Create edm_euler_scheduler.py
Browse files- scheduler/edm_euler_scheduler.py +352 -0
scheduler/edm_euler_scheduler.py
ADDED
|
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Optional, Tuple, Union
|
| 5 |
+
import torch
|
| 6 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 7 |
+
from diffusers.utils import BaseOutput
|
| 8 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 9 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
|
| 10 |
+
|
| 11 |
+
class FixedEDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
| 12 |
+
"""
|
| 13 |
+
Implements the Euler scheduler in EDM formulation as presented in Karras et al. 2022 [1].
|
| 14 |
+
|
| 15 |
+
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
|
| 16 |
+
https://arxiv.org/abs/2206.00364
|
| 17 |
+
|
| 18 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
| 19 |
+
methods the library implements for all schedulers such as loading and saving.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
sigma_min (`float`, *optional*, defaults to 0.002):
|
| 23 |
+
Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable
|
| 24 |
+
range is [0, 10].
|
| 25 |
+
sigma_max (`float`, *optional*, defaults to 80.0):
|
| 26 |
+
Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable
|
| 27 |
+
range is [0.2, 80.0].
|
| 28 |
+
sigma_data (`float`, *optional*, defaults to 0.5):
|
| 29 |
+
The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].
|
| 30 |
+
num_train_timesteps (`int`, defaults to 1000):
|
| 31 |
+
The number of diffusion steps to train the model.
|
| 32 |
+
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
| 33 |
+
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
| 34 |
+
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
| 35 |
+
Video](https://imagen.research.google/video/paper.pdf) paper).
|
| 36 |
+
rho (`float`, *optional*, defaults to 7.0):
|
| 37 |
+
The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1].
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
_compatibles = []
|
| 41 |
+
order = 1
|
| 42 |
+
|
| 43 |
+
@register_to_config
|
| 44 |
+
def __init__(
|
| 45 |
+
self,
|
| 46 |
+
sigma_min: float = 0.002,
|
| 47 |
+
sigma_max: float = 80.0,
|
| 48 |
+
sigma_data: float = 0.5,
|
| 49 |
+
num_train_timesteps: int = 1000,
|
| 50 |
+
prediction_type: str = "epsilon",
|
| 51 |
+
rho: float = 7.0,
|
| 52 |
+
):
|
| 53 |
+
# setable values
|
| 54 |
+
self.num_inference_steps = None
|
| 55 |
+
|
| 56 |
+
ramp = torch.linspace(0, 1, num_train_timesteps)
|
| 57 |
+
sigmas = self._compute_sigmas(ramp)
|
| 58 |
+
self.timesteps = self.precondition_noise(sigmas)
|
| 59 |
+
|
| 60 |
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
| 61 |
+
|
| 62 |
+
self.is_scale_input_called = False
|
| 63 |
+
|
| 64 |
+
self._step_index = None
|
| 65 |
+
self._begin_index = None
|
| 66 |
+
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
| 67 |
+
|
| 68 |
+
@property
|
| 69 |
+
def init_noise_sigma(self):
|
| 70 |
+
# standard deviation of the initial noise distribution
|
| 71 |
+
return (self.config.sigma_max **2 + 1) ** 0.5
|
| 72 |
+
|
| 73 |
+
@property
|
| 74 |
+
def step_index(self):
|
| 75 |
+
"""
|
| 76 |
+
The index counter for current timestep. It will increae 1 after each scheduler step.
|
| 77 |
+
"""
|
| 78 |
+
return self._step_index
|
| 79 |
+
|
| 80 |
+
@property
|
| 81 |
+
def begin_index(self):
|
| 82 |
+
"""
|
| 83 |
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
| 84 |
+
"""
|
| 85 |
+
return self._begin_index
|
| 86 |
+
|
| 87 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
| 88 |
+
def set_begin_index(self, begin_index: int = 0):
|
| 89 |
+
"""
|
| 90 |
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
| 91 |
+
|
| 92 |
+
Args:
|
| 93 |
+
begin_index (`int`):
|
| 94 |
+
The begin index for the scheduler.
|
| 95 |
+
"""
|
| 96 |
+
self._begin_index = begin_index
|
| 97 |
+
|
| 98 |
+
def precondition_inputs(self, sample, sigma):
|
| 99 |
+
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
|
| 100 |
+
scaled_sample = sample * c_in
|
| 101 |
+
return scaled_sample
|
| 102 |
+
|
| 103 |
+
def precondition_noise(self, sigma):
|
| 104 |
+
if not isinstance(sigma, torch.Tensor):
|
| 105 |
+
sigma = torch.tensor([sigma])
|
| 106 |
+
|
| 107 |
+
c_noise = 0.25 * torch.log(sigma)
|
| 108 |
+
|
| 109 |
+
return c_noise
|
| 110 |
+
|
| 111 |
+
def precondition_outputs(self, sample, model_output, sigma):
|
| 112 |
+
sigma_data = self.config.sigma_data
|
| 113 |
+
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
|
| 114 |
+
|
| 115 |
+
if self.config.prediction_type == "epsilon":
|
| 116 |
+
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
| 117 |
+
elif self.config.prediction_type == "v_prediction":
|
| 118 |
+
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
| 119 |
+
else:
|
| 120 |
+
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")
|
| 121 |
+
|
| 122 |
+
denoised = c_skip * sample + c_out * model_output
|
| 123 |
+
|
| 124 |
+
return denoised
|
| 125 |
+
|
| 126 |
+
def scale_model_input(
|
| 127 |
+
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
| 128 |
+
) -> torch.FloatTensor:
|
| 129 |
+
"""
|
| 130 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
| 131 |
+
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
sample (`torch.FloatTensor`):
|
| 135 |
+
The input sample.
|
| 136 |
+
timestep (`int`, *optional*):
|
| 137 |
+
The current timestep in the diffusion chain.
|
| 138 |
+
|
| 139 |
+
Returns:
|
| 140 |
+
`torch.FloatTensor`:
|
| 141 |
+
A scaled input sample.
|
| 142 |
+
"""
|
| 143 |
+
if self.step_index is None:
|
| 144 |
+
self._init_step_index(timestep)
|
| 145 |
+
|
| 146 |
+
sigma = self.sigmas[self.step_index]
|
| 147 |
+
sample = self.precondition_inputs(sample, sigma)
|
| 148 |
+
|
| 149 |
+
self.is_scale_input_called = True
|
| 150 |
+
return sample
|
| 151 |
+
|
| 152 |
+
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
| 153 |
+
"""
|
| 154 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
num_inference_steps (`int`):
|
| 158 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
| 159 |
+
device (`str` or `torch.device`, *optional*):
|
| 160 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 161 |
+
"""
|
| 162 |
+
self.num_inference_steps = num_inference_steps
|
| 163 |
+
|
| 164 |
+
ramp = torch.linspace(0, 1, self.num_inference_steps)
|
| 165 |
+
|
| 166 |
+
# ramp = np.linspace(0, 1, self.num_inference_steps)
|
| 167 |
+
sigmas = self._compute_sigmas(ramp)
|
| 168 |
+
|
| 169 |
+
# sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
|
| 170 |
+
self.timesteps = self.precondition_noise(sigmas)
|
| 171 |
+
|
| 172 |
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
| 173 |
+
self._step_index = None
|
| 174 |
+
self._begin_index = None
|
| 175 |
+
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
| 176 |
+
|
| 177 |
+
# Taken from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
|
| 178 |
+
def _compute_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.FloatTensor:
|
| 179 |
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
| 180 |
+
|
| 181 |
+
sigma_min = sigma_min or self.config.sigma_min
|
| 182 |
+
sigma_max = sigma_max or self.config.sigma_max
|
| 183 |
+
|
| 184 |
+
rho = self.config.rho
|
| 185 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
| 186 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
| 187 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
| 188 |
+
# sigmas = (sigmas * (sigma_max - sigma_min)) / ((sigma_max - sigma_min) - sigmas).clamp(1e-8) # FIXED BY GIULIO
|
| 189 |
+
return sigmas
|
| 190 |
+
|
| 191 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
| 192 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
| 193 |
+
if schedule_timesteps is None:
|
| 194 |
+
schedule_timesteps = self.timesteps
|
| 195 |
+
|
| 196 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
| 197 |
+
|
| 198 |
+
# The sigma index that is taken for the **very** first `step`
|
| 199 |
+
# is always the second index (or the last index if there is only 1)
|
| 200 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
| 201 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
| 202 |
+
pos = 1 if len(indices) > 1 else 0
|
| 203 |
+
|
| 204 |
+
return indices[pos].item()
|
| 205 |
+
|
| 206 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
| 207 |
+
def _init_step_index(self, timestep):
|
| 208 |
+
if self.begin_index is None:
|
| 209 |
+
if isinstance(timestep, torch.Tensor):
|
| 210 |
+
timestep = timestep.to(self.timesteps.device)
|
| 211 |
+
self._step_index = self.index_for_timestep(timestep)
|
| 212 |
+
else:
|
| 213 |
+
self._step_index = self._begin_index
|
| 214 |
+
|
| 215 |
+
def step(
|
| 216 |
+
self,
|
| 217 |
+
model_output: torch.FloatTensor,
|
| 218 |
+
timestep: Union[float, torch.FloatTensor],
|
| 219 |
+
sample: torch.FloatTensor,
|
| 220 |
+
s_churn: float = 0.0,
|
| 221 |
+
s_tmin: float = 0.0,
|
| 222 |
+
s_tmax: float = float("inf"),
|
| 223 |
+
s_noise: float = 1.0,
|
| 224 |
+
generator: Optional[torch.Generator] = None,
|
| 225 |
+
return_dict: bool = True,
|
| 226 |
+
) -> Union[EDMEulerSchedulerOutput, Tuple]:
|
| 227 |
+
"""
|
| 228 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
| 229 |
+
process from the learned model outputs (most often the predicted noise).
|
| 230 |
+
|
| 231 |
+
Args:
|
| 232 |
+
model_output (`torch.FloatTensor`):
|
| 233 |
+
The direct output from learned diffusion model.
|
| 234 |
+
timestep (`float`):
|
| 235 |
+
The current discrete timestep in the diffusion chain.
|
| 236 |
+
sample (`torch.FloatTensor`):
|
| 237 |
+
A current instance of a sample created by the diffusion process.
|
| 238 |
+
s_churn (`float`):
|
| 239 |
+
s_tmin (`float`):
|
| 240 |
+
s_tmax (`float`):
|
| 241 |
+
s_noise (`float`, defaults to 1.0):
|
| 242 |
+
Scaling factor for noise added to the sample.
|
| 243 |
+
generator (`torch.Generator`, *optional*):
|
| 244 |
+
A random number generator.
|
| 245 |
+
return_dict (`bool`):
|
| 246 |
+
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or
|
| 247 |
+
tuple.
|
| 248 |
+
|
| 249 |
+
Returns:
|
| 250 |
+
[`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or `tuple`:
|
| 251 |
+
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] is
|
| 252 |
+
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
| 253 |
+
"""
|
| 254 |
+
|
| 255 |
+
if (
|
| 256 |
+
isinstance(timestep, int)
|
| 257 |
+
or isinstance(timestep, torch.IntTensor)
|
| 258 |
+
or isinstance(timestep, torch.LongTensor)
|
| 259 |
+
):
|
| 260 |
+
raise ValueError(
|
| 261 |
+
(
|
| 262 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
| 263 |
+
" `EDMEulerScheduler.step()` is not supported. Make sure to pass"
|
| 264 |
+
" one of the `scheduler.timesteps` as a timestep."
|
| 265 |
+
),
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
if not self.is_scale_input_called:
|
| 269 |
+
logger.warning(
|
| 270 |
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
| 271 |
+
"See `StableDiffusionPipeline` for a usage example."
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
if self.step_index is None:
|
| 275 |
+
self._init_step_index(timestep)
|
| 276 |
+
|
| 277 |
+
# Upcast to avoid precision issues when computing prev_sample
|
| 278 |
+
sample = sample.to(torch.float32)
|
| 279 |
+
|
| 280 |
+
sigma = self.sigmas[self.step_index]
|
| 281 |
+
|
| 282 |
+
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
|
| 283 |
+
|
| 284 |
+
noise = randn_tensor(
|
| 285 |
+
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
eps = noise * s_noise
|
| 289 |
+
sigma_hat = sigma * (gamma + 1)
|
| 290 |
+
|
| 291 |
+
if gamma > 0:
|
| 292 |
+
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
|
| 293 |
+
|
| 294 |
+
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
| 295 |
+
pred_original_sample = self.precondition_outputs(sample, model_output, sigma_hat)
|
| 296 |
+
|
| 297 |
+
# 2. Convert to an ODE derivative
|
| 298 |
+
derivative = (sample - pred_original_sample) / sigma_hat
|
| 299 |
+
|
| 300 |
+
dt = self.sigmas[self.step_index + 1] - sigma_hat
|
| 301 |
+
|
| 302 |
+
prev_sample = sample + derivative * dt
|
| 303 |
+
|
| 304 |
+
# Cast sample back to model compatible dtype
|
| 305 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
| 306 |
+
|
| 307 |
+
# upon completion increase step index by one
|
| 308 |
+
self._step_index += 1
|
| 309 |
+
|
| 310 |
+
if not return_dict:
|
| 311 |
+
return (prev_sample,)
|
| 312 |
+
|
| 313 |
+
return EDMEulerSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
| 314 |
+
|
| 315 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
| 316 |
+
def add_noise(
|
| 317 |
+
self,
|
| 318 |
+
original_samples: torch.FloatTensor,
|
| 319 |
+
noise: torch.FloatTensor,
|
| 320 |
+
timesteps: torch.FloatTensor,
|
| 321 |
+
) -> torch.FloatTensor:
|
| 322 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
| 323 |
+
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
| 324 |
+
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
| 325 |
+
# mps does not support float64
|
| 326 |
+
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
|
| 327 |
+
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
| 328 |
+
else:
|
| 329 |
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
| 330 |
+
timesteps = timesteps.to(original_samples.device)
|
| 331 |
+
|
| 332 |
+
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
| 333 |
+
if self.begin_index is None:
|
| 334 |
+
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
| 335 |
+
elif self.step_index is not None:
|
| 336 |
+
# add_noise is called after first denoising step (for inpainting)
|
| 337 |
+
step_indices = [self.step_index] * timesteps.shape[0]
|
| 338 |
+
else:
|
| 339 |
+
# add noise is called bevore first denoising step to create inital latent(img2img)
|
| 340 |
+
step_indices = [self.begin_index] * timesteps.shape[0]
|
| 341 |
+
|
| 342 |
+
sigma = sigmas[step_indices].flatten()
|
| 343 |
+
while len(sigma.shape) < len(original_samples.shape):
|
| 344 |
+
sigma = sigma.unsqueeze(-1)
|
| 345 |
+
|
| 346 |
+
mask = ((sigma - self.config.sigma_max).abs() < 1e-3).float() # changed by giulio
|
| 347 |
+
|
| 348 |
+
noisy_samples = (1 - mask) * (original_samples + noise * sigma) + mask * noise # changed by giulio
|
| 349 |
+
return noisy_samples
|
| 350 |
+
|
| 351 |
+
def __len__(self):
|
| 352 |
+
return self.config.num_train_timesteps
|