Commit
·
19523cf
1
Parent(s):
405ac35
Update README.md
Browse files
README.md
CHANGED
|
@@ -10,4 +10,96 @@ XGLM-4.5B is a multilingual autoregressive language model (with 4.5 billion para
|
|
| 10 |
|
| 11 |
## Model card
|
| 12 |
|
| 13 |
-
For intended usage of the model, please refer to the [model card](https://github.com/pytorch/fairseq/blob/main/examples/xglm/model_card.md) released by the XGLM-4.5B development team.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
## Model card
|
| 12 |
|
| 13 |
+
For intended usage of the model, please refer to the [model card](https://github.com/pytorch/fairseq/blob/main/examples/xglm/model_card.md) released by the XGLM-4.5B development team.
|
| 14 |
+
|
| 15 |
+
## Example (COPA)
|
| 16 |
+
The following snippet shows how to evaluate our models (GPT-3 style, zero-shot) on the Choice of Plausible Alternatives (COPA) task, using examples in English, Chinese and Hindi.
|
| 17 |
+
|
| 18 |
+
```python
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
|
| 22 |
+
from transformers import XGLMTokenizer, XGLMForCausalLM
|
| 23 |
+
|
| 24 |
+
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-4.5B")
|
| 25 |
+
model = XGLMForCausalLM.from_pretrained("facebook/xglm-4.5B")
|
| 26 |
+
|
| 27 |
+
data_samples = {
|
| 28 |
+
'en': [
|
| 29 |
+
{
|
| 30 |
+
"premise": "I wanted to conserve energy.",
|
| 31 |
+
"choice1": "I swept the floor in the unoccupied room.",
|
| 32 |
+
"choice2": "I shut off the light in the unoccupied room.",
|
| 33 |
+
"question": "effect",
|
| 34 |
+
"label": "1"
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"premise": "The flame on the candle went out.",
|
| 38 |
+
"choice1": "I blew on the wick.",
|
| 39 |
+
"choice2": "I put a match to the wick.",
|
| 40 |
+
"question": "cause",
|
| 41 |
+
"label": "0"
|
| 42 |
+
}
|
| 43 |
+
],
|
| 44 |
+
'zh': [
|
| 45 |
+
{
|
| 46 |
+
"premise": "我想节约能源。",
|
| 47 |
+
"choice1": "我在空着的房间里扫了地板。",
|
| 48 |
+
"choice2": "我把空房间里的灯关了。",
|
| 49 |
+
"question": "effect",
|
| 50 |
+
"label": "1"
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"premise": "蜡烛上的火焰熄灭了。",
|
| 54 |
+
"choice1": "我吹灭了灯芯。",
|
| 55 |
+
"choice2": "我把一根火柴放在灯芯上。",
|
| 56 |
+
"question": "cause",
|
| 57 |
+
"label": "0"
|
| 58 |
+
}
|
| 59 |
+
],
|
| 60 |
+
'hi': [
|
| 61 |
+
{
|
| 62 |
+
"premise": "M te vle konsève enèji.",
|
| 63 |
+
"choice1": "Mwen te fin baleye chanm lib la.",
|
| 64 |
+
"choice2": "Mwen te femen limyè nan chanm lib la.",
|
| 65 |
+
"question": "effect",
|
| 66 |
+
"label": "1"
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"premise": "Flam bouji a te etenn.",
|
| 70 |
+
"choice1": "Mwen te soufle bouji a.",
|
| 71 |
+
"choice2": "Mwen te limen mèch bouji a.",
|
| 72 |
+
"question": "cause",
|
| 73 |
+
"label": "0"
|
| 74 |
+
}
|
| 75 |
+
]
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
def get_logprobs(prompt):
|
| 79 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 80 |
+
input_ids, output_ids = inputs["input_ids"], inputs["input_ids"][:, 1:]
|
| 81 |
+
outputs = model(**inputs, labels=input_ids)
|
| 82 |
+
logits = outputs.logits
|
| 83 |
+
logprobs = torch.gather(F.log_softmax(logits, dim=2), 2, output_ids.unsqueeze(2))
|
| 84 |
+
return logprobs
|
| 85 |
+
|
| 86 |
+
# Zero-shot evaluation for the Choice of Plausible Alternatives (COPA) task.
|
| 87 |
+
# A return value of 0 indicates that the first alternative is more plausible,
|
| 88 |
+
# while 1 indicates that the second alternative is more plausible.
|
| 89 |
+
def COPA_eval(prompt, alternative1, alternative2):
|
| 90 |
+
lprob1 = get_logprobs(prompt + "\n" + alternative1).sum()
|
| 91 |
+
lprob2 = get_logprobs(prompt + "\n" + alternative2).sum()
|
| 92 |
+
return 0 if lprob1 > lprob2 else 1
|
| 93 |
+
|
| 94 |
+
for lang in data_samples_long:
|
| 95 |
+
for idx, example in enumerate(data_samples_long[lang]):
|
| 96 |
+
predict = COPA_eval(example["premise"], example["choice1"], example["choice2"])
|
| 97 |
+
print(f'{lang}-{idx}', predict, example['label'])
|
| 98 |
+
|
| 99 |
+
# en-0 1 1
|
| 100 |
+
# en-1 0 0
|
| 101 |
+
# zh-0 1 1
|
| 102 |
+
# zh-1 0 0
|
| 103 |
+
# hi-0 1 1
|
| 104 |
+
# hi-1 0 0
|
| 105 |
+
```
|