Unsloth Model Card
Browse files
README.md
CHANGED
|
@@ -1,155 +1,21 @@
|
|
| 1 |
---
|
| 2 |
-
base_model: unsloth/
|
| 3 |
tags:
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
license: apache-2.0
|
| 9 |
language:
|
| 10 |
-
|
| 11 |
-
pipeline_tag: image-text-to-text
|
| 12 |
-
widget:
|
| 13 |
-
- src: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/image_captioning/sample_image.png"
|
| 14 |
-
text: "What is this image about?"
|
| 15 |
-
example_title: "Sample Image Input"
|
| 16 |
---
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
The model processes both an image (or an image placeholder) and a text prompt.
|
| 24 |
|
| 25 |
-
|
| 26 |
-
It outputs a textual response based on the input prompt and any visual cues. You can ask it to provide detailed reasoning if desired.
|
| 27 |
-
|
| 28 |
-
- **Optimized for Efficiency:**
|
| 29 |
-
The model is loaded in 4-bit precision, making it more memory-efficient without significantly compromising performance.
|
| 30 |
-
|
| 31 |
-
---
|
| 32 |
-
|
| 33 |
-
## What the Model Does
|
| 34 |
-
|
| 35 |
-
1. **Image + Text Understanding:**
|
| 36 |
-
It takes an image along with a text instruction. In our code, we often use a dummy image as a placeholder.
|
| 37 |
-
|
| 38 |
-
2. **Instruction Following:**
|
| 39 |
-
The model is fine-tuned to follow instructions. For example, you can ask it to describe the image, provide step-by-step reasoning, or answer specific questions about the image.
|
| 40 |
-
|
| 41 |
-
3. **Efficient Inference:**
|
| 42 |
-
With 4-bit quantization, the model uses less GPU memory, making it suitable for environments with limited VRAM.
|
| 43 |
-
|
| 44 |
-
4. **Flexible Prompting:**
|
| 45 |
-
The final output depends on your prompt. Ask for step-by-step reasoning, concise answers, or detailed descriptions based on your needs.
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
instructions: >
|
| 50 |
-
This YAML file contains metadata, instructions, code, and explanation
|
| 51 |
-
for using a custom pipeline with a finetuned vision-language model.
|
| 52 |
-
|
| 53 |
-
**Setup Steps**
|
| 54 |
-
1. Install dependencies with: `pip install transformers Pillow`.
|
| 55 |
-
2. Load your model and tokenizer via Unsloth.
|
| 56 |
-
3. Place your dummy image (e.g. "Image_Editor.png") in the same folder.
|
| 57 |
-
4. Run the code in the `code` section to create and test the custom pipeline.
|
| 58 |
-
|
| 59 |
-
code: |
|
| 60 |
-
```python
|
| 61 |
-
from PIL import Image
|
| 62 |
-
from transformers.pipelines import Pipeline
|
| 63 |
-
|
| 64 |
-
# Open your dummy image (ensure "Image_Editor.png" is in your working directory)
|
| 65 |
-
dummy_image = Image.open("Image_Editor.png")
|
| 66 |
-
|
| 67 |
-
# Make sure your model and tokenizer are already loaded.
|
| 68 |
-
# For example:
|
| 69 |
-
# from unsloth import FastVisionModel, is_bf16_supported
|
| 70 |
-
# model, tokenizer = FastVisionModel.from_pretrained(
|
| 71 |
-
# "unsloth/Llama-3.2-11B-Vision-Instruct",
|
| 72 |
-
# load_in_4bit=True,
|
| 73 |
-
# use_gradient_checkpointing="unsloth",
|
| 74 |
-
# )
|
| 75 |
-
|
| 76 |
-
# --- Monkey-patch the tokenizer if it lacks pad_token_id ---
|
| 77 |
-
if not hasattr(tokenizer, "pad_token_id"):
|
| 78 |
-
tokenizer.pad_token_id = tokenizer.eos_token_id if hasattr(tokenizer, "eos_token_id") else 0
|
| 79 |
-
|
| 80 |
-
class CustomImageTextToTextPipeline(Pipeline):
|
| 81 |
-
"""
|
| 82 |
-
A custom pipeline that accepts inputs as a list of dictionaries with "role" and "content".
|
| 83 |
-
It constructs a prompt that includes an image placeholder (using dummy_image) and tokenizes
|
| 84 |
-
the prompt along with the image.
|
| 85 |
-
"""
|
| 86 |
-
def __init__(self, model, tokenizer, dummy_image, **kwargs):
|
| 87 |
-
super().__init__(model=model, tokenizer=tokenizer, **kwargs)
|
| 88 |
-
self.dummy_image = dummy_image
|
| 89 |
-
# Determine device from the model parameters.
|
| 90 |
-
self.device = next(model.parameters()).device
|
| 91 |
-
|
| 92 |
-
def _sanitize_parameters(self, **kwargs):
|
| 93 |
-
# Required to instantiate the pipeline.
|
| 94 |
-
return {}, kwargs, {}
|
| 95 |
-
|
| 96 |
-
def preprocess(self, inputs, **kwargs):
|
| 97 |
-
"""
|
| 98 |
-
Expects inputs as a list of dicts with keys "role" and "content".
|
| 99 |
-
Constructs a chat prompt with an image placeholder and tokenizes it.
|
| 100 |
-
"""
|
| 101 |
-
if isinstance(inputs, list):
|
| 102 |
-
message = inputs[0]
|
| 103 |
-
elif isinstance(inputs, dict):
|
| 104 |
-
message = inputs
|
| 105 |
-
else:
|
| 106 |
-
raise ValueError("Input must be a dict or a list of dicts.")
|
| 107 |
-
|
| 108 |
-
text = message.get("content", "")
|
| 109 |
-
# Create a chat prompt using your expected format.
|
| 110 |
-
messages = [{
|
| 111 |
-
"role": message.get("role", "user"),
|
| 112 |
-
"content": [
|
| 113 |
-
{"type": "image"}, # Image placeholder
|
| 114 |
-
{"type": "text", "text": text} # Your input text
|
| 115 |
-
]
|
| 116 |
-
}]
|
| 117 |
-
# Use the tokenizer's chat template method to construct the final prompt.
|
| 118 |
-
input_text = self.tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
| 119 |
-
# Tokenize the prompt and dummy image.
|
| 120 |
-
model_inputs = self.tokenizer(
|
| 121 |
-
self.dummy_image,
|
| 122 |
-
input_text,
|
| 123 |
-
add_special_tokens=False,
|
| 124 |
-
return_tensors="pt"
|
| 125 |
-
).to(self.device)
|
| 126 |
-
return model_inputs
|
| 127 |
-
|
| 128 |
-
def _forward(self, model_inputs):
|
| 129 |
-
# Generate the model output.
|
| 130 |
-
return self.model.generate(
|
| 131 |
-
**model_inputs,
|
| 132 |
-
max_new_tokens=128,
|
| 133 |
-
use_cache=True,
|
| 134 |
-
temperature=1.5,
|
| 135 |
-
min_p=0.1,
|
| 136 |
-
)
|
| 137 |
-
|
| 138 |
-
def postprocess(self, model_outputs, **kwargs):
|
| 139 |
-
# Decode the generated tokens to human-readable text.
|
| 140 |
-
return self.tokenizer.decode(model_outputs[0], skip_special_tokens=True)
|
| 141 |
-
|
| 142 |
-
# Create an instance of the custom pipeline (do not specify a device if using Accelerate).
|
| 143 |
-
custom_pipe = CustomImageTextToTextPipeline(
|
| 144 |
-
model=model,
|
| 145 |
-
tokenizer=tokenizer,
|
| 146 |
-
dummy_image=dummy_image
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
# Test the pipeline using your input format.
|
| 150 |
-
messages = [{
|
| 151 |
-
"role": "user",
|
| 152 |
-
"content": "what is this image look like? Please explain your reasoning step-by-step before giving your answer."
|
| 153 |
-
}]
|
| 154 |
-
result = custom_pipe(messages)
|
| 155 |
-
print(result)
|
|
|
|
| 1 |
---
|
| 2 |
+
base_model: unsloth/Llama-3.2-11B-Vision-Instruct-unsloth-bnb-4bit
|
| 3 |
tags:
|
| 4 |
+
- text-generation-inference
|
| 5 |
+
- transformers
|
| 6 |
+
- unsloth
|
| 7 |
+
- mllama
|
| 8 |
license: apache-2.0
|
| 9 |
language:
|
| 10 |
+
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# Uploaded finetuned model
|
| 14 |
|
| 15 |
+
- **Developed by:** desiree
|
| 16 |
+
- **License:** apache-2.0
|
| 17 |
+
- **Finetuned from model :** unsloth/Llama-3.2-11B-Vision-Instruct-unsloth-bnb-4bit
|
| 18 |
|
| 19 |
+
This mllama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
|
|
|
| 20 |
|
| 21 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|