File size: 6,574 Bytes
da684ff 7621756 7273b98 da684ff e204171 da684ff 86f9196 7273b98 da684ff 86f9196 da684ff 86f9196 da684ff 86f9196 da684ff 86f9196 da684ff 86f9196 da684ff 48da838 da684ff 48da838 da684ff 48da838 da684ff e204171 da684ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
---
license: cc-by-4.0
base_model: StanfordAIMI/CheXagent-2-3b
tags:
- medical
- radiology
- chest-x-ray
- multimodal
- report-generation
- structured-reporting
- contextualized
- temporal-reasoning
- findings
- lora
- medical-imaging
- clinical-nlp
language:
- en
pipeline_tag: image-text-to-text
library_name: transformers
datasets:
- erjui/csrrg_ift_dataset
---
# CheXagent-2-3b: Contextualized Structured Radiology Report Generation (Findings)
This model is a fine-tuned version of [StanfordAIMI/CheXagent-2-3b](https://huggingface.co/StanfordAIMI/CheXagent-2-3b) for generating the **FINDINGS** section of contextualized structured chest X-ray radiology reports.
It was trained using LoRA (Low-Rank Adaptation) on the [csrrg_ift_dataset](https://huggingface.co/datasets/erjui/csrrg_ift_dataset) containing instruction-following examples from MIMIC-CXR and CheXpert+ datasets.
## Model Description
This model performs **Contextualized Structured Radiology Report Generation (CSRRG)** for chest X-rays, generating detailed findings sections with rich clinical context including patient history, imaging technique, comparison to prior studies, and temporal reasoning.
**Key characteristics:**
- Generates the **FINDINGS** section of radiology reports
- Incorporates **clinical history/indication**, **technique**, and **comparison** to prior studies
- Performs temporal reasoning across multiple examinations
- Produces structured, clinically relevant observations with contextual awareness
- Fine-tuned with LoRA for parameter-efficient adaptation
## Intended Use
### Primary Use Cases
- Research on contextualized radiology report generation
- Development of temporal reasoning systems for medical imaging
- Clinical decision support with longitudinal patient data
- Medical AI and multimodal model research
- Educational tools for radiology training
### Intended Users
- Medical AI researchers
- Healthcare technology developers
- Clinical informatics specialists
- Radiology departments (research use only)
### Out-of-Scope Use
- **NOT intended for clinical diagnosis without physician review**
- Should not replace human radiologists in clinical practice
- Requires validation before any clinical deployment
## Training Details
### Training Data
- **Dataset**: [csrrg_ift_dataset](https://huggingface.co/datasets/erjui/csrrg_ift_dataset) (csrrg_ift_dataset_findings subset)
- **Training samples**: ~181,874 instruction-following examples
- **Data sources**: MIMIC-CXR and CheXpert+ chest X-ray datasets
- **Task format**: Instruction fine-tuning with rich clinical context
- **Context includes**: Clinical history/indication, imaging technique, comparison to prior studies, current and prior images
### Training Procedure
**Fine-tuning method**: LoRA (Low-Rank Adaptation)
**LoRA Configuration:**
- Rank (r): 32
- Alpha: 64
- Dropout: 0.1
- Target modules: `q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj`
**Training hyperparameters:**
- Learning rate: 2e-4
- Batch size: 4 per device
- Gradient accumulation steps: 32 (effective batch size: 128)
- Epochs: 1
- Optimizer: AdamW
- Learning rate scheduler: Cosine with 3% warmup
- Precision: bfloat16
- Attention implementation: Flash Attention 2
- Max sequence length: 2048
- Max images per sample: 2
**Hardware:**
- GPU: NVIDIA H100
- Training framework: HuggingFace Transformers + PEFT
## Usage
### Loading the Model
```python
from transformers import AutoProcessor, AutoModelForVision2Seq
from PIL import Image
import torch
# Load model and processor
model_name = "erjui/CheXagent-2-3b-csrrg-findings"
model = AutoModelForVision2Seq.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map="auto"
)
processor = AutoProcessor.from_pretrained("StanfordAIMI/CheXagent-2-3b", trust_remote_code=True)
# Load chest X-ray images (current and prior studies)
# CSRRG models support multiple images for temporal comparison (max_images_per_sample: 2)
current_image = Image.open("current_xray.jpg")
prior_image = Image.open("prior_xray.jpg")
# Prepare input with clinical context
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are an expert radiologist."}]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": """Analyze the chest X-ray images and write the FINDINGS section of a radiology report. Use standard medical terminology and organize findings by anatomical regions. Consider the available clinical contexts when formulating your findings.
=== CLINICAL HISTORY/INDICATION ===
Male patient status post acetabular surgery with concern for pleural effusion.
=== TECHNIQUE ===
Portable semi-erect single frontal chest radiograph.
=== CURRENT IMAGES ==="""
},
{"type": "image"}, # Current image
{"type": "image"} # Prior image (supports multiple images for temporal comparison)
]
}
]
# Process and generate
inputs = processor(images=[current_image, prior_image], text=messages, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
generated_text = processor.decode(outputs[0], skip_special_tokens=True)
print(generated_text)
```
### Expected Output Format
```
FINDINGS:
Lungs and Airways:
- No pleural effusion or pneumothorax detected
- Bibasilar atelectasis present
Cardiovascular:
- Mild left ventricular enlargement
Musculoskeletal and Chest Wall:
- Bilateral rib fractures noted
```
## Citation
If you use this model, please cite:
```bibtex
@article{kang2025automated,
title={Automated Structured Radiology Report Generation with Rich Clinical Context},
author={Kang, Seongjae and Lee, Dong Bok and Jung, Juho and Kim, Dongseop and Kim, Won Hwa and Joo, Sunghoon},
journal={arXiv preprint arXiv:2510.00428},
year={2025}
}
```
Also cite the base model:
```bibtex
@article{chen2024chexagent,
title={Chexagent: Towards a foundation model for chest x-ray interpretation},
author={Chen, Zhihong and Varma, Maya and Delbrouck, Jean-Benoit and Paschali, Magdalini and Blankemeier, Louis and Van Veen, Dave and Valanarasu, Jeya Maria Jose and Youssef, Alaa and Cohen, Joseph Paul and Reis, Eduardo Pontes and others},
journal={arXiv preprint arXiv:2401.12208},
year={2024}
}
```
## Model Card Authors
Seongjae Kang (erjui)
## Model Card Contact
For questions or issues, please open an issue on the [model repository](https://huggingface.co/erjui/CheXagent-2-3b-csrrg-findings/discussions).
|