Commit
·
9b04ba2
1
Parent(s):
7176629
update README.md
Browse files- LICENSE +202 -21
- README.md +93 -0
- inference/README.md +21 -0
- inference/config_671B_v3.2.json +26 -0
- inference/convert.py +101 -0
- inference/dist_writer.py +224 -0
- inference/generate.py +194 -0
- inference/model_v32.py +941 -0
- inference/requirements.txt +6 -0
- inference/tilelang_kernel.py +274 -0
LICENSE
CHANGED
|
@@ -1,21 +1,202 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
Apache License
|
| 3 |
+
Version 2.0, January 2004
|
| 4 |
+
http://www.apache.org/licenses/
|
| 5 |
+
|
| 6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 7 |
+
|
| 8 |
+
1. Definitions.
|
| 9 |
+
|
| 10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 12 |
+
|
| 13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 14 |
+
the copyright owner that is granting the License.
|
| 15 |
+
|
| 16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 17 |
+
other entities that control, are controlled by, or are under common
|
| 18 |
+
control with that entity. For the purposes of this definition,
|
| 19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 20 |
+
direction or management of such entity, whether by contract or
|
| 21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 23 |
+
|
| 24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 25 |
+
exercising permissions granted by this License.
|
| 26 |
+
|
| 27 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 28 |
+
including but not limited to software source code, documentation
|
| 29 |
+
source, and configuration files.
|
| 30 |
+
|
| 31 |
+
"Object" form shall mean any form resulting from mechanical
|
| 32 |
+
transformation or translation of a Source form, including but
|
| 33 |
+
not limited to compiled object code, generated documentation,
|
| 34 |
+
and conversions to other media types.
|
| 35 |
+
|
| 36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 37 |
+
Object form, made available under the License, as indicated by a
|
| 38 |
+
copyright notice that is included in or attached to the work
|
| 39 |
+
(an example is provided in the Appendix below).
|
| 40 |
+
|
| 41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 42 |
+
form, that is based on (or derived from) the Work and for which the
|
| 43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 45 |
+
of this License, Derivative Works shall not include works that remain
|
| 46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 47 |
+
the Work and Derivative Works thereof.
|
| 48 |
+
|
| 49 |
+
"Contribution" shall mean any work of authorship, including
|
| 50 |
+
the original version of the Work and any modifications or additions
|
| 51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 55 |
+
means any form of electronic, verbal, or written communication sent
|
| 56 |
+
to the Licensor or its representatives, including but not limited to
|
| 57 |
+
communication on electronic mailing lists, source code control systems,
|
| 58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 60 |
+
excluding communication that is conspicuously marked or otherwise
|
| 61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 62 |
+
|
| 63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 65 |
+
subsequently incorporated within the Work.
|
| 66 |
+
|
| 67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 72 |
+
Work and such Derivative Works in Source or Object form.
|
| 73 |
+
|
| 74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 77 |
+
(except as stated in this section) patent license to make, have made,
|
| 78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 79 |
+
where such license applies only to those patent claims licensable
|
| 80 |
+
by such Contributor that are necessarily infringed by their
|
| 81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 83 |
+
institute patent litigation against any entity (including a
|
| 84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 85 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 86 |
+
or contributory patent infringement, then any patent licenses
|
| 87 |
+
granted to You under this License for that Work shall terminate
|
| 88 |
+
as of the date such litigation is filed.
|
| 89 |
+
|
| 90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 91 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 92 |
+
modifications, and in Source or Object form, provided that You
|
| 93 |
+
meet the following conditions:
|
| 94 |
+
|
| 95 |
+
(a) You must give any other recipients of the Work or
|
| 96 |
+
Derivative Works a copy of this License; and
|
| 97 |
+
|
| 98 |
+
(b) You must cause any modified files to carry prominent notices
|
| 99 |
+
stating that You changed the files; and
|
| 100 |
+
|
| 101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 102 |
+
that You distribute, all copyright, patent, trademark, and
|
| 103 |
+
attribution notices from the Source form of the Work,
|
| 104 |
+
excluding those notices that do not pertain to any part of
|
| 105 |
+
the Derivative Works; and
|
| 106 |
+
|
| 107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 108 |
+
distribution, then any Derivative Works that You distribute must
|
| 109 |
+
include a readable copy of the attribution notices contained
|
| 110 |
+
within such NOTICE file, excluding those notices that do not
|
| 111 |
+
pertain to any part of the Derivative Works, in at least one
|
| 112 |
+
of the following places: within a NOTICE text file distributed
|
| 113 |
+
as part of the Derivative Works; within the Source form or
|
| 114 |
+
documentation, if provided along with the Derivative Works; or,
|
| 115 |
+
within a display generated by the Derivative Works, if and
|
| 116 |
+
wherever such third-party notices normally appear. The contents
|
| 117 |
+
of the NOTICE file are for informational purposes only and
|
| 118 |
+
do not modify the License. You may add Your own attribution
|
| 119 |
+
notices within Derivative Works that You distribute, alongside
|
| 120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 121 |
+
that such additional attribution notices cannot be construed
|
| 122 |
+
as modifying the License.
|
| 123 |
+
|
| 124 |
+
You may add Your own copyright statement to Your modifications and
|
| 125 |
+
may provide additional or different license terms and conditions
|
| 126 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 127 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 128 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 129 |
+
the conditions stated in this License.
|
| 130 |
+
|
| 131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 133 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 134 |
+
this License, without any additional terms or conditions.
|
| 135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 136 |
+
the terms of any separate license agreement you may have executed
|
| 137 |
+
with Licensor regarding such Contributions.
|
| 138 |
+
|
| 139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 141 |
+
except as required for reasonable and customary use in describing the
|
| 142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 143 |
+
|
| 144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 145 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 148 |
+
implied, including, without limitation, any warranties or conditions
|
| 149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 151 |
+
appropriateness of using or redistributing the Work and assume any
|
| 152 |
+
risks associated with Your exercise of permissions under this License.
|
| 153 |
+
|
| 154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 155 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 156 |
+
unless required by applicable law (such as deliberate and grossly
|
| 157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 158 |
+
liable to You for damages, including any direct, indirect, special,
|
| 159 |
+
incidental, or consequential damages of any character arising as a
|
| 160 |
+
result of this License or out of the use or inability to use the
|
| 161 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 162 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 163 |
+
other commercial damages or losses), even if such Contributor
|
| 164 |
+
has been advised of the possibility of such damages.
|
| 165 |
+
|
| 166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 169 |
+
or other liability obligations and/or rights consistent with this
|
| 170 |
+
License. However, in accepting such obligations, You may act only
|
| 171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 172 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 173 |
+
defend, and hold each Contributor harmless for any liability
|
| 174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 175 |
+
of your accepting any such warranty or additional liability.
|
| 176 |
+
|
| 177 |
+
END OF TERMS AND CONDITIONS
|
| 178 |
+
|
| 179 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 180 |
+
|
| 181 |
+
To apply the Apache License to your work, attach the following
|
| 182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 183 |
+
replaced with your own identifying information. (Don't include
|
| 184 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 185 |
+
comment syntax for the file format. We also recommend that a
|
| 186 |
+
file or class name and description of purpose be included on the
|
| 187 |
+
same "printed page" as the copyright notice for easier
|
| 188 |
+
identification within third-party archives.
|
| 189 |
+
|
| 190 |
+
Copyright (c) 2023 DeepSeek
|
| 191 |
+
|
| 192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 193 |
+
you may not use this file except in compliance with the License.
|
| 194 |
+
You may obtain a copy of the License at
|
| 195 |
+
|
| 196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 197 |
+
|
| 198 |
+
Unless required by applicable law or agreed to in writing, software
|
| 199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 201 |
+
See the License for the specific language governing permissions and
|
| 202 |
+
limitations under the License.
|
README.md
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
library_name: transformers
|
| 4 |
+
base_model:
|
| 5 |
+
- deepseek-ai/DeepSeek-Math-V2
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
<!-- markdownlint-disable first-line-h1 -->
|
| 9 |
+
<!-- markdownlint-disable html -->
|
| 10 |
+
<!-- markdownlint-disable no-duplicate-header -->
|
| 11 |
+
|
| 12 |
+
<div align="center">
|
| 13 |
+
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" />
|
| 14 |
+
</div>
|
| 15 |
+
<hr>
|
| 16 |
+
<div align="center" style="line-height: 1;">
|
| 17 |
+
<a href="https://www.deepseek.com/"><img alt="Homepage"
|
| 18 |
+
src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true"/></a>
|
| 19 |
+
<a href="https://chat.deepseek.com/"><img alt="Chat"
|
| 20 |
+
src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V3-536af5?color=536af5&logoColor=white"/></a>
|
| 21 |
+
<a href="https://huggingface.co/deepseek-ai"><img alt="Hugging Face"
|
| 22 |
+
src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white"/></a>
|
| 23 |
+
<br>
|
| 24 |
+
<a href="https://discord.gg/Tc7c45Zzu5"><img alt="Discord"
|
| 25 |
+
src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da"/></a>
|
| 26 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true"><img alt="Wechat"
|
| 27 |
+
src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white"/></a>
|
| 28 |
+
<a href="https://twitter.com/deepseek_ai"><img alt="Twitter Follow"
|
| 29 |
+
src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white"/></a>
|
| 30 |
+
<br>
|
| 31 |
+
<a href="LICENSE" style="margin: 2px;">
|
| 32 |
+
<img alt="License" src="https://img.shields.io/badge/License-Apache 2.0-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
|
| 33 |
+
</a>
|
| 34 |
+
<br>
|
| 35 |
+
</div>
|
| 36 |
+
|
| 37 |
+
# DeepSeekMath-V2: Towards Self-Verifiable Mathematical Reasoning
|
| 38 |
+
|
| 39 |
+
## 1. Introduction
|
| 40 |
+
|
| 41 |
+
Large language models have made significant progress in mathematical reasoning, which serves as an important testbed for AI and could impact scientific research if further advanced.
|
| 42 |
+
By scaling reasoning with reinforcement learning that rewards correct final answers, LLMs have improved from poor performance to saturating quantitative reasoning competitions like AIME and HMMT in one year.
|
| 43 |
+
However, this approach faces fundamental limitations.
|
| 44 |
+
Pursuing higher final answer accuracy doesn't address a key issue: correct answers don't guarantee correct reasoning.
|
| 45 |
+
Moreover, many mathematical tasks like theorem proving require rigorous step-by-step derivation rather than numerical answers, making final answer rewards inapplicable.
|
| 46 |
+
To push the limits of deep reasoning, we believe it is necessary to verify the comprehensiveness and rigor of mathematical reasoning.
|
| 47 |
+
Self-verification is particularly important for scaling test-time compute, especially for open problems without known solutions.
|
| 48 |
+
Towards self-verifiable mathematical reasoning, we investigate how to train an accurate and faithful LLM-based verifier for theorem proving.
|
| 49 |
+
We then train a proof generator using the verifier as the reward model, and incentivize the generator to identify and resolve as many issues as possible in their own proofs before finalizing them.
|
| 50 |
+
To maintain the generation-verification gap as the generator becomes stronger, we propose to scale verification compute to automatically label new hard-to-verify proofs, creating training data to further improve the verifier.
|
| 51 |
+
Our resulting model, DeepSeekMath-V2, demonstrates strong theorem-proving capabilities, achieving gold-level scores on IMO 2025 and CMO 2024 and a near-perfect 118/120 on Putnam 2024 with scaled test-time compute.
|
| 52 |
+
While much work remains, these results suggest that self-verifiable mathematical reasoning is a feasible research direction that may help develop more capable mathematical AI systems.
|
| 53 |
+
|
| 54 |
+
## 2. Evaluation Results
|
| 55 |
+
|
| 56 |
+
Below are evaluation results on [IMO-ProofBench](https://github.com/google-deepmind/superhuman/tree/main/imobench) (developed by the DeepMind team behind DeepThink IMO-Gold) and recent mathematics competitions including IMO 2025, CMO 2024, and Putnam 2024.
|
| 57 |
+
|
| 58 |
+
**IMO-ProofBench**
|
| 59 |
+
|
| 60 |
+
<p align="center">
|
| 61 |
+
<img width="100%" src="https://github.com/deepseek-ai/DeepSeek-Math-V2/tree/main/figures/IMO-ProofBench.png?raw=true">
|
| 62 |
+
</p>
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
---
|
| 66 |
+
|
| 67 |
+
**Mathematics Competitions**
|
| 68 |
+
|
| 69 |
+
<p align="center">
|
| 70 |
+
<img width=41%" src="https://github.com/deepseek-ai/DeepSeek-Math-V2/tree/main/figures/Competitions.png?raw=true">
|
| 71 |
+
</p>
|
| 72 |
+
|
| 73 |
+
## 4. Quick Start
|
| 74 |
+
|
| 75 |
+
DeepSeekMath-V2 is built on top of DeepSeek-V3.2-Exp-Base.
|
| 76 |
+
For inference support, please refer to [the DeepSeek-V3.2-Exp github repository](https://github.com/deepseek-ai/DeepSeek-V3.2-Exp).
|
| 77 |
+
|
| 78 |
+
## 6. License
|
| 79 |
+
This repository and the model weights are licensed under [the Apache License, Version 2.0 (Apache 2.0)](LICENSE).
|
| 80 |
+
|
| 81 |
+
## 7. Citation
|
| 82 |
+
|
| 83 |
+
```
|
| 84 |
+
@misc{deepseek-math-v2,
|
| 85 |
+
author = {Zhihong Shao, Yuxiang Luo, Chengda Lu, Z.Z. Ren, Jiewen Hu, Tian Ye, Zhibin Gou, Shirong Ma, Xiaokang Zhang},
|
| 86 |
+
title = {DeepSeekMath-V2: Towards Self-Verifiable Mathematical Reasoning},
|
| 87 |
+
year = {2025},
|
| 88 |
+
}
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
## 8. Contact
|
| 92 |
+
|
| 93 |
+
If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]).
|
inference/README.md
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Inference code for DeepSeek models
|
| 2 |
+
|
| 3 |
+
First convert huggingface model weight files to the format of this project.
|
| 4 |
+
```bash
|
| 5 |
+
python convert.py --hf-ckpt-path ${HF_CKPT_PATH} --save-path ${SAVE_PATH} --n-experts ${EXPERTS} --model-parallel ${MP}
|
| 6 |
+
```
|
| 7 |
+
|
| 8 |
+
Then chat with DeepSeek model at will!
|
| 9 |
+
```bash
|
| 10 |
+
torchrun --nproc-per-node ${MP} generate.py --ckpt-path ${SAVE_PATH} --config ${CONFIG} --interactive --temperature {T}
|
| 11 |
+
```
|
| 12 |
+
|
| 13 |
+
Or batch inference from file.
|
| 14 |
+
```bash
|
| 15 |
+
torchrun --nproc-per-node ${MP} generate.py --ckpt-path ${SAVE_PATH} --config ${CONFIG} --input-file ${FILE}
|
| 16 |
+
```
|
| 17 |
+
|
| 18 |
+
Or multi nodes inference.
|
| 19 |
+
```bash
|
| 20 |
+
torchrun --nnodes ${NODES} --nproc-per-node $((MP / NODES)) --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path ${SAVE_PATH} --config ${CONFIG} --input-file ${FILE}
|
| 21 |
+
```
|
inference/config_671B_v3.2.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"vocab_size": 129280,
|
| 3 |
+
"dim": 7168,
|
| 4 |
+
"inter_dim": 18432,
|
| 5 |
+
"moe_inter_dim": 2048,
|
| 6 |
+
"n_layers": 61,
|
| 7 |
+
"n_dense_layers": 3,
|
| 8 |
+
"n_heads": 128,
|
| 9 |
+
"n_routed_experts": 256,
|
| 10 |
+
"n_shared_experts": 1,
|
| 11 |
+
"n_activated_experts": 8,
|
| 12 |
+
"n_expert_groups": 8,
|
| 13 |
+
"n_limited_groups": 4,
|
| 14 |
+
"route_scale": 2.5,
|
| 15 |
+
"score_func": "sigmoid",
|
| 16 |
+
"q_lora_rank": 1536,
|
| 17 |
+
"kv_lora_rank": 512,
|
| 18 |
+
"qk_nope_head_dim": 128,
|
| 19 |
+
"qk_rope_head_dim": 64,
|
| 20 |
+
"v_head_dim": 128,
|
| 21 |
+
"dtype": "fp8",
|
| 22 |
+
"scale_fmt": "ue8m0",
|
| 23 |
+
"index_n_heads": 64,
|
| 24 |
+
"index_head_dim": 128,
|
| 25 |
+
"index_topk": 2048
|
| 26 |
+
}
|
inference/convert.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
from argparse import ArgumentParser
|
| 4 |
+
from glob import glob
|
| 5 |
+
from tqdm import tqdm, trange
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from safetensors.torch import safe_open
|
| 9 |
+
from dist_writer import save_file
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
mapping = {
|
| 13 |
+
"embed_tokens": ("embed", 0),
|
| 14 |
+
"input_layernorm": ("attn_norm", None),
|
| 15 |
+
"post_attention_layernorm": ("ffn_norm", None),
|
| 16 |
+
"q_proj": ("wq", 0),
|
| 17 |
+
"q_a_proj": ("wq_a", None),
|
| 18 |
+
"q_a_layernorm": ("q_norm", None),
|
| 19 |
+
"q_b_proj": ("wq_b", 0),
|
| 20 |
+
"kv_a_proj_with_mqa": ("wkv_a", None),
|
| 21 |
+
"kv_a_layernorm": ("kv_norm", None),
|
| 22 |
+
"kv_b_proj": ("wkv_b", 0),
|
| 23 |
+
"o_proj": ("wo", 1),
|
| 24 |
+
"gate": ("gate", None),
|
| 25 |
+
"gate_proj": ("w1", 0),
|
| 26 |
+
"down_proj": ("w2", 1),
|
| 27 |
+
"up_proj": ("w3", 0),
|
| 28 |
+
"norm": ("norm", None),
|
| 29 |
+
"lm_head": ("head", 0),
|
| 30 |
+
"scale": ("scale", None),
|
| 31 |
+
"wq_b": ("wq_b", None),
|
| 32 |
+
"wk": ("wk", None),
|
| 33 |
+
"k_norm": ("k_norm", None),
|
| 34 |
+
"weights_proj": ("weights_proj", None),
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def main(hf_ckpt_path, save_path, n_experts, mp):
|
| 39 |
+
"""
|
| 40 |
+
Converts and saves model checkpoint files into a specified format.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
hf_ckpt_path (str): Path to the directory containing the input checkpoint files.
|
| 44 |
+
save_path (str): Path to the directory where the converted checkpoint files will be saved.
|
| 45 |
+
n_experts (int): Total number of experts in the model.
|
| 46 |
+
mp (int): Model parallelism factor.
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
None
|
| 50 |
+
"""
|
| 51 |
+
torch.set_num_threads(8)
|
| 52 |
+
n_local_experts = n_experts // mp
|
| 53 |
+
state_dicts = [{} for _ in range(mp)]
|
| 54 |
+
|
| 55 |
+
for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors"))):
|
| 56 |
+
with safe_open(file_path, framework="pt", device="cpu") as f:
|
| 57 |
+
for name in f.keys():
|
| 58 |
+
if "model.layers.61" in name:
|
| 59 |
+
continue
|
| 60 |
+
param: torch.Tensor = f.get_tensor(name)
|
| 61 |
+
if name.startswith("model."):
|
| 62 |
+
name = name[len("model."):]
|
| 63 |
+
name = name.replace("self_attn", "attn")
|
| 64 |
+
name = name.replace("mlp", "ffn")
|
| 65 |
+
name = name.replace("weight_scale_inv", "scale")
|
| 66 |
+
name = name.replace("e_score_correction_bias", "bias")
|
| 67 |
+
key = name.split(".")[-2]
|
| 68 |
+
assert key in mapping, f"Key {key} not found in mapping"
|
| 69 |
+
new_key, dim = mapping[key]
|
| 70 |
+
name = name.replace(key, new_key)
|
| 71 |
+
for i in range(mp):
|
| 72 |
+
new_param = param
|
| 73 |
+
if "experts" in name and "shared_experts" not in name:
|
| 74 |
+
idx = int(name.split(".")[-3])
|
| 75 |
+
if idx < i * n_local_experts or idx >= (i + 1) * n_local_experts:
|
| 76 |
+
continue
|
| 77 |
+
elif dim is not None:
|
| 78 |
+
assert param.size(dim) % mp == 0, f"Dimension {dim} must be divisible by {mp}"
|
| 79 |
+
shard_size = param.size(dim) // mp
|
| 80 |
+
new_param = param.narrow(dim, i * shard_size, shard_size).contiguous()
|
| 81 |
+
state_dicts[i][name] = new_param
|
| 82 |
+
|
| 83 |
+
os.makedirs(save_path, exist_ok=True)
|
| 84 |
+
|
| 85 |
+
for i in trange(mp):
|
| 86 |
+
save_file(state_dicts[i], os.path.join(save_path, f"model{i}-mp{mp}.safetensors"))
|
| 87 |
+
|
| 88 |
+
for file_path in glob(os.path.join(hf_ckpt_path, "*token*")):
|
| 89 |
+
new_file_path = os.path.join(save_path, os.path.basename(file_path))
|
| 90 |
+
shutil.copyfile(file_path, new_file_path)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
if __name__ == "__main__":
|
| 94 |
+
parser = ArgumentParser()
|
| 95 |
+
parser.add_argument("--hf-ckpt-path", type=str, required=True)
|
| 96 |
+
parser.add_argument("--save-path", type=str, required=True)
|
| 97 |
+
parser.add_argument("--n-experts", type=int, required=True)
|
| 98 |
+
parser.add_argument("--model-parallel", type=int, required=True)
|
| 99 |
+
args = parser.parse_args()
|
| 100 |
+
assert args.n_experts % args.model_parallel == 0, "Number of experts must be divisible by model parallelism"
|
| 101 |
+
main(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel)
|
inference/dist_writer.py
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# copy from https://gitlab.deepseek.com/deepseek/hai-llm/-/blob/master/scripts/dist_safetensor_writer.py
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import math
|
| 5 |
+
import torch
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from datetime import timedelta
|
| 8 |
+
from multiprocessing.shared_memory import SharedMemory
|
| 9 |
+
from uuid import uuid4
|
| 10 |
+
import numpy as np
|
| 11 |
+
import time
|
| 12 |
+
import json
|
| 13 |
+
try:
|
| 14 |
+
from hf3fs_fuse.io import make_iovec, make_ioring, ioring, register_fd, deregister_fd, h3fio
|
| 15 |
+
except Exception:
|
| 16 |
+
pass
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
INT_LEN = 8
|
| 20 |
+
BYTE_ORDER = 'big'
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def tensor_to_bytes(tensor: torch.Tensor) -> bytes:
|
| 24 |
+
if tensor.numel() == 0:
|
| 25 |
+
return b''
|
| 26 |
+
return tensor.view(torch.int8).numpy().data.cast('B')
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
except_fs = {'cpu'}
|
| 30 |
+
clusters = ['jd', 'hg']
|
| 31 |
+
hf3fs_paths = []
|
| 32 |
+
hf3fs_mount_points = []
|
| 33 |
+
for cluster in clusters:
|
| 34 |
+
hf3fs_paths += os.listdir(f'/hf3fs-{cluster}') if os.path.exists(f'/hf3fs-{cluster}') else []
|
| 35 |
+
hf3fs_mount_points += [os.path.join(f'/hf3fs-{cluster}', f) for f in hf3fs_paths if f not in except_fs]
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_hf3fs_mount_point(file_path: str) -> str:
|
| 39 |
+
rp = os.path.realpath(Path(file_path).absolute())
|
| 40 |
+
return '/'.join(rp.split('/')[:3])
|
| 41 |
+
|
| 42 |
+
class DistWriter():
|
| 43 |
+
def __init__(self, max_ops=100<<10, write_buf_size=1<<29):
|
| 44 |
+
self.max_ops = max_ops
|
| 45 |
+
self.write_buf_size = write_buf_size
|
| 46 |
+
self.shm = SharedMemory(name=f'hf3fs-iovs-{uuid4()}', create=True, size=self.write_buf_size)
|
| 47 |
+
self._iov = {}
|
| 48 |
+
self._buf = {}
|
| 49 |
+
self._ior = {}
|
| 50 |
+
for hf3fs_mount_point in hf3fs_mount_points:
|
| 51 |
+
try:
|
| 52 |
+
iov = make_iovec(self.shm, hf3fs_mount_point, block_size=0, numa=-1)
|
| 53 |
+
buf = memoryview(iov.iov)
|
| 54 |
+
ior = make_ioring(hf3fs_mount_point, 100 << 10, for_read=False, io_depth=-1, numa=-1)
|
| 55 |
+
self._iov[hf3fs_mount_point] = iov
|
| 56 |
+
self._buf[hf3fs_mount_point] = buf
|
| 57 |
+
self._ior[hf3fs_mount_point] = ior
|
| 58 |
+
except Exception:
|
| 59 |
+
pass
|
| 60 |
+
self.shm.unlink()
|
| 61 |
+
self.fd_cache = {}
|
| 62 |
+
|
| 63 |
+
def _open(self, file_path):
|
| 64 |
+
if self.fd_cache.get(file_path) is None:
|
| 65 |
+
# os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
| 66 |
+
hf3fs_mount_point = get_hf3fs_mount_point(file_path)
|
| 67 |
+
try:
|
| 68 |
+
fd = os.open(file_path, os.O_WRONLY | os.O_CREAT | os.O_SYNC)
|
| 69 |
+
except Exception: # 发现在 weka 上打开文件会 FileExistsError
|
| 70 |
+
fd = os.open(file_path, os.O_WRONLY | os.O_SYNC)
|
| 71 |
+
register_fd(fd)
|
| 72 |
+
self.fd_cache[file_path] = (fd, hf3fs_mount_point)
|
| 73 |
+
return self.fd_cache[file_path]
|
| 74 |
+
|
| 75 |
+
def _close_all(self, file_total_bytes):
|
| 76 |
+
for fd, _ in self.fd_cache.values():
|
| 77 |
+
os.truncate(fd, file_total_bytes)
|
| 78 |
+
deregister_fd(fd)
|
| 79 |
+
os.close(fd)
|
| 80 |
+
self.fd_cache = {}
|
| 81 |
+
|
| 82 |
+
def chunk_batch_pwrite(self, write_offsets):
|
| 83 |
+
chunks = []
|
| 84 |
+
chunk = []
|
| 85 |
+
total = 0
|
| 86 |
+
def add_chunk():
|
| 87 |
+
nonlocal chunk, total
|
| 88 |
+
if len(chunk) > 0:
|
| 89 |
+
chunks.append(chunk)
|
| 90 |
+
chunk = []
|
| 91 |
+
total = 0
|
| 92 |
+
|
| 93 |
+
for r in write_offsets:
|
| 94 |
+
write_file_path, write_bytes, write_file_offset = r
|
| 95 |
+
write_length = len(write_bytes)
|
| 96 |
+
if write_length == 0:
|
| 97 |
+
continue
|
| 98 |
+
if write_length > self.write_buf_size:
|
| 99 |
+
add_chunk()
|
| 100 |
+
chunks.append([r])
|
| 101 |
+
elif total + write_length > self.write_buf_size:
|
| 102 |
+
add_chunk()
|
| 103 |
+
chunk.append(r)
|
| 104 |
+
total += write_length
|
| 105 |
+
else:
|
| 106 |
+
chunk.append(r)
|
| 107 |
+
total += write_length
|
| 108 |
+
if len(chunk) == self.max_ops:
|
| 109 |
+
add_chunk()
|
| 110 |
+
add_chunk()
|
| 111 |
+
return chunks
|
| 112 |
+
|
| 113 |
+
def convert_to_pwrite_list(self, filepath, tensors, metadata):
|
| 114 |
+
head = {}
|
| 115 |
+
if metadata is not None:
|
| 116 |
+
head["__metadata__"] = metadata
|
| 117 |
+
dtype_dict = {
|
| 118 |
+
torch.float64 : 'F64',
|
| 119 |
+
torch.float32: 'F32',
|
| 120 |
+
torch.float16 : 'F16',
|
| 121 |
+
torch.bfloat16: 'BF16',
|
| 122 |
+
torch.float8_e4m3fn: 'F8_E4M3',
|
| 123 |
+
torch.int64 : 'I64',
|
| 124 |
+
torch.int32: 'I32',
|
| 125 |
+
torch.int16 : 'I16',
|
| 126 |
+
torch.int8: 'I8',
|
| 127 |
+
torch.uint8 : 'U8',
|
| 128 |
+
torch.bool : 'BOOL'
|
| 129 |
+
}
|
| 130 |
+
cur_off = 0
|
| 131 |
+
values = []
|
| 132 |
+
for k, v in tensors.items():
|
| 133 |
+
cur_len = v.numel() * v.element_size()
|
| 134 |
+
item = dict(
|
| 135 |
+
dtype = dtype_dict[v.dtype],
|
| 136 |
+
shape = list(v.shape),
|
| 137 |
+
data_offsets = [cur_off, cur_off + cur_len],
|
| 138 |
+
)
|
| 139 |
+
cur_off += cur_len
|
| 140 |
+
head[k] = item
|
| 141 |
+
values.append(v)
|
| 142 |
+
head_bytes = json.dumps(head, ensure_ascii=True).replace(" ","").encode("utf8")
|
| 143 |
+
n = np.array([len(head_bytes)], dtype = np.uint64).tobytes()
|
| 144 |
+
assert np.frombuffer(n, dtype=np.int64)[0] == len(head_bytes)
|
| 145 |
+
head_bytes = n + head_bytes
|
| 146 |
+
p_list = []
|
| 147 |
+
p_list.append((filepath, head_bytes, 0))
|
| 148 |
+
cur_off = len(head_bytes)
|
| 149 |
+
for v in values:
|
| 150 |
+
data_bytes = tensor_to_bytes(v)
|
| 151 |
+
p_list.append((filepath, data_bytes, cur_off))
|
| 152 |
+
cur_off += len(data_bytes)
|
| 153 |
+
return p_list
|
| 154 |
+
|
| 155 |
+
def save_tensors(self, filepath, tensors, metadata = None):
|
| 156 |
+
pwrite_list = self.convert_to_pwrite_list(filepath, tensors, metadata)
|
| 157 |
+
file_total_bytes = sum([len(item[1]) for item in pwrite_list])
|
| 158 |
+
for chunk in self.chunk_batch_pwrite(pwrite_list):
|
| 159 |
+
if len(chunk) == 1:
|
| 160 |
+
# 如果超过 self.write_buf_size 的数据,只允许单次 pwrite
|
| 161 |
+
write_file_path, write_bytes, write_file_offset = chunk[0]
|
| 162 |
+
fd, hf3fs_mount_point = self._open(write_file_path)
|
| 163 |
+
iov = self._iov[hf3fs_mount_point]
|
| 164 |
+
buf = self._buf[hf3fs_mount_point]
|
| 165 |
+
ior = self._ior[hf3fs_mount_point]
|
| 166 |
+
content_view = write_bytes
|
| 167 |
+
_write = 0
|
| 168 |
+
total = len(write_bytes)
|
| 169 |
+
while _write < total:
|
| 170 |
+
to_write = min(self.write_buf_size, total-_write)
|
| 171 |
+
buf[:to_write] = content_view[_write:_write+to_write]
|
| 172 |
+
ior.prepare(iov[:to_write], False, fd, write_file_offset+_write)
|
| 173 |
+
submit_result = ior.submit()
|
| 174 |
+
total_waited = 0
|
| 175 |
+
results = []
|
| 176 |
+
while True:
|
| 177 |
+
res = submit_result.wait(max_results=1000, min_results=0, timeout=timedelta(seconds=0))
|
| 178 |
+
total_waited += len(res)
|
| 179 |
+
results += res
|
| 180 |
+
if total_waited == 1:
|
| 181 |
+
break
|
| 182 |
+
time.sleep(0.01)
|
| 183 |
+
write_len = results[0].result
|
| 184 |
+
assert write_len == to_write, f'hf3fs 返回的 write_len({write_len}) 不匹配 file_path={write_file_path} offset={write_file_offset} to_write={to_write}'
|
| 185 |
+
_write += write_len
|
| 186 |
+
elif len(chunk) > 0:
|
| 187 |
+
# 多次 pwrite,加起来的总和不能超过 self.write_buf_size,避免最后一个比较大,但是 buf 只剩很小,要提交很多次的问题
|
| 188 |
+
# 这里只允许 batch write 同一个 mount point 的数据,不然比较难管理
|
| 189 |
+
hf3fs_mount_point = self._open(chunk[0][0])[1]
|
| 190 |
+
iov = self._iov[hf3fs_mount_point]
|
| 191 |
+
buf = self._buf[hf3fs_mount_point]
|
| 192 |
+
ior = self._ior[hf3fs_mount_point]
|
| 193 |
+
ops = []
|
| 194 |
+
buf_offsets = []
|
| 195 |
+
buf_offset = 0
|
| 196 |
+
for write_file_path, write_bytes, write_file_offset in chunk:
|
| 197 |
+
fd, h = self._open(write_file_path)
|
| 198 |
+
assert h == hf3fs_mount_point, f'不能 load 不同 mount point 的数据 {h} {hf3fs_mount_point}'
|
| 199 |
+
write_length = len(write_bytes)
|
| 200 |
+
op = [write_file_path, write_length, write_file_offset]
|
| 201 |
+
ops.append(op)
|
| 202 |
+
assert buf_offset+write_length <= self.write_buf_size, f'batch write 超过了 buf 最大长度 {self.write_buf_size}'
|
| 203 |
+
buf[buf_offset:buf_offset+write_length] = write_bytes
|
| 204 |
+
ior.prepare(iov[buf_offset:buf_offset+write_length], False, fd, write_file_offset, userdata=op)
|
| 205 |
+
buf_offsets.append((buf_offset, buf_offset+write_length))
|
| 206 |
+
buf_offset += write_length
|
| 207 |
+
|
| 208 |
+
submit_result = ior.submit()
|
| 209 |
+
total_waited = 0
|
| 210 |
+
results = []
|
| 211 |
+
while True:
|
| 212 |
+
res = submit_result.wait(max_results=1000, min_results=0, timeout=timedelta(seconds=0))
|
| 213 |
+
total_waited += len(res)
|
| 214 |
+
results += res
|
| 215 |
+
if total_waited == len(ops):
|
| 216 |
+
break
|
| 217 |
+
time.sleep(0.01)
|
| 218 |
+
for result in results:
|
| 219 |
+
write_file_path, write_length, write_file_offset = result.userdata
|
| 220 |
+
assert result.result == write_length, f'hf3fs 返回的 write_len({result.result}) 不匹配 file_path={write_file_path} offset={write_file_offset} to_write={write_length}'
|
| 221 |
+
self._close_all(file_total_bytes)
|
| 222 |
+
|
| 223 |
+
def save_file(tensors, filepath, metadata = None):
|
| 224 |
+
DistWriter().save_tensors(filepath, tensors, metadata=metadata)
|
inference/generate.py
ADDED
|
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
from argparse import ArgumentParser
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.distributed as dist
|
| 8 |
+
from transformers import AutoTokenizer
|
| 9 |
+
from safetensors.torch import load_model
|
| 10 |
+
|
| 11 |
+
from model_v32 import Transformer, ModelArgs, update_ws
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def sample(logits, temperature: float = 1.0):
|
| 15 |
+
"""
|
| 16 |
+
Samples a token from the logits using temperature scaling.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
logits (torch.Tensor): The logits tensor for token predictions.
|
| 20 |
+
temperature (float, optional): Temperature for scaling logits. Defaults to 1.0.
|
| 21 |
+
|
| 22 |
+
Returns:
|
| 23 |
+
torch.Tensor: The sampled token.
|
| 24 |
+
"""
|
| 25 |
+
logits = logits / max(temperature, 1e-5)
|
| 26 |
+
probs = torch.softmax(logits, dim=-1, dtype=torch.float32)
|
| 27 |
+
return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@torch.inference_mode()
|
| 31 |
+
def generate(
|
| 32 |
+
model: Transformer,
|
| 33 |
+
prompt_tokens: List[List[int]],
|
| 34 |
+
max_new_tokens: int,
|
| 35 |
+
eos_id: int,
|
| 36 |
+
temperature: float = 1.0
|
| 37 |
+
) -> List[List[int]]:
|
| 38 |
+
"""
|
| 39 |
+
Generates new tokens based on the given prompt tokens using the specified model.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
model (Transformer): The transformer model used for token generation.
|
| 43 |
+
prompt_tokens (List[List[int]]): A list of lists containing the prompt tokens for each sequence.
|
| 44 |
+
max_new_tokens (int): The maximum number of new tokens to generate.
|
| 45 |
+
eos_id (int): The end-of-sequence token ID.
|
| 46 |
+
temperature (float, optional): The temperature value for sampling. Defaults to 1.0.
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
List[List[int]]: A list of lists containing the generated tokens for each sequence.
|
| 50 |
+
"""
|
| 51 |
+
prompt_lens = [len(t) for t in prompt_tokens]
|
| 52 |
+
assert max(prompt_lens) <= model.max_seq_len, f"Prompt length exceeds model maximum sequence length (max_seq_len={model.max_seq_len})"
|
| 53 |
+
total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
|
| 54 |
+
tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
|
| 55 |
+
for i, t in enumerate(prompt_tokens):
|
| 56 |
+
tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
|
| 57 |
+
prev_pos = 0
|
| 58 |
+
finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
|
| 59 |
+
prompt_mask = tokens != -1
|
| 60 |
+
for cur_pos in range(min(prompt_lens), total_len):
|
| 61 |
+
logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
|
| 62 |
+
if temperature > 0:
|
| 63 |
+
next_token = sample(logits, temperature)
|
| 64 |
+
else:
|
| 65 |
+
next_token = logits.argmax(dim=-1)
|
| 66 |
+
next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
|
| 67 |
+
tokens[:, cur_pos] = next_token
|
| 68 |
+
finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
|
| 69 |
+
prev_pos = cur_pos
|
| 70 |
+
if finished.all():
|
| 71 |
+
break
|
| 72 |
+
completion_tokens = []
|
| 73 |
+
for i, toks in enumerate(tokens.tolist()):
|
| 74 |
+
toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
|
| 75 |
+
if eos_id in toks:
|
| 76 |
+
toks = toks[:toks.index(eos_id)]
|
| 77 |
+
completion_tokens.append(toks)
|
| 78 |
+
return completion_tokens
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def main(
|
| 82 |
+
ckpt_path: str,
|
| 83 |
+
config: str,
|
| 84 |
+
input_file: str = "",
|
| 85 |
+
interactive: bool = True,
|
| 86 |
+
max_new_tokens: int = 100,
|
| 87 |
+
temperature: float = 1.0,
|
| 88 |
+
) -> None:
|
| 89 |
+
"""
|
| 90 |
+
Main function to load the model and perform interactive or batch text generation.
|
| 91 |
+
|
| 92 |
+
Args:
|
| 93 |
+
ckpt_path (str): Path to the model checkpoint directory.
|
| 94 |
+
config (str): Path to the model configuration file.
|
| 95 |
+
input_file (str, optional): Path to a file containing input prompts. Defaults to "".
|
| 96 |
+
interactive (bool, optional): Whether to run in interactive mode. Defaults to True.
|
| 97 |
+
max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 100.
|
| 98 |
+
temperature (float, optional): Temperature for sampling. Defaults to 1.0.
|
| 99 |
+
"""
|
| 100 |
+
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
| 101 |
+
rank = int(os.getenv("RANK", "0"))
|
| 102 |
+
local_rank = int(os.getenv("LOCAL_RANK", "0"))
|
| 103 |
+
if world_size > 1:
|
| 104 |
+
dist.init_process_group("nccl")
|
| 105 |
+
global print
|
| 106 |
+
if rank != 0:
|
| 107 |
+
print = lambda *_, **__: None
|
| 108 |
+
torch.cuda.set_device(local_rank)
|
| 109 |
+
torch.set_default_dtype(torch.bfloat16)
|
| 110 |
+
torch.set_num_threads(8)
|
| 111 |
+
torch.manual_seed(33377335)
|
| 112 |
+
with open(config) as f:
|
| 113 |
+
args = ModelArgs(**json.load(f))
|
| 114 |
+
if "baidu" in input_file:
|
| 115 |
+
args.max_batch_size = 1
|
| 116 |
+
args.max_seq_len = 24 * 1024
|
| 117 |
+
print(args)
|
| 118 |
+
with torch.device("cuda"):
|
| 119 |
+
model = Transformer(args)
|
| 120 |
+
tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
|
| 121 |
+
print("dummy run")
|
| 122 |
+
tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0])
|
| 123 |
+
print("load model")
|
| 124 |
+
load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))
|
| 125 |
+
update_ws(model)
|
| 126 |
+
print("I'm DeepSeek 👋")
|
| 127 |
+
|
| 128 |
+
if interactive:
|
| 129 |
+
messages = []
|
| 130 |
+
while True:
|
| 131 |
+
if world_size == 1:
|
| 132 |
+
prompt = input(">>> ")
|
| 133 |
+
elif rank == 0:
|
| 134 |
+
prompt = input(">>> ")
|
| 135 |
+
objects = [prompt]
|
| 136 |
+
dist.broadcast_object_list(objects, 0)
|
| 137 |
+
else:
|
| 138 |
+
objects = [None]
|
| 139 |
+
dist.broadcast_object_list(objects, 0)
|
| 140 |
+
prompt = objects[0]
|
| 141 |
+
if prompt == "/exit":
|
| 142 |
+
break
|
| 143 |
+
elif prompt == "/clear":
|
| 144 |
+
messages.clear()
|
| 145 |
+
continue
|
| 146 |
+
messages.append({"role": "user", "content": prompt})
|
| 147 |
+
prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
| 148 |
+
completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
|
| 149 |
+
completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
|
| 150 |
+
print(completion)
|
| 151 |
+
messages.append({"role": "assistant", "content": completion})
|
| 152 |
+
else:
|
| 153 |
+
with open(input_file) as f:
|
| 154 |
+
prompts = f.read().split("\n\n")
|
| 155 |
+
prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
|
| 156 |
+
if "baidu" in input_file:
|
| 157 |
+
completion_tokens = [generate(model, [p], max_new_tokens, tokenizer.eos_token_id, temperature)[0] for p in prompt_tokens]
|
| 158 |
+
else:
|
| 159 |
+
completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
|
| 160 |
+
completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
|
| 161 |
+
for prompt, completion in zip(prompts, completions):
|
| 162 |
+
print("Prompt:", prompt)
|
| 163 |
+
print("Completion:", completion)
|
| 164 |
+
print()
|
| 165 |
+
|
| 166 |
+
if world_size > 1:
|
| 167 |
+
dist.destroy_process_group()
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
if __name__ == "__main__":
|
| 171 |
+
"""
|
| 172 |
+
Command-line interface for distributed text generation.
|
| 173 |
+
|
| 174 |
+
Arguments:
|
| 175 |
+
--ckpt-path (str): Path to the model checkpoint directory.
|
| 176 |
+
--config (str): Path to the model configuration file.
|
| 177 |
+
--input-file (str, optional): File containing prompts for batch processing.
|
| 178 |
+
--interactive (bool, optional): Enable interactive mode for generating text.
|
| 179 |
+
--max-new-tokens (int, optional): Maximum number of new tokens to generate. Defaults to 200.
|
| 180 |
+
--temperature (float, optional): Temperature for sampling. Defaults to 0.2.
|
| 181 |
+
|
| 182 |
+
Raises:
|
| 183 |
+
AssertionError: If neither input-file nor interactive mode is specified.
|
| 184 |
+
"""
|
| 185 |
+
parser = ArgumentParser()
|
| 186 |
+
parser.add_argument("--ckpt-path", type=str, required=True)
|
| 187 |
+
parser.add_argument("--config", type=str, required=True)
|
| 188 |
+
parser.add_argument("--input-file", type=str, default="")
|
| 189 |
+
parser.add_argument("--interactive", action="store_true")
|
| 190 |
+
parser.add_argument("--max-new-tokens", type=int, default=200)
|
| 191 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
| 192 |
+
args = parser.parse_args()
|
| 193 |
+
assert args.input_file or args.interactive, "Either input-file or interactive mode must be specified"
|
| 194 |
+
main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)
|
inference/model_v32.py
ADDED
|
@@ -0,0 +1,941 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Tuple, Optional, Literal
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
|
| 10 |
+
from tilelang_kernel import act_quant, fp8_gemm, fp8_index
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
world_size = 1
|
| 14 |
+
rank = 0
|
| 15 |
+
block_size = 128
|
| 16 |
+
|
| 17 |
+
@dataclass
|
| 18 |
+
class ModelArgs:
|
| 19 |
+
"""
|
| 20 |
+
Data class for defining model arguments and hyperparameters.
|
| 21 |
+
|
| 22 |
+
Attributes:
|
| 23 |
+
max_batch_size (int): Maximum batch size.
|
| 24 |
+
max_seq_len (int): Maximum sequence length.
|
| 25 |
+
dtype (Literal["bf16", "fp8"]): Data type for computations.
|
| 26 |
+
scale_fmt (Optional[str]): Format for quantization scale.
|
| 27 |
+
vocab_size (int): Vocabulary size.
|
| 28 |
+
dim (int): Model dimension.
|
| 29 |
+
inter_dim (int): Intermediate dimension for MLP layers.
|
| 30 |
+
moe_inter_dim (int): Intermediate dimension for MoE layers.
|
| 31 |
+
n_layers (int): Number of transformer layers.
|
| 32 |
+
n_dense_layers (int): Number of dense layers in the model.
|
| 33 |
+
n_heads (int): Number of attention heads.
|
| 34 |
+
n_routed_experts (int): Number of routed experts for MoE layers.
|
| 35 |
+
n_shared_experts (int): Number of shared experts for MoE layers.
|
| 36 |
+
n_activated_experts (int): Number of activated experts in MoE layers.
|
| 37 |
+
n_expert_groups (int): Number of expert groups.
|
| 38 |
+
n_limited_groups (int): Number of limited groups for MoE routing.
|
| 39 |
+
score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing.
|
| 40 |
+
route_scale (float): Scaling factor for routing scores.
|
| 41 |
+
q_lora_rank (int): LoRA rank for query projections.
|
| 42 |
+
kv_lora_rank (int): LoRA rank for key-value projections.
|
| 43 |
+
qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings.
|
| 44 |
+
qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings.
|
| 45 |
+
v_head_dim (int): Dimension for value projections.
|
| 46 |
+
original_seq_len (int): Original sequence length.
|
| 47 |
+
rope_theta (float): Base for rotary positional encoding.
|
| 48 |
+
rope_factor (float): Scaling factor for extended sequence lengths.
|
| 49 |
+
beta_fast (int): Fast beta correction factor.
|
| 50 |
+
beta_slow (int): Slow beta correction factor.
|
| 51 |
+
mscale (float): Scaling factor for extended attention.
|
| 52 |
+
index_head_dim (int): Dimension for index head.
|
| 53 |
+
index_topk (int): Top-k for index head.
|
| 54 |
+
"""
|
| 55 |
+
max_batch_size: int = 8
|
| 56 |
+
max_seq_len: int = 4096 * 4
|
| 57 |
+
dtype: Literal["bf16", "fp8"] = "bf16"
|
| 58 |
+
scale_fmt: Optional[str] = None
|
| 59 |
+
vocab_size: int = 102400
|
| 60 |
+
dim: int = 2048
|
| 61 |
+
inter_dim: int = 10944
|
| 62 |
+
moe_inter_dim: int = 1408
|
| 63 |
+
n_layers: int = 27
|
| 64 |
+
n_dense_layers: int = 1
|
| 65 |
+
n_heads: int = 16
|
| 66 |
+
# moe
|
| 67 |
+
n_routed_experts: int = 64
|
| 68 |
+
n_shared_experts: int = 2
|
| 69 |
+
n_activated_experts: int = 6
|
| 70 |
+
n_expert_groups: int = 1
|
| 71 |
+
n_limited_groups: int = 1
|
| 72 |
+
score_func: Literal["softmax", "sigmoid"] = "softmax"
|
| 73 |
+
route_scale: float = 1.
|
| 74 |
+
# mla
|
| 75 |
+
q_lora_rank: int = 0
|
| 76 |
+
kv_lora_rank: int = 512
|
| 77 |
+
qk_nope_head_dim: int = 128
|
| 78 |
+
qk_rope_head_dim: int = 64
|
| 79 |
+
v_head_dim: int = 128
|
| 80 |
+
# yarn
|
| 81 |
+
original_seq_len: int = 4096
|
| 82 |
+
rope_theta: float = 10000.0
|
| 83 |
+
rope_factor: float = 40
|
| 84 |
+
beta_fast: int = 32
|
| 85 |
+
beta_slow: int = 1
|
| 86 |
+
mscale: float = 1.
|
| 87 |
+
# index
|
| 88 |
+
index_n_heads: int = 64
|
| 89 |
+
index_head_dim: int = 128
|
| 90 |
+
index_topk: int = 2048
|
| 91 |
+
|
| 92 |
+
class ParallelEmbedding(nn.Module):
|
| 93 |
+
"""
|
| 94 |
+
Embedding layer with parallelism support across distributed processes.
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
vocab_size (int): Vocabulary size.
|
| 98 |
+
dim (int): Embedding dimension.
|
| 99 |
+
"""
|
| 100 |
+
def __init__(self, vocab_size: int, dim: int):
|
| 101 |
+
super().__init__()
|
| 102 |
+
self.vocab_size = vocab_size
|
| 103 |
+
self.dim = dim
|
| 104 |
+
assert vocab_size % world_size == 0, f"Vocabulary size must be divisible by world size (world_size={world_size})"
|
| 105 |
+
self.part_vocab_size = (vocab_size // world_size)
|
| 106 |
+
self.vocab_start_idx = rank * self.part_vocab_size
|
| 107 |
+
self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size
|
| 108 |
+
self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim))
|
| 109 |
+
|
| 110 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 111 |
+
"""
|
| 112 |
+
Forward pass for parallel embedding layer.
|
| 113 |
+
|
| 114 |
+
Args:
|
| 115 |
+
x (torch.Tensor): Input tensor containing token indices.
|
| 116 |
+
|
| 117 |
+
Returns:
|
| 118 |
+
torch.Tensor: Embedded representations.
|
| 119 |
+
|
| 120 |
+
Raises:
|
| 121 |
+
ValueError: If `world_size` is not defined.
|
| 122 |
+
"""
|
| 123 |
+
if world_size > 1:
|
| 124 |
+
mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx)
|
| 125 |
+
x = x - self.vocab_start_idx
|
| 126 |
+
x[mask] = 0
|
| 127 |
+
y = F.embedding(x, self.weight)
|
| 128 |
+
if world_size > 1:
|
| 129 |
+
y[mask] = 0
|
| 130 |
+
dist.all_reduce(y)
|
| 131 |
+
return y
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None,
|
| 135 |
+
scale_fmt: Optional[str] = None) -> torch.Tensor:
|
| 136 |
+
"""
|
| 137 |
+
Applies a linear transformation to the incoming data: y = xA^T + b.
|
| 138 |
+
This function supports specialized implementations based on quantization
|
| 139 |
+
and tensor formats.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
x (torch.Tensor): The input tensor.
|
| 143 |
+
weight (torch.Tensor): The weight tensor.
|
| 144 |
+
bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None.
|
| 145 |
+
scale_fmt (Optional[str]): The format of scaling factors.
|
| 146 |
+
|
| 147 |
+
Returns:
|
| 148 |
+
torch.Tensor: The result of the linear transformation, which may involve
|
| 149 |
+
quantization-aware computations depending on the input parameters.
|
| 150 |
+
|
| 151 |
+
Notes:
|
| 152 |
+
- If `weight` is not quantized, a normal version is used for computation.
|
| 153 |
+
- For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation.
|
| 154 |
+
"""
|
| 155 |
+
assert bias is None
|
| 156 |
+
|
| 157 |
+
if weight.dtype != torch.float8_e4m3fn:
|
| 158 |
+
return F.linear(x, weight)
|
| 159 |
+
else:
|
| 160 |
+
x, scale = act_quant(x, block_size, scale_fmt)
|
| 161 |
+
return fp8_gemm(x, scale, weight, weight.scale)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
class Linear(nn.Module):
|
| 165 |
+
"""
|
| 166 |
+
Custom linear layer with support for quantized weights and optional bias.
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
in_features (int): Number of input features.
|
| 170 |
+
out_features (int): Number of output features.
|
| 171 |
+
bias (bool): Whether to include a bias term. Defaults to False.
|
| 172 |
+
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
|
| 173 |
+
"""
|
| 174 |
+
dtype = torch.bfloat16
|
| 175 |
+
scale_fmt: Optional[str] = None
|
| 176 |
+
|
| 177 |
+
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
|
| 178 |
+
super().__init__()
|
| 179 |
+
self.in_features = in_features
|
| 180 |
+
self.out_features = out_features
|
| 181 |
+
self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype))
|
| 182 |
+
if self.weight.element_size() == 1:
|
| 183 |
+
scale_out_features = (out_features + block_size - 1) // block_size
|
| 184 |
+
scale_in_features = (in_features + block_size - 1) // block_size
|
| 185 |
+
self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32))
|
| 186 |
+
else:
|
| 187 |
+
self.register_parameter("scale", None)
|
| 188 |
+
if bias:
|
| 189 |
+
self.bias = nn.Parameter(torch.empty(out_features))
|
| 190 |
+
else:
|
| 191 |
+
self.register_parameter("bias", None)
|
| 192 |
+
|
| 193 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 194 |
+
"""
|
| 195 |
+
Forward pass for the custom linear layer.
|
| 196 |
+
|
| 197 |
+
Args:
|
| 198 |
+
x (torch.Tensor): Input tensor.
|
| 199 |
+
|
| 200 |
+
Returns:
|
| 201 |
+
torch.Tensor: Transformed tensor after linear computation.
|
| 202 |
+
"""
|
| 203 |
+
return linear(x, self.weight, self.bias, self.scale_fmt)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
class ColumnParallelLinear(Linear):
|
| 207 |
+
"""
|
| 208 |
+
Linear layer with column parallelism, splitting output features across distributed processes.
|
| 209 |
+
|
| 210 |
+
Args:
|
| 211 |
+
in_features (int): Number of input features.
|
| 212 |
+
out_features (int): Total number of output features.
|
| 213 |
+
bias (bool): Whether to include a bias term. Defaults to False.
|
| 214 |
+
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
|
| 215 |
+
"""
|
| 216 |
+
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
|
| 217 |
+
assert out_features % world_size == 0, f"Output features must be divisible by world size (world_size={world_size})"
|
| 218 |
+
self.part_out_features = out_features // world_size
|
| 219 |
+
super().__init__(in_features, self.part_out_features, bias, dtype)
|
| 220 |
+
|
| 221 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 222 |
+
"""
|
| 223 |
+
Forward pass for column parallel linear layer.
|
| 224 |
+
|
| 225 |
+
Args:
|
| 226 |
+
x (torch.Tensor): Input tensor.
|
| 227 |
+
|
| 228 |
+
Returns:
|
| 229 |
+
torch.Tensor: Transformed tensor with column-parallel computation.
|
| 230 |
+
"""
|
| 231 |
+
y = linear(x, self.weight, self.bias, self.scale_fmt)
|
| 232 |
+
return y
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
class RowParallelLinear(Linear):
|
| 236 |
+
"""
|
| 237 |
+
Linear layer with row parallelism, splitting input features across distributed processes.
|
| 238 |
+
|
| 239 |
+
Args:
|
| 240 |
+
in_features (int): Total number of input features.
|
| 241 |
+
out_features (int): Number of output features.
|
| 242 |
+
bias (bool): Whether to include a bias term. Defaults to False.
|
| 243 |
+
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
|
| 244 |
+
"""
|
| 245 |
+
def __init__(self, in_features: int, out_features: int, bias: bool = False, reduce_output = True, dtype = None):
|
| 246 |
+
assert in_features % world_size == 0, f"Input features must be divisible by world size (world_size={world_size})"
|
| 247 |
+
self.part_in_features = in_features // world_size
|
| 248 |
+
self.reduce_output = reduce_output
|
| 249 |
+
super().__init__(self.part_in_features, out_features, bias, dtype)
|
| 250 |
+
|
| 251 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 252 |
+
"""
|
| 253 |
+
Forward pass for row parallel linear layer.
|
| 254 |
+
|
| 255 |
+
Args:
|
| 256 |
+
x (torch.Tensor): Input tensor.
|
| 257 |
+
|
| 258 |
+
Returns:
|
| 259 |
+
torch.Tensor: Transformed tensor with row-parallel computation.
|
| 260 |
+
"""
|
| 261 |
+
y = linear(x, self.weight, None, self.scale_fmt)
|
| 262 |
+
if self.reduce_output and world_size > 1:
|
| 263 |
+
y = y.float()
|
| 264 |
+
dist.all_reduce(y)
|
| 265 |
+
if self.bias is not None:
|
| 266 |
+
y += self.bias
|
| 267 |
+
return y.type_as(x)
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
class RMSNorm(nn.Module):
|
| 271 |
+
"""
|
| 272 |
+
Root Mean Square Layer Normalization (RMSNorm).
|
| 273 |
+
|
| 274 |
+
Args:
|
| 275 |
+
dim (int): Dimension of the input tensor.
|
| 276 |
+
eps (float): Epsilon value for numerical stability. Defaults to 1e-6.
|
| 277 |
+
"""
|
| 278 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 279 |
+
super().__init__()
|
| 280 |
+
self.dim = dim
|
| 281 |
+
self.eps = eps
|
| 282 |
+
# rmsnorm in the checkpoint is stored in bf16, while the parameter here is stored in fp32 for convenient.
|
| 283 |
+
self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32))
|
| 284 |
+
|
| 285 |
+
def forward(self, x: torch.Tensor, residual: Optional[torch.Tensor] = None):
|
| 286 |
+
"""
|
| 287 |
+
Forward pass for RMSNorm.
|
| 288 |
+
|
| 289 |
+
Args:
|
| 290 |
+
x (torch.Tensor): Input tensor.
|
| 291 |
+
|
| 292 |
+
Returns:
|
| 293 |
+
torch.Tensor: Normalized tensor with the same shape as input.
|
| 294 |
+
"""
|
| 295 |
+
dtype = x.dtype
|
| 296 |
+
if residual is None:
|
| 297 |
+
x = x.float()
|
| 298 |
+
var = x.pow(2).mean(-1, keepdim=True)
|
| 299 |
+
x = x * torch.rsqrt(var + self.eps)
|
| 300 |
+
return (self.weight * x).to(dtype)
|
| 301 |
+
else:
|
| 302 |
+
x = residual = x.float() + residual.float()
|
| 303 |
+
var = x.pow(2).mean(-1, keepdim=True)
|
| 304 |
+
x = x * torch.rsqrt(var + self.eps)
|
| 305 |
+
return (self.weight * x).to(dtype), residual.to(dtype)
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
class LayerNorm(nn.Module):
|
| 309 |
+
"""
|
| 310 |
+
Layer Normalization.
|
| 311 |
+
"""
|
| 312 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 313 |
+
super().__init__()
|
| 314 |
+
self.dim = dim
|
| 315 |
+
self.eps = eps
|
| 316 |
+
# layernorm in the checkpoint is stored in bf16, while the parameters here are stored in fp32 for convenient.
|
| 317 |
+
self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32))
|
| 318 |
+
self.bias = nn.Parameter(torch.zeros(dim, dtype=torch.float32))
|
| 319 |
+
|
| 320 |
+
def forward(self, x: torch.Tensor):
|
| 321 |
+
return F.layer_norm(x.float(), (self.dim,), self.weight, self.bias, self.eps).type_as(x)
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor:
|
| 325 |
+
"""
|
| 326 |
+
Precomputes frequency-based complex exponential values for rotary positional embeddings.
|
| 327 |
+
|
| 328 |
+
Args:
|
| 329 |
+
args (ModelArgs): Model arguments containing positional embedding parameters.
|
| 330 |
+
|
| 331 |
+
Returns:
|
| 332 |
+
torch.Tensor: Precomputed complex exponential values for positional embeddings.
|
| 333 |
+
"""
|
| 334 |
+
dim = args.qk_rope_head_dim
|
| 335 |
+
seqlen = args.max_seq_len
|
| 336 |
+
beta_fast = args.beta_fast
|
| 337 |
+
beta_slow = args.beta_slow
|
| 338 |
+
base = args.rope_theta
|
| 339 |
+
factor = args.rope_factor
|
| 340 |
+
|
| 341 |
+
def find_correction_dim(num_rotations, dim, base, max_seq_len):
|
| 342 |
+
"""
|
| 343 |
+
Computes the correction dimension for a given number of rotations in the rotary positional embedding.
|
| 344 |
+
|
| 345 |
+
Args:
|
| 346 |
+
num_rotations (float): Number of rotations to compute the correction for.
|
| 347 |
+
dim (int): Dimensionality of the embedding space.
|
| 348 |
+
base (float): Base value for the exponential computation.
|
| 349 |
+
max_seq_len (int): Maximum sequence length.
|
| 350 |
+
|
| 351 |
+
Returns:
|
| 352 |
+
float: The correction dimension based on the input parameters.
|
| 353 |
+
"""
|
| 354 |
+
return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base))
|
| 355 |
+
|
| 356 |
+
def find_correction_range(low_rot, high_rot, dim, base, max_seq_len):
|
| 357 |
+
"""
|
| 358 |
+
Computes the range of correction dimensions for rotary positional embeddings.
|
| 359 |
+
|
| 360 |
+
Args:
|
| 361 |
+
low_rot (float): Lower bound for the number of rotations.
|
| 362 |
+
high_rot (float): Upper bound for the number of rotations.
|
| 363 |
+
dim (int): Dimensionality of the embedding space.
|
| 364 |
+
base (float): Base value for the exponential computation.
|
| 365 |
+
max_seq_len (int): Maximum sequence length.
|
| 366 |
+
|
| 367 |
+
Returns:
|
| 368 |
+
Tuple[int, int]: The range of correction dimensions (low, high), clamped to valid indices.
|
| 369 |
+
"""
|
| 370 |
+
low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len))
|
| 371 |
+
high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len))
|
| 372 |
+
return max(low, 0), min(high, dim-1)
|
| 373 |
+
|
| 374 |
+
def linear_ramp_factor(min, max, dim):
|
| 375 |
+
"""
|
| 376 |
+
Computes a linear ramp function used to smooth values between a minimum and maximum range.
|
| 377 |
+
|
| 378 |
+
Args:
|
| 379 |
+
min (float): Minimum value for the ramp function.
|
| 380 |
+
max (float): Maximum value for the ramp function.
|
| 381 |
+
dim (int): Dimensionality of the ramp tensor.
|
| 382 |
+
|
| 383 |
+
Returns:
|
| 384 |
+
torch.Tensor: A tensor of shape (dim,) with values linearly interpolated between 0 and 1,
|
| 385 |
+
clamped to the range [0, 1].
|
| 386 |
+
"""
|
| 387 |
+
if min == max:
|
| 388 |
+
max += 0.001
|
| 389 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
| 390 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
| 391 |
+
return ramp_func
|
| 392 |
+
|
| 393 |
+
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
| 394 |
+
if seqlen > args.original_seq_len:
|
| 395 |
+
low, high = find_correction_range(beta_fast, beta_slow, dim, base, args.original_seq_len)
|
| 396 |
+
smooth = 1 - linear_ramp_factor(low, high, dim // 2)
|
| 397 |
+
freqs = freqs / factor * (1 - smooth) + freqs * smooth
|
| 398 |
+
|
| 399 |
+
t = torch.arange(seqlen)
|
| 400 |
+
freqs = torch.outer(t, freqs)
|
| 401 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
| 402 |
+
return freqs_cis
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor, interleaved: bool = True) -> torch.Tensor:
|
| 406 |
+
"""
|
| 407 |
+
Applies rotary positional embeddings to the input tensor.
|
| 408 |
+
|
| 409 |
+
Args:
|
| 410 |
+
x (torch.Tensor): Input tensor with positional embeddings to be applied.
|
| 411 |
+
freqs_cis (torch.Tensor): Precomputed complex exponential values for positional embeddings.
|
| 412 |
+
|
| 413 |
+
Returns:
|
| 414 |
+
torch.Tensor: Tensor with rotary embeddings applied.
|
| 415 |
+
"""
|
| 416 |
+
dtype = x.dtype
|
| 417 |
+
shape = x.shape
|
| 418 |
+
if not interleaved:
|
| 419 |
+
x = x.view(*shape[:-1], 2, -1).transpose(-1, -2).contiguous()
|
| 420 |
+
x = torch.view_as_complex(x.float().view(*shape[:-1], -1, 2))
|
| 421 |
+
freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1))
|
| 422 |
+
y = torch.view_as_real(x * freqs_cis).flatten(3)
|
| 423 |
+
if not interleaved:
|
| 424 |
+
y = torch.cat([y[..., 0::2], y[..., 1::2]], dim=-1)
|
| 425 |
+
return y.to(dtype)
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
def rotate_activation(x: torch.Tensor) -> torch.Tensor:
|
| 429 |
+
assert x.dtype == torch.bfloat16
|
| 430 |
+
from fast_hadamard_transform import hadamard_transform
|
| 431 |
+
hidden_size = x.size(-1)
|
| 432 |
+
# 确保hidden_size是2的幂
|
| 433 |
+
return hadamard_transform(x, scale=hidden_size ** -0.5)
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
class Indexer(torch.nn.Module):
|
| 437 |
+
def __init__(self, args: ModelArgs):
|
| 438 |
+
super().__init__()
|
| 439 |
+
self.dim: int = args.dim
|
| 440 |
+
self.n_heads: int = args.index_n_heads
|
| 441 |
+
self.n_local_heads = args.index_n_heads // world_size
|
| 442 |
+
self.head_dim: int = args.index_head_dim
|
| 443 |
+
self.rope_head_dim: int = args.qk_rope_head_dim
|
| 444 |
+
self.index_topk: int = args.index_topk
|
| 445 |
+
self.q_lora_rank: int = args.q_lora_rank
|
| 446 |
+
self.wq_b = Linear(self.q_lora_rank, self.n_heads * self.head_dim)
|
| 447 |
+
self.wk = Linear(self.dim, self.head_dim)
|
| 448 |
+
self.k_norm = LayerNorm(self.head_dim)
|
| 449 |
+
# weights_proj in the checkpoint is stored in bf16, while the parameters here are stored in fp32 for convenient.
|
| 450 |
+
self.weights_proj = Linear(self.dim, self.n_heads, dtype=torch.float32)
|
| 451 |
+
self.softmax_scale = self.head_dim ** -0.5
|
| 452 |
+
self.scale_fmt = args.scale_fmt
|
| 453 |
+
|
| 454 |
+
self.register_buffer("k_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.head_dim, dtype=torch.float8_e4m3fn), persistent=False)
|
| 455 |
+
self.register_buffer("k_scale_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.head_dim // block_size, dtype=torch.float32), persistent=False)
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
def forward(self, x: torch.Tensor, qr: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
|
| 459 |
+
bsz, seqlen, _ = x.size()
|
| 460 |
+
end_pos = start_pos + seqlen
|
| 461 |
+
q = self.wq_b(qr)
|
| 462 |
+
q = q.view(bsz, seqlen, self.n_heads, self.head_dim)
|
| 463 |
+
q_pe, q_nope = torch.split(q, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1)
|
| 464 |
+
# rope in indexer is not interleaved
|
| 465 |
+
q_pe = apply_rotary_emb(q_pe, freqs_cis, False)
|
| 466 |
+
q = torch.cat([q_pe, q_nope], dim=-1)
|
| 467 |
+
k = self.wk(x)
|
| 468 |
+
k = self.k_norm(k)
|
| 469 |
+
k_pe, k_nope = torch.split(k, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1)
|
| 470 |
+
# rope in indexer is not interleaved
|
| 471 |
+
k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis, False).squeeze(2)
|
| 472 |
+
k = torch.cat([k_pe, k_nope], dim=-1)
|
| 473 |
+
q = rotate_activation(q)
|
| 474 |
+
k = rotate_activation(k)
|
| 475 |
+
q_fp8, q_scale = act_quant(q, block_size, self.scale_fmt)
|
| 476 |
+
k_fp8, k_scale = act_quant(k, block_size, self.scale_fmt)
|
| 477 |
+
self.k_cache[:bsz, start_pos:end_pos] = k_fp8
|
| 478 |
+
self.k_scale_cache[:bsz, start_pos:end_pos] = k_scale
|
| 479 |
+
weights = self.weights_proj(x.float()) * self.n_heads ** -0.5
|
| 480 |
+
weights = weights.unsqueeze(-1) * q_scale * self.softmax_scale
|
| 481 |
+
index_score = fp8_index(q_fp8.contiguous(), weights, self.k_cache[:bsz, :end_pos].contiguous(), self.k_scale_cache[:bsz, :end_pos].contiguous())
|
| 482 |
+
if mask is not None:
|
| 483 |
+
index_score += mask
|
| 484 |
+
topk_indices = index_score.topk(min(self.index_topk, end_pos), dim=-1)[1]
|
| 485 |
+
topk_indices_ = topk_indices.clone()
|
| 486 |
+
dist.broadcast(topk_indices_, src=0)
|
| 487 |
+
assert torch.all(topk_indices == topk_indices_), f"{topk_indices=} {topk_indices_=}"
|
| 488 |
+
return topk_indices
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
def weight_dequant(weight, scale):
|
| 492 |
+
shape = weight.shape
|
| 493 |
+
assert weight.dim() == 2
|
| 494 |
+
weight = weight.view(shape[0] // block_size, block_size, shape[1] // block_size, block_size).transpose(1, 2).reshape(-1, block_size * block_size)
|
| 495 |
+
weight = (weight.float() * scale.view(-1, 1).float()).to(torch.get_default_dtype()).view(shape[0] // block_size, shape[1] // block_size, block_size, block_size).transpose(1, 2).reshape(shape)
|
| 496 |
+
return weight
|
| 497 |
+
|
| 498 |
+
def update_ws(model):
|
| 499 |
+
for m in model.modules():
|
| 500 |
+
if isinstance(m, MLA):
|
| 501 |
+
if m.wkv_b.scale is not None:
|
| 502 |
+
m.dequant_wkv_b = weight_dequant(m.wkv_b.weight, m.wkv_b.scale)
|
| 503 |
+
|
| 504 |
+
class MLA(nn.Module):
|
| 505 |
+
"""
|
| 506 |
+
Multi-Head Latent Attention (MLA) Layer.
|
| 507 |
+
|
| 508 |
+
Attributes:
|
| 509 |
+
dim (int): Dimensionality of the input features.
|
| 510 |
+
n_heads (int): Number of attention heads.
|
| 511 |
+
n_local_heads (int): Number of local attention heads for distributed systems.
|
| 512 |
+
q_lora_rank (int): Rank for low-rank query projection.
|
| 513 |
+
kv_lora_rank (int): Rank for low-rank key/value projection.
|
| 514 |
+
qk_nope_head_dim (int): Dimensionality of non-positional query/key projections.
|
| 515 |
+
qk_rope_head_dim (int): Dimensionality of rotary-positional query/key projections.
|
| 516 |
+
qk_head_dim (int): Total dimensionality of query/key projections.
|
| 517 |
+
v_head_dim (int): Dimensionality of value projections.
|
| 518 |
+
softmax_scale (float): Scaling factor for softmax in attention computation.
|
| 519 |
+
"""
|
| 520 |
+
def __init__(self, args: ModelArgs):
|
| 521 |
+
super().__init__()
|
| 522 |
+
self.dim = args.dim
|
| 523 |
+
self.n_heads = args.n_heads
|
| 524 |
+
self.n_local_heads = args.n_heads // world_size
|
| 525 |
+
self.q_lora_rank = args.q_lora_rank
|
| 526 |
+
self.kv_lora_rank = args.kv_lora_rank
|
| 527 |
+
self.qk_nope_head_dim = args.qk_nope_head_dim
|
| 528 |
+
self.qk_rope_head_dim = args.qk_rope_head_dim
|
| 529 |
+
self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim
|
| 530 |
+
self.v_head_dim = args.v_head_dim
|
| 531 |
+
|
| 532 |
+
self.wq_a = Linear(self.dim, self.q_lora_rank)
|
| 533 |
+
self.q_norm = RMSNorm(self.q_lora_rank)
|
| 534 |
+
self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim)
|
| 535 |
+
self.wkv_a = Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim)
|
| 536 |
+
self.kv_norm = RMSNorm(self.kv_lora_rank)
|
| 537 |
+
self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim))
|
| 538 |
+
self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim)
|
| 539 |
+
self.softmax_scale = self.qk_head_dim ** -0.5
|
| 540 |
+
self.scale_fmt = args.scale_fmt
|
| 541 |
+
if args.max_seq_len > args.original_seq_len:
|
| 542 |
+
mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0
|
| 543 |
+
self.softmax_scale = self.softmax_scale * mscale * mscale
|
| 544 |
+
|
| 545 |
+
self.indexer = Indexer(args)
|
| 546 |
+
|
| 547 |
+
self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False)
|
| 548 |
+
self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False)
|
| 549 |
+
self.dequant_wkv_b = None
|
| 550 |
+
|
| 551 |
+
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
|
| 552 |
+
"""
|
| 553 |
+
Forward pass for the Multi-Head Latent Attention (MLA) Layer.
|
| 554 |
+
|
| 555 |
+
Args:
|
| 556 |
+
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, dim).
|
| 557 |
+
start_pos (int): Starting position in the sequence for caching.
|
| 558 |
+
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
|
| 559 |
+
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
|
| 560 |
+
|
| 561 |
+
Returns:
|
| 562 |
+
torch.Tensor: Output tensor with the same shape as the input.
|
| 563 |
+
"""
|
| 564 |
+
bsz, seqlen, _ = x.size()
|
| 565 |
+
end_pos = start_pos + seqlen
|
| 566 |
+
qr = self.q_norm(self.wq_a(x))
|
| 567 |
+
q = self.wq_b(qr)
|
| 568 |
+
q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim)
|
| 569 |
+
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
| 570 |
+
q_pe = apply_rotary_emb(q_pe, freqs_cis)
|
| 571 |
+
kv = self.wkv_a(x)
|
| 572 |
+
kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
|
| 573 |
+
kv = self.kv_norm(kv)
|
| 574 |
+
k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis)
|
| 575 |
+
# we use fp8 kv cache in actual deployment, so here we simulate the precision by casting kv to fp8 and then back to bf16.
|
| 576 |
+
kv_fp8, kv_scale = act_quant(kv, block_size, self.scale_fmt)
|
| 577 |
+
kv = (kv_fp8.view(-1, block_size).float() * kv_scale.view(-1, 1)).to(kv.dtype).view_as(kv)
|
| 578 |
+
self.kv_cache[:bsz, start_pos:end_pos] = kv
|
| 579 |
+
self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2)
|
| 580 |
+
if mask is not None: # MHA prefill
|
| 581 |
+
q = torch.cat([q_nope, q_pe], dim=-1)
|
| 582 |
+
kv = self.wkv_b(kv)
|
| 583 |
+
kv = kv.view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim)
|
| 584 |
+
k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
| 585 |
+
k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1)
|
| 586 |
+
del q_nope, q_pe, kv, k_nope, k_pe, kv_fp8, kv_scale
|
| 587 |
+
scores = torch.einsum("bshd,bthd->bsht", q, k).mul_(self.softmax_scale)
|
| 588 |
+
del q, k
|
| 589 |
+
|
| 590 |
+
# indexer
|
| 591 |
+
topk_indices = self.indexer(x, qr, start_pos, freqs_cis, mask)
|
| 592 |
+
index_mask = torch.full((bsz, seqlen, seqlen), float("-inf"), device=x.device).scatter_(-1, topk_indices, 0)
|
| 593 |
+
index_mask += mask
|
| 594 |
+
scores += index_mask.unsqueeze(2)
|
| 595 |
+
del topk_indices, index_mask, qr
|
| 596 |
+
|
| 597 |
+
scores = scores.softmax(dim=-1)
|
| 598 |
+
x = torch.einsum("bsht,bthd->bshd", scores, v)
|
| 599 |
+
# use code below if oom
|
| 600 |
+
# scores_ = torch.empty_like(scores)
|
| 601 |
+
# for i in range(0, scores.size(1), 512):
|
| 602 |
+
# scores_[:, i: i+512] = scores[:, i: i+512].softmax(dim=-1)
|
| 603 |
+
# del scores
|
| 604 |
+
# x = torch.einsum("bsht,bthd->bshd", scores_, v)
|
| 605 |
+
else: # MQA decode
|
| 606 |
+
if self.wkv_b.scale is not None and self.dequant_wkv_b is None:
|
| 607 |
+
self.dequant_wkv_b = weight_dequant(self.wkv_b.weight, self.wkv_b.scale)
|
| 608 |
+
wkv_b = self.wkv_b.weight if self.wkv_b.scale is None else self.dequant_wkv_b
|
| 609 |
+
wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank)
|
| 610 |
+
q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim])
|
| 611 |
+
scores = (torch.einsum("bshc,btc->bsht", q_nope, self.kv_cache[:bsz, :end_pos]) +
|
| 612 |
+
torch.einsum("bshr,btr->bsht", q_pe, self.pe_cache[:bsz, :end_pos])) * self.softmax_scale
|
| 613 |
+
|
| 614 |
+
# indexer
|
| 615 |
+
topk_indices = self.indexer(x, qr, start_pos, freqs_cis, mask)
|
| 616 |
+
index_mask = torch.full((bsz, 1, end_pos), float("-inf"), device=x.device).scatter_(-1, topk_indices, 0)
|
| 617 |
+
scores += index_mask.unsqueeze(2)
|
| 618 |
+
|
| 619 |
+
scores = scores.softmax(dim=-1)
|
| 620 |
+
x = torch.einsum("bsht,btc->bshc", scores, self.kv_cache[:bsz, :end_pos])
|
| 621 |
+
x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:])
|
| 622 |
+
x = self.wo(x.flatten(2))
|
| 623 |
+
return x
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
class MLP(nn.Module):
|
| 627 |
+
"""
|
| 628 |
+
Multi-Layer Perceptron (MLP) used as a feed-forward layer.
|
| 629 |
+
|
| 630 |
+
Attributes:
|
| 631 |
+
w1 (nn.Module): Linear layer for input-to-hidden transformation.
|
| 632 |
+
w2 (nn.Module): Linear layer for hidden-to-output transformation.
|
| 633 |
+
w3 (nn.Module): Additional linear layer for feature transformation.
|
| 634 |
+
"""
|
| 635 |
+
def __init__(self, dim: int, inter_dim: int, reduce_output: bool = True):
|
| 636 |
+
"""
|
| 637 |
+
Initializes the MLP layer.
|
| 638 |
+
|
| 639 |
+
Args:
|
| 640 |
+
dim (int): Input and output dimensionality.
|
| 641 |
+
inter_dim (int): Hidden layer dimensionality.
|
| 642 |
+
"""
|
| 643 |
+
super().__init__()
|
| 644 |
+
self.w1 = ColumnParallelLinear(dim, inter_dim)
|
| 645 |
+
self.w2 = RowParallelLinear(inter_dim, dim, reduce_output=reduce_output)
|
| 646 |
+
self.w3 = ColumnParallelLinear(dim, inter_dim)
|
| 647 |
+
|
| 648 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 649 |
+
"""
|
| 650 |
+
Forward pass for the MLP layer.
|
| 651 |
+
|
| 652 |
+
Args:
|
| 653 |
+
x (torch.Tensor): Input tensor.
|
| 654 |
+
|
| 655 |
+
Returns:
|
| 656 |
+
torch.Tensor: Output tensor after MLP computation.
|
| 657 |
+
"""
|
| 658 |
+
return self.w2((F.silu(self.w1(x).float()) * self.w3(x).float()).type_as(x))
|
| 659 |
+
|
| 660 |
+
|
| 661 |
+
class Gate(nn.Module):
|
| 662 |
+
"""
|
| 663 |
+
Gating mechanism for routing inputs in a mixture-of-experts (MoE) model.
|
| 664 |
+
|
| 665 |
+
Attributes:
|
| 666 |
+
dim (int): Dimensionality of input features.
|
| 667 |
+
topk (int): Number of top experts activated for each input.
|
| 668 |
+
n_groups (int): Number of groups for routing.
|
| 669 |
+
topk_groups (int): Number of groups to route inputs to.
|
| 670 |
+
score_func (str): Scoring function ('softmax' or 'sigmoid').
|
| 671 |
+
route_scale (float): Scaling factor for routing weights.
|
| 672 |
+
weight (torch.nn.Parameter): Learnable weights for the gate.
|
| 673 |
+
bias (Optional[torch.nn.Parameter]): Optional bias term for the gate.
|
| 674 |
+
"""
|
| 675 |
+
def __init__(self, args: ModelArgs):
|
| 676 |
+
"""
|
| 677 |
+
Initializes the Gate module.
|
| 678 |
+
|
| 679 |
+
Args:
|
| 680 |
+
args (ModelArgs): Model arguments containing gating parameters.
|
| 681 |
+
"""
|
| 682 |
+
super().__init__()
|
| 683 |
+
self.dim = args.dim
|
| 684 |
+
self.topk = args.n_activated_experts
|
| 685 |
+
self.n_groups = args.n_expert_groups
|
| 686 |
+
self.topk_groups = args.n_limited_groups
|
| 687 |
+
self.score_func = args.score_func
|
| 688 |
+
self.route_scale = args.route_scale
|
| 689 |
+
self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim))
|
| 690 |
+
self.bias = nn.Parameter(torch.empty(args.n_routed_experts, dtype=torch.float32)) if self.dim == 7168 else None
|
| 691 |
+
|
| 692 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 693 |
+
"""
|
| 694 |
+
Forward pass for the gating mechanism.
|
| 695 |
+
|
| 696 |
+
Args:
|
| 697 |
+
x (torch.Tensor): Input tensor.
|
| 698 |
+
|
| 699 |
+
Returns:
|
| 700 |
+
Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices.
|
| 701 |
+
"""
|
| 702 |
+
scores = linear(x.float(), self.weight.float())
|
| 703 |
+
if self.score_func == "softmax":
|
| 704 |
+
scores = scores.softmax(dim=-1)
|
| 705 |
+
else:
|
| 706 |
+
scores = scores.sigmoid()
|
| 707 |
+
original_scores = scores
|
| 708 |
+
if self.bias is not None:
|
| 709 |
+
scores = scores + self.bias
|
| 710 |
+
if self.n_groups > 1:
|
| 711 |
+
scores = scores.view(x.size(0), self.n_groups, -1)
|
| 712 |
+
if self.bias is None:
|
| 713 |
+
group_scores = scores.amax(dim=-1)
|
| 714 |
+
else:
|
| 715 |
+
group_scores = scores.topk(2, dim=-1)[0].sum(dim=-1)
|
| 716 |
+
indices = group_scores.topk(self.topk_groups, dim=-1)[1]
|
| 717 |
+
mask = scores.new_ones(x.size(0), self.n_groups, dtype=bool).scatter_(1, indices, False)
|
| 718 |
+
scores = scores.masked_fill_(mask.unsqueeze(-1), float("-inf")).flatten(1)
|
| 719 |
+
indices = scores.topk(self.topk, dim=-1)[1]
|
| 720 |
+
weights = original_scores.gather(1, indices)
|
| 721 |
+
if self.score_func == "sigmoid":
|
| 722 |
+
weights /= weights.sum(dim=-1, keepdim=True)
|
| 723 |
+
weights *= self.route_scale
|
| 724 |
+
return weights, indices
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
class Expert(nn.Module):
|
| 728 |
+
"""
|
| 729 |
+
Expert layer for Mixture-of-Experts (MoE) models.
|
| 730 |
+
|
| 731 |
+
Attributes:
|
| 732 |
+
w1 (nn.Module): Linear layer for input-to-hidden transformation.
|
| 733 |
+
w2 (nn.Module): Linear layer for hidden-to-output transformation.
|
| 734 |
+
w3 (nn.Module): Additional linear layer for feature transformation.
|
| 735 |
+
"""
|
| 736 |
+
def __init__(self, dim: int, inter_dim: int):
|
| 737 |
+
"""
|
| 738 |
+
Initializes the Expert layer.
|
| 739 |
+
|
| 740 |
+
Args:
|
| 741 |
+
dim (int): Input and output dimensionality.
|
| 742 |
+
inter_dim (int): Hidden layer dimensionality.
|
| 743 |
+
"""
|
| 744 |
+
super().__init__()
|
| 745 |
+
self.w1 = Linear(dim, inter_dim)
|
| 746 |
+
self.w2 = Linear(inter_dim, dim)
|
| 747 |
+
self.w3 = Linear(dim, inter_dim)
|
| 748 |
+
|
| 749 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 750 |
+
"""
|
| 751 |
+
Forward pass for the Expert layer.
|
| 752 |
+
|
| 753 |
+
Args:
|
| 754 |
+
x (torch.Tensor): Input tensor.
|
| 755 |
+
|
| 756 |
+
Returns:
|
| 757 |
+
torch.Tensor: Output tensor after expert computation.
|
| 758 |
+
"""
|
| 759 |
+
return self.w2((F.silu(self.w1(x).float()) * self.w3(x).float()).type_as(x))
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
class MoE(nn.Module):
|
| 763 |
+
"""
|
| 764 |
+
Mixture-of-Experts (MoE) module.
|
| 765 |
+
|
| 766 |
+
Attributes:
|
| 767 |
+
dim (int): Dimensionality of input features.
|
| 768 |
+
n_routed_experts (int): Total number of experts in the model.
|
| 769 |
+
n_local_experts (int): Number of experts handled locally in distributed systems.
|
| 770 |
+
n_activated_experts (int): Number of experts activated for each input.
|
| 771 |
+
gate (nn.Module): Gating mechanism to route inputs to experts.
|
| 772 |
+
experts (nn.ModuleList): List of expert modules.
|
| 773 |
+
shared_experts (nn.Module): Shared experts applied to all inputs.
|
| 774 |
+
"""
|
| 775 |
+
def __init__(self, args: ModelArgs):
|
| 776 |
+
"""
|
| 777 |
+
Initializes the MoE module.
|
| 778 |
+
|
| 779 |
+
Args:
|
| 780 |
+
args (ModelArgs): Model arguments containing MoE parameters.
|
| 781 |
+
"""
|
| 782 |
+
super().__init__()
|
| 783 |
+
self.dim = args.dim
|
| 784 |
+
assert args.n_routed_experts % world_size == 0, f"Number of experts must be divisible by world size (world_size={world_size})"
|
| 785 |
+
self.n_routed_experts = args.n_routed_experts
|
| 786 |
+
self.n_local_experts = args.n_routed_experts // world_size
|
| 787 |
+
self.n_activated_experts = args.n_activated_experts
|
| 788 |
+
self.experts_start_idx = rank * self.n_local_experts
|
| 789 |
+
self.experts_end_idx = self.experts_start_idx + self.n_local_experts
|
| 790 |
+
self.gate = Gate(args)
|
| 791 |
+
self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None
|
| 792 |
+
for i in range(self.n_routed_experts)])
|
| 793 |
+
self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim, reduce_output=False)
|
| 794 |
+
|
| 795 |
+
def run_gate(self, x):
|
| 796 |
+
return self.gate(x)
|
| 797 |
+
|
| 798 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 799 |
+
"""
|
| 800 |
+
Forward pass for the MoE module.
|
| 801 |
+
|
| 802 |
+
Args:
|
| 803 |
+
x (torch.Tensor): Input tensor.
|
| 804 |
+
|
| 805 |
+
Returns:
|
| 806 |
+
torch.Tensor: Output tensor after expert routing and computation.
|
| 807 |
+
"""
|
| 808 |
+
shape = x.size()
|
| 809 |
+
x = x.view(-1, self.dim)
|
| 810 |
+
weights, indices = self.run_gate(x)
|
| 811 |
+
y = torch.zeros_like(x, dtype=torch.float32)
|
| 812 |
+
counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist()
|
| 813 |
+
for i in range(self.experts_start_idx, self.experts_end_idx):
|
| 814 |
+
if counts[i] == 0:
|
| 815 |
+
continue
|
| 816 |
+
expert = self.experts[i]
|
| 817 |
+
idx, top = torch.where(indices == i)
|
| 818 |
+
y[idx] += expert(x[idx]) * weights[idx, top, None]
|
| 819 |
+
y += self.shared_experts(x)
|
| 820 |
+
if world_size > 1:
|
| 821 |
+
dist.all_reduce(y)
|
| 822 |
+
return y.type_as(x).view(shape)
|
| 823 |
+
|
| 824 |
+
|
| 825 |
+
class Block(nn.Module):
|
| 826 |
+
"""
|
| 827 |
+
Transformer block combining attention and feed-forward layers.
|
| 828 |
+
|
| 829 |
+
Attributes:
|
| 830 |
+
attn (nn.Module): Attention layer (MLA).
|
| 831 |
+
ffn (nn.Module): Feed-forward network (MLP or MoE).
|
| 832 |
+
attn_norm (nn.Module): Layer normalization for attention.
|
| 833 |
+
ffn_norm (nn.Module): Layer normalization for feed-forward network.
|
| 834 |
+
"""
|
| 835 |
+
def __init__(self, layer_id: int, args: ModelArgs):
|
| 836 |
+
"""
|
| 837 |
+
Initializes the Transformer block.
|
| 838 |
+
|
| 839 |
+
Args:
|
| 840 |
+
layer_id (int): Layer index in the transformer.
|
| 841 |
+
args (ModelArgs): Model arguments containing block parameters.
|
| 842 |
+
"""
|
| 843 |
+
super().__init__()
|
| 844 |
+
self.attn = MLA(args)
|
| 845 |
+
self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args)
|
| 846 |
+
self.attn_norm = RMSNorm(args.dim)
|
| 847 |
+
self.ffn_norm = RMSNorm(args.dim)
|
| 848 |
+
|
| 849 |
+
def forward(self, x: torch.Tensor, residual: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor:
|
| 850 |
+
"""
|
| 851 |
+
Forward pass for the Transformer block.
|
| 852 |
+
|
| 853 |
+
Args:
|
| 854 |
+
x (torch.Tensor): Input tensor.
|
| 855 |
+
start_pos (int): Starting position in the sequence.
|
| 856 |
+
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
|
| 857 |
+
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
|
| 858 |
+
|
| 859 |
+
Returns:
|
| 860 |
+
torch.Tensor: Output tensor after block computation.
|
| 861 |
+
"""
|
| 862 |
+
if residual is None:
|
| 863 |
+
x, residual = self.attn_norm(x), x
|
| 864 |
+
else:
|
| 865 |
+
x, residual = self.attn_norm(x, residual)
|
| 866 |
+
x = self.attn(x, start_pos, freqs_cis, mask)
|
| 867 |
+
x, residual = self.ffn_norm(x, residual)
|
| 868 |
+
x = self.ffn(x)
|
| 869 |
+
return x, residual
|
| 870 |
+
|
| 871 |
+
|
| 872 |
+
class Transformer(nn.Module):
|
| 873 |
+
"""
|
| 874 |
+
Transformer model with positional embeddings, multiple layers, and output projection.
|
| 875 |
+
|
| 876 |
+
Attributes:
|
| 877 |
+
max_seq_len (int): Maximum sequence length for the transformer.
|
| 878 |
+
embed (nn.Module): Embedding layer for input tokens.
|
| 879 |
+
layers (torch.nn.ModuleList): List of transformer blocks.
|
| 880 |
+
norm (nn.Module): Layer normalization applied after all blocks.
|
| 881 |
+
head (nn.Module): Output projection layer mapping to vocabulary size.
|
| 882 |
+
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
|
| 883 |
+
"""
|
| 884 |
+
def __init__(self, args: ModelArgs):
|
| 885 |
+
"""
|
| 886 |
+
Initializes the Transformer model.
|
| 887 |
+
|
| 888 |
+
Args:
|
| 889 |
+
args (ModelArgs): Model arguments containing transformer parameters.
|
| 890 |
+
"""
|
| 891 |
+
global world_size, rank
|
| 892 |
+
world_size = dist.get_world_size() if dist.is_initialized() else 1
|
| 893 |
+
rank = dist.get_rank() if dist.is_initialized() else 0
|
| 894 |
+
Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16
|
| 895 |
+
Linear.scale_fmt = args.scale_fmt
|
| 896 |
+
super().__init__()
|
| 897 |
+
self.max_seq_len = args.max_seq_len
|
| 898 |
+
self.embed = ParallelEmbedding(args.vocab_size, args.dim)
|
| 899 |
+
self.layers = torch.nn.ModuleList()
|
| 900 |
+
for layer_id in range(args.n_layers):
|
| 901 |
+
self.layers.append(Block(layer_id, args))
|
| 902 |
+
self.norm = RMSNorm(args.dim)
|
| 903 |
+
# lm_head in the checkpoint is stored in bf16, while the parameter here is stored in fp32 for easier computation of logits later.
|
| 904 |
+
self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.float32)
|
| 905 |
+
self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False)
|
| 906 |
+
|
| 907 |
+
@torch.inference_mode()
|
| 908 |
+
def forward(self, tokens: torch.Tensor, start_pos: int = 0):
|
| 909 |
+
"""
|
| 910 |
+
Forward pass for the Transformer model.
|
| 911 |
+
|
| 912 |
+
Args:
|
| 913 |
+
tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len).
|
| 914 |
+
start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0.
|
| 915 |
+
|
| 916 |
+
Returns:
|
| 917 |
+
torch.Tensor: Logits tensor of shape (batch_size, vocab_size).
|
| 918 |
+
"""
|
| 919 |
+
seqlen = tokens.size(1)
|
| 920 |
+
freqs_cis = self.freqs_cis[start_pos:start_pos+seqlen]
|
| 921 |
+
mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1) if seqlen > 1 else None
|
| 922 |
+
h, residual = self.embed(tokens), None
|
| 923 |
+
for layer in self.layers:
|
| 924 |
+
h, residual = layer(h, residual, start_pos, freqs_cis, mask)
|
| 925 |
+
h, _ = self.norm(h, residual)
|
| 926 |
+
logits = self.head(h[:, -1].float())
|
| 927 |
+
if world_size > 1:
|
| 928 |
+
all_logits = [torch.empty_like(logits) for _ in range(world_size)]
|
| 929 |
+
dist.all_gather(all_logits, logits)
|
| 930 |
+
logits = torch.cat(all_logits, dim=-1)
|
| 931 |
+
return logits
|
| 932 |
+
|
| 933 |
+
|
| 934 |
+
if __name__ == "__main__":
|
| 935 |
+
torch.set_default_dtype(torch.bfloat16)
|
| 936 |
+
torch.set_default_device("cuda")
|
| 937 |
+
torch.manual_seed(0)
|
| 938 |
+
args = ModelArgs()
|
| 939 |
+
x = torch.randint(0, args.vocab_size, (2, 128))
|
| 940 |
+
model = Transformer(args)
|
| 941 |
+
print(model(x).size())
|
inference/requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
triton
|
| 3 |
+
transformers
|
| 4 |
+
safetensors
|
| 5 |
+
fast_hadamard_transform
|
| 6 |
+
tilelang==0.1.6.post1
|
inference/tilelang_kernel.py
ADDED
|
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import tilelang
|
| 3 |
+
import tilelang.language as T
|
| 4 |
+
from typing import Tuple, Optional
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
tilelang.set_log_level("WARNING")
|
| 8 |
+
|
| 9 |
+
pass_configs = {
|
| 10 |
+
tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
|
| 11 |
+
tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
|
| 12 |
+
tilelang.PassConfigKey.TL_DISABLE_FAST_MATH: True,
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
FP8 = "float8_e4m3"
|
| 16 |
+
BF16 = "bfloat16"
|
| 17 |
+
FP32 = "float32"
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def fast_log2_ceil(x):
|
| 21 |
+
bits_x = T.reinterpret("uint32", x)
|
| 22 |
+
exp_x = (bits_x >> 23) & 0xFF
|
| 23 |
+
man_bits = bits_x & ((1 << 23) - 1)
|
| 24 |
+
return T.Cast("int32", exp_x - 127 + T.if_then_else(man_bits != 0, 1, 0))
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def fast_pow2(x):
|
| 28 |
+
bits_x = (x + 127) << 23
|
| 29 |
+
return T.reinterpret("float32", bits_x)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def fast_round_scale(amax, fp8_max_inv):
|
| 33 |
+
return fast_pow2(fast_log2_ceil(amax * fp8_max_inv))
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@tilelang.jit(pass_configs=pass_configs)
|
| 37 |
+
def act_quant_kernel(
|
| 38 |
+
N, in_dtype=BF16, out_dtype=FP8, scale_dtype=FP32, round_scale=False
|
| 39 |
+
):
|
| 40 |
+
M = T.symbolic("M")
|
| 41 |
+
fp8_min = -448.0
|
| 42 |
+
fp8_max = 448.0
|
| 43 |
+
fp8_max_inv = 1 / fp8_max
|
| 44 |
+
num_stages = 0 if round_scale else 2
|
| 45 |
+
blk_m = 32
|
| 46 |
+
group_size = 128
|
| 47 |
+
|
| 48 |
+
@T.prim_func
|
| 49 |
+
def act_quant_kernel_(
|
| 50 |
+
X: T.Tensor[(M, N), in_dtype],
|
| 51 |
+
Y: T.Tensor[(M, N), out_dtype],
|
| 52 |
+
S: T.Tensor[(M, T.ceildiv(N, group_size)), scale_dtype],
|
| 53 |
+
):
|
| 54 |
+
with T.Kernel(T.ceildiv(M, blk_m), T.ceildiv(N, group_size), threads=128) as (
|
| 55 |
+
pid_m,
|
| 56 |
+
pid_n,
|
| 57 |
+
):
|
| 58 |
+
x_shared = T.alloc_shared((blk_m, group_size), in_dtype)
|
| 59 |
+
x_local = T.alloc_fragment((blk_m, group_size), in_dtype)
|
| 60 |
+
amax_local = T.alloc_fragment((blk_m,), scale_dtype)
|
| 61 |
+
s_local = T.alloc_fragment((blk_m,), scale_dtype)
|
| 62 |
+
y_local = T.alloc_fragment((blk_m, group_size), out_dtype)
|
| 63 |
+
y_shared = T.alloc_shared((blk_m, group_size), out_dtype)
|
| 64 |
+
|
| 65 |
+
for _ in T.Pipelined(1, num_stages=num_stages):
|
| 66 |
+
T.copy(X[pid_m * blk_m, pid_n * group_size], x_shared)
|
| 67 |
+
T.copy(x_shared, x_local)
|
| 68 |
+
T.reduce_absmax(x_local, amax_local, dim=1)
|
| 69 |
+
for i in T.Parallel(blk_m):
|
| 70 |
+
amax_local[i] = T.max(amax_local[i], 1e-4)
|
| 71 |
+
if round_scale:
|
| 72 |
+
s_local[i] = fast_round_scale(amax_local[i], fp8_max_inv)
|
| 73 |
+
else:
|
| 74 |
+
s_local[i] = amax_local[i] * fp8_max_inv
|
| 75 |
+
for i, j in T.Parallel(blk_m, group_size):
|
| 76 |
+
y_local[i, j] = T.clamp(
|
| 77 |
+
x_local[i, j] / s_local[i], fp8_min, fp8_max
|
| 78 |
+
)
|
| 79 |
+
for i in T.Parallel(blk_m):
|
| 80 |
+
S[pid_m * blk_m + i, pid_n] = s_local[i]
|
| 81 |
+
T.copy(y_local, y_shared)
|
| 82 |
+
T.copy(y_shared, Y[pid_m * blk_m, pid_n * group_size])
|
| 83 |
+
|
| 84 |
+
return act_quant_kernel_
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def act_quant(
|
| 88 |
+
x: torch.Tensor, block_size: int = 128, scale_fmt: Optional[str] = None
|
| 89 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 90 |
+
"""
|
| 91 |
+
Quantizes the input tensor `x` using block-wise quantization.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
|
| 95 |
+
block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
|
| 96 |
+
scale_fmt (Optional[str], optional): The format of the scale. Default is None.
|
| 97 |
+
Returns:
|
| 98 |
+
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
|
| 99 |
+
- The quantized tensor with dtype `torch.float8_e4m3fn`.
|
| 100 |
+
- A tensor of scaling factors with dtype `torch.float32`.
|
| 101 |
+
"""
|
| 102 |
+
assert x.is_contiguous(), "Input tensor must be contiguous"
|
| 103 |
+
assert x.size(-1) % block_size == 0, (
|
| 104 |
+
f"Last dimension size must be divisible by block_size (block_size={block_size})"
|
| 105 |
+
)
|
| 106 |
+
N = x.size(-1)
|
| 107 |
+
y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
|
| 108 |
+
s = x.new_empty(*x.size()[:-1], N // block_size, dtype=torch.float32)
|
| 109 |
+
kernel = act_quant_kernel(N, round_scale=scale_fmt is not None)
|
| 110 |
+
kernel(x.view(-1, N), y.view(-1, N), s.view(-1, N // block_size))
|
| 111 |
+
return y, s
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
@tilelang.jit(pass_configs=pass_configs)
|
| 115 |
+
def fp8_gemm_kernel(N, K, out_dtype=BF16, accum_dtype="float32"):
|
| 116 |
+
assert out_dtype in [BF16, "float32"]
|
| 117 |
+
|
| 118 |
+
M = T.symbolic("M")
|
| 119 |
+
group_size = 128
|
| 120 |
+
block_M = 32
|
| 121 |
+
block_N = 128
|
| 122 |
+
block_K = 128
|
| 123 |
+
|
| 124 |
+
@T.prim_func
|
| 125 |
+
def fp8_gemm_kernel_(
|
| 126 |
+
A: T.Tensor[(M, K), FP8],
|
| 127 |
+
B: T.Tensor[(N, K), FP8],
|
| 128 |
+
C: T.Tensor[(M, N), out_dtype],
|
| 129 |
+
scales_a: T.Tensor[(M, T.ceildiv(K, group_size)), FP32],
|
| 130 |
+
scales_b: T.Tensor[(T.ceildiv(N, group_size), T.ceildiv(K, group_size)), FP32],
|
| 131 |
+
):
|
| 132 |
+
with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (
|
| 133 |
+
bx,
|
| 134 |
+
by,
|
| 135 |
+
):
|
| 136 |
+
A_shared = T.alloc_shared((block_M, block_K), FP8)
|
| 137 |
+
B_shared = T.alloc_shared((block_N, block_K), FP8)
|
| 138 |
+
C_shared = T.alloc_shared((block_M, block_N), out_dtype)
|
| 139 |
+
Scale_C_shared = T.alloc_shared((block_M), FP32)
|
| 140 |
+
C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
|
| 141 |
+
C_local_accum = T.alloc_fragment((block_M, block_N), accum_dtype)
|
| 142 |
+
|
| 143 |
+
# Improve L2 Cache
|
| 144 |
+
T.use_swizzle(panel_size=10)
|
| 145 |
+
|
| 146 |
+
T.clear(C_local)
|
| 147 |
+
T.clear(C_local_accum)
|
| 148 |
+
K_iters = T.ceildiv(K, block_K)
|
| 149 |
+
for k in T.Pipelined(K_iters, num_stages=4):
|
| 150 |
+
# Load A into shared memory
|
| 151 |
+
T.copy(A[by * block_M, k * block_K], A_shared)
|
| 152 |
+
# Load B into shared memory
|
| 153 |
+
T.copy(B[bx * block_N, k * block_K], B_shared)
|
| 154 |
+
# Load scale into shared memory
|
| 155 |
+
Scale_B = scales_b[bx * block_N // group_size, k]
|
| 156 |
+
for i in T.Parallel(block_M):
|
| 157 |
+
Scale_C_shared[i] = scales_a[by * block_M + i, k] * Scale_B
|
| 158 |
+
|
| 159 |
+
T.gemm(A_shared, B_shared, C_local, transpose_B=True)
|
| 160 |
+
# Promote to enable 2xAcc
|
| 161 |
+
for i, j in T.Parallel(block_M, block_N):
|
| 162 |
+
C_local_accum[i, j] += C_local[i, j] * Scale_C_shared[i]
|
| 163 |
+
T.clear(C_local)
|
| 164 |
+
# TMA store
|
| 165 |
+
T.copy(C_local_accum, C_shared)
|
| 166 |
+
T.copy(C_shared, C[by * block_M, bx * block_N])
|
| 167 |
+
|
| 168 |
+
return fp8_gemm_kernel_
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def fp8_gemm(
|
| 172 |
+
a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor
|
| 173 |
+
) -> torch.Tensor:
|
| 174 |
+
"""
|
| 175 |
+
Perform a matrix multiplication using FP8 precision.
|
| 176 |
+
|
| 177 |
+
Args:
|
| 178 |
+
a (torch.Tensor): The first input matrix, must be contiguous.
|
| 179 |
+
a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous.
|
| 180 |
+
b (torch.Tensor): The second input matrix, must be contiguous.
|
| 181 |
+
b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous.
|
| 182 |
+
|
| 183 |
+
Returns:
|
| 184 |
+
torch.Tensor: The result of the matrix multiplication.
|
| 185 |
+
"""
|
| 186 |
+
assert a.is_contiguous() and b.is_contiguous(), "Input tensors must be contiguous"
|
| 187 |
+
assert a_s.is_contiguous() and b_s.is_contiguous(), (
|
| 188 |
+
"Scaling factor tensors must be contiguous"
|
| 189 |
+
)
|
| 190 |
+
K = a.size(-1)
|
| 191 |
+
M = a.numel() // K
|
| 192 |
+
N = b.size(0)
|
| 193 |
+
c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
|
| 194 |
+
kernel = fp8_gemm_kernel(N, K)
|
| 195 |
+
kernel(a.view(M, K), b, c.view(M, N), a_s.view(M, -1), b_s)
|
| 196 |
+
return c
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
@tilelang.jit(out_idx=[4], pass_configs=pass_configs)
|
| 200 |
+
def fp8_index_kernel(h: int, d: int):
|
| 201 |
+
b = T.symbolic("b")
|
| 202 |
+
m = T.symbolic("m")
|
| 203 |
+
n = T.symbolic("n")
|
| 204 |
+
|
| 205 |
+
blk_n1 = 512
|
| 206 |
+
blk_n2 = 128
|
| 207 |
+
|
| 208 |
+
@T.prim_func
|
| 209 |
+
def fp8_index_kernel_(
|
| 210 |
+
q: T.Tensor[(b, m, h, d), FP8],
|
| 211 |
+
q_s: T.Tensor[(b, m, h), FP32],
|
| 212 |
+
k: T.Tensor[(b, n, d), FP8],
|
| 213 |
+
k_s: T.Tensor[(b, n), FP32],
|
| 214 |
+
o: T.Tensor[(b, m, n), FP32],
|
| 215 |
+
) -> None:
|
| 216 |
+
with T.Kernel(b, m, T.ceildiv(n, blk_n1)) as (i_b, i_m, i1_n):
|
| 217 |
+
q_smem = T.alloc_shared((h, d), FP8)
|
| 218 |
+
T.copy(q[i_b, i_m, 0, 0], q_smem)
|
| 219 |
+
|
| 220 |
+
q_s_frag = T.alloc_fragment(h, FP32)
|
| 221 |
+
T.copy(q_s[i_b, i_m, 0], q_s_frag)
|
| 222 |
+
|
| 223 |
+
for i2_n in T.Pipelined(blk_n1 // blk_n2, num_stages=2):
|
| 224 |
+
k_smem = T.alloc_shared((blk_n2, d), FP8)
|
| 225 |
+
T.copy(k[i_b, i1_n * blk_n1 + i2_n * blk_n2, 0], k_smem)
|
| 226 |
+
|
| 227 |
+
k_s_frag = T.alloc_fragment(blk_n2, FP32)
|
| 228 |
+
T.copy(k_s[i_b, i1_n * blk_n1 + i2_n * blk_n2], k_s_frag)
|
| 229 |
+
|
| 230 |
+
logits = T.alloc_fragment((blk_n2, h), FP32)
|
| 231 |
+
T.gemm(
|
| 232 |
+
k_smem,
|
| 233 |
+
q_smem,
|
| 234 |
+
logits,
|
| 235 |
+
transpose_A=False,
|
| 236 |
+
transpose_B=True,
|
| 237 |
+
clear_accum=True,
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
for i_h, i3_n in T.Parallel(h, blk_n2):
|
| 241 |
+
logits[i3_n, i_h] = T.max(logits[i3_n, i_h], 0) * q_s_frag[i_h]
|
| 242 |
+
|
| 243 |
+
logits_sum = T.alloc_fragment(blk_n2, FP32)
|
| 244 |
+
T.reduce_sum(logits, logits_sum, dim=1)
|
| 245 |
+
|
| 246 |
+
for i3_n in T.Parallel(blk_n2):
|
| 247 |
+
logits_sum[i3_n] *= k_s_frag[i3_n]
|
| 248 |
+
|
| 249 |
+
T.copy(logits_sum, o[i_b, i_m, i1_n * blk_n1 + i2_n * blk_n2])
|
| 250 |
+
|
| 251 |
+
return fp8_index_kernel_
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def fp8_index(
|
| 255 |
+
q: torch.Tensor,
|
| 256 |
+
q_s: torch.Tensor,
|
| 257 |
+
k: torch.Tensor,
|
| 258 |
+
k_s: torch.Tensor,
|
| 259 |
+
) -> torch.Tensor:
|
| 260 |
+
"""
|
| 261 |
+
Perform index score using FP8 precision.
|
| 262 |
+
|
| 263 |
+
Args:
|
| 264 |
+
q (torch.Tensor): The Q tensor, must be contiguous.
|
| 265 |
+
q_s (torch.Tensor): The scaling factor for Q (float), must be contiguous.
|
| 266 |
+
k (torch.Tensor): The K tensor, must be contiguous.
|
| 267 |
+
k_s (torch.Tensor): The scaling factor for K (e8m0 here), must be contiguous.
|
| 268 |
+
|
| 269 |
+
fp8 q @ fp8 k -> fp32 logits
|
| 270 |
+
relu(fp32 logits) * q_s (weights) -> fp32 logits
|
| 271 |
+
fp32 logits -> fp32 logits_sum
|
| 272 |
+
fp32 logits_sum * k_s (e8m0) -> fp32 index_score
|
| 273 |
+
"""
|
| 274 |
+
return fp8_index_kernel(q.shape[2], q.shape[3])(q, q_s, k, k_s)
|