--- license: apache-2.0 library_name: mlx tags: - language - granite-4.0 - mlx base_model: - ethicalabs/granite-4.0-h-1b-MLX - ethicalabs/kurtis-e1-granite-4.0-h-1b-adapter-MLX pipeline_tag: text-generation datasets: - ethicalabs/Kurtis-E1-SFT - ethicalabs/kurtis-v2-sft-mix-tiny base_model_relation: merge --- # ethicalabs/kurtis-e1-granite-4.0-h-1b-MLX This model [ethicalabs/kurtis-e1-granite-4.0-h-1b-MLX](https://huggingface.co/ethicalabs/kurtis-e1-granite-4.0-h-1b-MLX) was converted to MLX format from [ethicalabs/granite-4.0-h-1b-MLX](https://huggingface.co/ethicalabs/granite-4.0-h-1b-MLX) using mlx-lm version **0.28.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("ethicalabs/kurtis-e1-granite-4.0-h-1b-MLX") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```