徒刑一年 | | | |
201
- | 王某某编造、故意传播虚假信息案 | 王某某 | 被告人王某某未经法定单位报告,于2018年6月至7月通过微信公众号发布四篇虚假地震预报文章,获12.9万余次点击,引发严重社会恐慌,致相关职能部门紧急辟谣,扰乱社会秩序。2018年1月至10月,四川省无5级以上地震。2019年11月5日,王某某被传唤到案,后如实供述犯罪事实,签署认罪认罚具结书,庭审中认罪悔罪。 | 编造、故意传播虚假信息罪 | 有期徒刑一年三个月 | 缓刑二年 | | 扣押的被告人王某某的黑色笔记本电脑1台、智能手机1部由扣押机关予以没收,并上缴国库。 |
202
- | 贾某非法持有宣扬恐怖主义、极端主义物品,宣扬恐怖主义、极端主义案 | 贾某 | 2019年9月至2020年4月,贾某通过微信下载7个涉恐怖、暴力、极端思想的视频存储到手机。2020年3月23日至4月18日,贾某为寻求刺激,通过微信将视频转发给5人。 | 非法持有宣扬恐怖主义、极端主义物品罪、宣扬恐怖主义、极端主义罪 | 有期徒刑八��月 | | 处罚金人民币二千元 | |
203
- | 郎某涛、何某凯诽谤案 | 郎某涛 | 2020年7月7日,郎某涛在杭州某小区快递驿站偷拍谷某某并发布视频,与何某凯合谋捏造谷某某与快递员的不正当关系,发布虚假聊天记录、图片、视频,引发网络大量低俗评论,严重影响谷某某生活。8月5日,内容被广泛传播,影响恶劣。谷某某报案后,二人被拘留9日。谷某某提起刑事自诉,12月25日,公安机关以诽谤罪立案侦查。 | 诽谤罪 | 有期徒刑一年 | 缓刑二年 | | |
204
- | 郎某涛、何某凯诽谤案 | 何某凯 | 2020年7月7日,郎某涛在杭州某小区快递驿站偷拍谷某某并发布视频,与何某凯合谋捏造谷某某与快递员的不正当关系,发布虚假聊天记录、图片、视频,引发网络大量低俗评论,严重影响谷某某生活。8月5日,内容被广泛传播,影响恶劣。谷某某报案后,二人被拘留9日。谷某某提起刑事自诉,12月25日,公安机关以诽谤罪立案侦查。 | 诽谤罪 | 有期徒刑一年 | 缓刑二年 | | |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - dataset: tianyumyum/AOE
4
+ data_files:
5
+ - split: all
6
+ path: table_data/all_AOE_tables.jsonl
7
+ ---
8
+
9
+ # 🏆 AOE: Arranged and Organized Extraction Benchmark
10
+
11
+ **📚 For full reproducibility, all source code is available in our [GitHub repository](https://github.com/tianyumyum/AOE).**
12
+
13
+ > **🎯 Challenge**: Can AI models construct structured tables from complex, real-world documents? AOE tests this critical capability across legal, financial, and academic domains.
14
+
15
+ ## 🚀 What is AOE?
16
+
17
+ The **AOE (Arranged and Organized Extraction) Benchmark** addresses a critical gap in existing text-to-table evaluation frameworks. Unlike synthetic benchmarks, AOE challenges modern LLMs with **authentic, complex, and practically relevant** data extraction tasks.
18
+
19
+ > 💥 **Why "AOE"?** Like Area of Effect damage in gaming that impacts everything within range, our benchmark reveals that current AI models struggle across *all* aspects of structured extraction - from basic parsing to complex reasoning. No model escapes unscathed!
20
+
21
+ ### 🎯 Core Innovation
22
+
23
+ **Beyond Isolated Information**: AOE doesn't just test information retrieval—it evaluates models' ability to:
24
+ - 🧠 **Understand** complex task requirements and construct appropriate schemas
25
+ - 🔍 **Locate** scattered information across multiple lengthy documents
26
+ - 🏗️ **Integrate** diverse data points into coherent, structured tables
27
+ - 🧮 **Perform** numerical reasoning and cross-document analysis
28
+
29
+ ### 📊 Key Statistics
30
+
31
+ | Metric | Value |
32
+ |--------|-------|
33
+ | **Total Tasks** | 373 benchmark instances |
34
+ | **Domains** | 3 (Legal, Financial, Academic) |
35
+ | **Document Sources** | 100% real-world, authentic content |
36
+ | **Total Documents** | 1,914 source documents |
37
+ | **Languages** | English & Chinese |
38
+
39
+ #### 📈 Detailed Domain Statistics
40
+
41
+ | Domain | Language | Tables | Documents | Avg Tokens | Docs/Table |
42
+ |--------|----------|--------|-----------|------------|------------|
43
+ | **Academic** | EN | 74 | 257 | 69k | 3.5/5 |
44
+ | **Financial** | ZH,EN | 224 | 944 | 437k | 4.2/5 |
45
+ | **Legal** | ZH | 75 | 713 | 7k | 9.6/13 |
46
+
47
+
48
+
49
+ ## 📁 Dataset Structure
50
+
51
+ ```python
52
+ {
53
+ "record_id": "academic_10_0_en",
54
+ "query": "Identify possible citation relationships among the following articles...",
55
+ "doc_length": {
56
+ "paper_1.md": 141566, # Character count per document
57
+ "paper_2.md": 885505,
58
+ "paper_3.md": 48869,
59
+ "paper_4.md": 65430,
60
+ "paper_5.md": 53987
61
+ },
62
+ "table_schema": { # Dynamic schema definition
63
+ "columns": [
64
+ {"name": "Cited paper title", "about": "the name of the paper"},
65
+ {"name": "Referencing paper title", "about": "Referencing paper title"},
66
+ {"name": "Referenced content", "about": "the context of the cited paper"},
67
+ {"name": "Label", "about": "reference type: background/methodology/additional"}
68
+ ]
69
+ },
70
+ "answers": [ # Ground truth structured output
71
+ {
72
+ "Cited paper title": "Large Language Model Is Not a Good Few-shot Information Extractor...",
73
+ "Referencing paper title": "What Makes Good In-Context Examples for GPT-3?",
74
+ "Referenced content": "(2) Sentence-embedding (Liu et al., 2022; Su et al., 2022): retrieving...",
75
+ "Label": "background"
76
+ }
77
+ ]
78
+ }
79
+ ```
80
+
81
+
82
+ ## 🏭 Data Sources & Domains
83
+
84
+ <div align="center">
85
+ <img src="fig_data_process-0516-v4.jpg" alt="AOE Benchmark Construction Process" width="800">
86
+ <p><em>Figure: AOE benchmark construction pipeline from raw documents to structured evaluation tasks</em></p>
87
+ </div>
88
+
89
+ ### 📚 **Academic Domain**
90
+ - **Sources**: Semantic Scholar, Papers With Code
91
+ - **Content**: Research papers, citation networks, performance leaderboards
92
+ - **Tasks**: Citation relationship extraction, methodology performance analysis
93
+
94
+ ### 💰 **Financial Domain**
95
+ - **Source**: CNINFO (China's official financial disclosure platform)
96
+ - **Content**: Annual reports (2020-2023) from A-share listed companies
97
+ - **Tasks**: Longitudinal financial analysis, cross-company comparisons
98
+
99
+ ### ⚖️ **Legal Domain**
100
+ - **Sources**: People's Court Case Library, National Legal Database
101
+ - **Content**: Chinese civil law judgments, official statutes
102
+ - **Tasks**: Legal provision retrieval, defendant verdict extraction
103
+
104
+
105
+
106
+ ## 🎯 Benchmark Tasks Overview
107
+
108
+ ### 📊 Task Categories
109
+
110
+ | Domain | Task ID | Description | Challenge Level |
111
+ |--------|---------|-------------|-----------------|
112
+ | **Academic** | $Aca_0$ | Citation Context Extraction | 🔥🔥🔥 |
113
+ | | $Aca_1$ | Methodology Performance Extraction | 🔥🔥 |
114
+ | **Legal** | $Legal_0$ | Legal Provision Retrieval | 🔥🔥🔥🔥 |
115
+ | | $Legal_1$ | Defendant Verdict Extraction | 🔥🔥🔥 |
116
+ | **Financial** | $Fin_{0-3}$ | Single Company Longitudinal Analysis | 🔥🔥 |
117
+ | | $Fin_{4-6}$ | Multi-Company Comparative Analysis | 🔥🔥🔥 |
118
+
119
+ ### 🏗️ Data Processing Pipeline
120
+
121
+ - **📄 Document Preservation**: Advanced parsing with `markitdown`, `Marker`, and OCR
122
+ - **🏷️ Human-in-the-Loop**: Expert annotation for legal document processing
123
+ - **✅ Quality Assurance**: Multi-stage validation ensuring accuracy and completeness
124
+
125
+ ## 💡 Example Tasks
126
+
127
+ ### ⚖️ Legal Analysis Example
128
+ **Task**: Extract structured verdict information from complex trademark infringement cases
129
+
130
+ <details>
131
+ <summary><strong>📋 View Ground Truth Table</strong></summary>
132
+
133
+ **Input Query**: "作为法律文本分析专家,请按照指定格式从判决信息中准确提取每位被告的最终判决结果"
134
+
135
+ **Source Documents**:complex legal cases (678-2391 tokens each)
136
+
137
+ ```csv
138
+ 案件名,被告,罪名,刑期,缓刑,处罚金,其他判决
139
+ 刘某假冒注册商标案,刘某,假冒注册商标罪,有期徒刑四年,,处罚金人民币十五万元,扣押车辆、手机等变价抵作罚金
140
+ 欧某辉、张某妹假冒注册商标案,欧某辉,假冒注册商标罪,有期徒刑五年六个月,,处罚金人民币六十五万元,追缴违法所得100.6583万元
141
+ 谢某某甲等假冒注册商标案,谢某某甲,无罪,,,,
142
+ 马某华等假冒注册商标案,马某华,假冒注册商标罪,有期徒刑六年,,处罚金人民币六百八十万元,
143
+ ……
144
+ ```
145
+
146
+ **Challenge**: Models must parse complex legal language from multiple case documents (avg 9.6 docs per table), handle joint defendant cases with up to 16 defendants per case, distinguish between different verdict outcomes (guilty vs. acquitted), and extract structured information from unstructured legal narratives involving trademark infringement worth millions.
147
+
148
+ </details>
149
+
150
+
151
+ ### 📚 Academic Analysis Example
152
+ **Task**: Extract methodology performance from research papers on WikiText-103 dataset
153
+
154
+ <details>
155
+ <summary><strong>📊 View Ground Truth Table</strong></summary>
156
+
157
+ **Input Query**: "List the Test perplexity performance of the proposed methods in the paper on the WikiText-103 dataset."
158
+
159
+ **Source Documents**: research papers (36k-96k tokens each)
160
+
161
+ ```csv
162
+ paper_name,method,result,models_and_settings
163
+ Primal-Attention: Self-attention through Asymmetric Kernel SVD,Primal.+Trans.,31,
164
+ Language Modeling with Gated Convolutional Networks,GCNN-8,44.9,
165
+ GATELOOP: FULLY DATA-CONTROLLED LINEAR RECURRENCE,GateLoop,13.4,
166
+ ```
167
+
168
+ **Challenge**: Models must parse complex academic papers, identify specific methodologies, locate performance tables, and extract numerical results while handling various formatting styles.
169
+
170
+ </details>
171
+
172
+ ### 🏦 Financial Analysis Example
173
+ **Task**: Extract and compare financial metrics across multiple company annual reports
174
+
175
+ <details>
176
+ <summary><strong>📊 View Ground Truth Table</strong></summary>
177
+
178
+ ```csv
179
+ Company,Revenue (CNY),Net Profit (CNY),Operating Cash Flow (CNY)
180
+ Gree Electric,203979266387,29017387604,56398426354
181
+ Midea Group,372037280000,33719935000,57902611000
182
+ Haier Smart Home,261427783050,16596615046,25262376228
183
+ TCL Technology,174366657015,4781000000,25314756105
184
+ GONGNIU GROUP,15694755600,3870135376,4827282090
185
+ ```
186
+
187
+ **Challenge**: Models must locate financial data scattered across lengthy annual reports (avg 437k tokens), handle different formatting conventions, and ensure numerical accuracy across multiple documents.
188
+
189
+ </details>
190
+
191
+
192
+
193
+ ## 🔬 Research Applications
194
+
195
+ ### 🎯 Ideal for Evaluating:
196
+ - **Multi-document Understanding**: Information synthesis across long-form texts
197
+ - **Schema Construction**: Dynamic table structure generation
198
+ - **Domain Adaptation**: Performance across specialized fields
199
+ - **Numerical Reasoning**: Financial calculations and quantitative analysis
200
+ - **Cross-lingual Capabilities**: English and Chinese document processing
201
+
202
+ ### 📈 Benchmark Insights:
203
+ - **Even SOTA models struggle**: Best performers achieve only ~68% accuracy
204
+ - **Domain specificity matters**: Performance varies significantly across fields
205
+ - **Length matters**: Document complexity correlates with task difficulty
206
+ - **RAG limitations revealed**: Standard retrieval often fails for structured tasks
207
+
208
+
209
+ ## 🚀 Getting Started
210
+
211
+ ### Quick Usage
212
+ ```python
213
+ from datasets import load_dataset
214
+
215
+ # Load the complete benchmark
216
+ dataset = load_dataset("tianyumyum/AOE")
217
+
218
+ # Access specific splits
219
+ all_tasks = dataset["all"]
220
+
221
+ # Example task
222
+ task = all_tasks[0]
223
+ print(f"Documents: {len(task['doc_length'])}")
224
+ print(f"Expected output: {task['answers']}")
225
+ ```
226
+
227
+ ### 📊 Evaluation Framework
228
+ AOE provides a comprehensive 3-tier evaluation system:
229
+ 1. **🎯 CSV Parsability**: Basic structure compliance (Pass Rate)
230
+ 2. **🏆 Overall Quality**: LLM-assessed holistic evaluation (0-100%)
231
+ 3. **🔬 Cell-Level Accuracy**: Granular content precision (F1-Score)
232
+
233
+
234
+
235
+ ## 🤝 Contributing & Support
236
+
237
+ - 🐛 **Issues**: [GitHub Issues](https://github.com/tianyumyum/AOE/issues)
238
+ - 💬 **Discussions**: [GitHub Discussions](https://github.com/tianyumyum/AOE/discussions)
239
+
240
+ <div align="center">
241
+
242
+ **⭐ Star our [GitHub repo](https://github.com/tianyumyum/AOE) if you find AOE useful! ⭐**
243
+
244
+ *Pushing the boundaries of structured knowledge extraction* 🚀
245
+
246
+ </div>