File size: 7,878 Bytes
96ea080 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
---
license: mit
---
# LEGION-8B-replicate
## Overview
Since the project [LEGION: Learning to Ground and Explain for Synthetic Image Detection](https://arxiv.org/abs/2503.15264) open-sourced its code repository but did not provide pre-trained weights, we replicated the model by referring to the open-source code and the paper, and are now releasing our replicated weights.
> [!NOTE]
> Due to potential discrepancies in the replication process, the released weights may achieve lower scores than officially reported results on certain benchmarks.
### Training Details
We conducted training on 4x A100 40G GPUs.
For the first training stage, the official configuration uses 8 GPUs with a global batch size of 16 (batch size per device = 2). To maintain the same global batch size, we used 4 GPUs with a per-device batch size of 4.
For the second training stage, the official configuration uses 8 GPUs with a global batch size of 512 (batch size per device = 64). We used 4 GPUs with a per-device batch size of 8 and a gradient accumulation step of 16. This results in an effective per-device batch size of 128, maintaining an equivalent global batch size of 512.
### Inference Usage
A simple inference script is provided at [infer.py](./infer.py).
Usage instructions are as follows:
```bash
cp infer.py /path/to/LEGION
python infer.py --model_path /path/to/LEGION-8B-replicate --image_root /path/to/images --save_root /path/to/results
```
### Examples
<table>
<tr>
<td><img src="./examples/image.png" alt="Original Image" style="max-width:100%;"></td>
<td><img src="./examples/image_mask.png" alt="Mask generated by LEGION-8B-replicate" style="max-width:100%;"></td>
</tr>
</table>
Upon examining the image. I have found: A cat sits on a rooftop at sunset, with its right front paw missing and the left front paw appearing deformed. To elaborate, I have found the following artifacts. Cat's right front paw :The cat's right front paw is missing. Cat's left front paw :The cat's left front paw is deformed.
## Performance
> [!NOTE]
> Due to the evaluation and metric-related code not being open-sourced, the test results may be inaccurate.
> The IoU evaluation metric for masks may be affected by mask processing during inference, resulting in lower scores.
### Localization
<table>
<tr>
<th rowspan="2">Method</th>
<th colspan="2">SynthScars</th>
<th colspan="2">LOKI</th>
<th colspan="2">RichHF-18K</th>
</tr>
<tr>
<th>mIoU</th>
<th>F1</th>
<th>mIoU</th>
<th>F1</th>
<th>mIoU</th>
<th>F1</th>
</tr>
<tr>
<td>HiFi-Net</td>
<td>45.65</td>
<td>0.57</td>
<td>39.60</td>
<td>2.41</td>
<td>44.96</td>
<td>0.39</td>
</tr>
<tr>
<td>TruFor</td>
<td>48.60</td>
<td>15.29</td>
<td>46.55</td>
<td>16.70</td>
<td>48.41</td>
<td>18.03</td>
</tr>
<tr>
<td>PAL4VST</td>
<td>56.10</td>
<td>29.21</td>
<td>47.34</td>
<td>11.58</td>
<td>49.88</td>
<td>14.78</td>
</tr>
<tr>
<td>Ferret</td>
<td>27.09</td>
<td>15.24</td>
<td>24.50</td>
<td>18.88</td>
<td>26.52</td>
<td>16.22</td>
</tr>
<tr>
<td>Griffon</td>
<td>27.68</td>
<td>16.67</td>
<td>21.96</td>
<td>20.41</td>
<td>28.13</td>
<td>18.19</td>
</tr>
<tr>
<td>LISA-v1-7B</td>
<td>34.51</td>
<td>18.77</td>
<td>31.10</td>
<td>9.29</td>
<td>35.90</td>
<td>21.94</td>
</tr>
<tr>
<td>InternVL2-8B</td>
<td>41.25</td>
<td>6.39</td>
<td>42.03</td>
<td>10.06</td>
<td>39.90</td>
<td>9.58</td>
</tr>
<tr>
<td>Qwen2-VL-72B</td>
<td>30.20</td>
<td>17.50</td>
<td>26.62</td>
<td>20.99</td>
<td>27.58</td>
<td>19.02</td>
</tr>
<tr style="background-color: #e6ffe6;">
<td>LEGION (Official)</td>
<td>58.13</td>
<td>34.54</td>
<td>48.66</td>
<td>16.71</td>
<td>50.07</td>
<td>17.41</td>
</tr>
<tr style="background-color: #e6ffe6;">
<td>LEGION (Replicate)</td>
<td>23.92</td>
<td>33.47</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</table>
### Explanation
<table>
<tr>
<th rowspan="2">Method</th>
<th rowspan="2">Params</th>
<th colspan="2">SynthScars</th>
<th colspan="2">LOKI</th>
</tr>
<tr>
<th>ROUGE-L ↑</th>
<th>CSS ↑</th>
<th>ROUGE-L ↑</th>
<th>CSS ↑</th>
</tr>
<tr>
<td>Qwen2-VL</td>
<td>72B</td>
<td>25.84</td>
<td>58.15</td>
<td>11.80</td>
<td>37.64</td>
</tr>
<tr>
<td>LLaVA-v1.6</td>
<td>7B</td>
<td>29.61</td>
<td>61.75</td>
<td>16.07</td>
<td>41.07</td>
</tr>
<tr>
<td>InternVL2</td>
<td>8B</td>
<td>25.93</td>
<td>56.89</td>
<td>10.10</td>
<td>39.62</td>
</tr>
<tr>
<td>Deepseek-VL2</td>
<td>27B</td>
<td>25.50</td>
<td>47.77</td>
<td>6.70</td>
<td>28.76</td>
</tr>
<tr>
<td>GPT-4o</td>
<td>-</td>
<td>22.43</td>
<td>53.55</td>
<td>9.61</td>
<td>38.98</td>
</tr>
<tr style="background-color: #e6ffe6;">
<td>LEGION (Official)</td>
<td>8B</td>
<td>39.50</td>
<td>72.60</td>
<td>18.55</td>
<td>45.96</td>
</tr>
<tr style="background-color: #e6ffe6;">
<td>LEGION (Replicate)</td>
<td>8B</td>
<td>50.57</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</table>
### Detection
<table>
<tr>
<th rowspan="2">Method</th>
<th rowspan="2">GANs</th>
<th rowspan="2">Deepfakes</th>
<th colspan="2">Perceptual Loss</th>
<th colspan="2">Low Level Vision</th>
<th rowspan="2">Diffusion</th>
</tr>
<tr>
<th>CRN</th>
<th>IMLE</th>
<th>SITD</th>
<th>SAN</th>
</tr>
<tr>
<td>Co-occurence</td>
<td>75.17</td>
<td>59.14</td>
<td>73.06</td>
<td>87.21</td>
<td>68.98</td>
<td>60.42</td>
<td>85.53</td>
</tr>
<tr>
<td>Freq-spec</td>
<td>75.28</td>
<td>45.18</td>
<td>53.61</td>
<td>50.98</td>
<td>47.46</td>
<td>57.12</td>
<td>69.00</td>
</tr>
<tr>
<td>CNNSpot</td>
<td>85.29</td>
<td>53.47</td>
<td>86.31</td>
<td>86.26</td>
<td>66.67</td>
<td>48.69</td>
<td>58.63</td>
</tr>
<tr>
<td>Patchfor</td>
<td>69.97</td>
<td>75.54</td>
<td>72.33</td>
<td>55.30</td>
<td>75.14</td>
<td>75.28</td>
<td>72.54</td>
</tr>
<tr>
<td>UniFD</td>
<td>95.25</td>
<td>66.60</td>
<td>59.50</td>
<td>72.00</td>
<td>63.00</td>
<td>57.50</td>
<td>82.02</td>
</tr>
<tr>
<td>LDGard</td>
<td>89.17</td>
<td>58.00</td>
<td>50.74</td>
<td>50.78</td>
<td>62.50</td>
<td>50.00</td>
<td>89.79</td>
</tr>
<tr>
<td>FreqNet</td>
<td>94.23</td>
<td>97.40</td>
<td>71.92</td>
<td>67.35</td>
<td>88.92</td>
<td>59.04</td>
<td>83.34</td>
</tr>
<tr>
<td>NPR</td>
<td>94.16</td>
<td>76.89</td>
<td>50.00</td>
<td>50.00</td>
<td>66.94</td>
<td>98.63</td>
<td>94.54</td>
</tr>
<tr style="background-color: #e6ffe6;">
<td>LEGION (Official)</td>
<td>97.01</td>
<td>63.37</td>
<td>90.78</td>
<td>98.93</td>
<td>79.44</td>
<td>57.76</td>
<td>83.10</td>
</tr>
<tr style="background-color: #e6ffe6;">
<td>LEGION (Replicate)</td>
<td>91.48</td>
<td>79.16</td>
<td>84.73</td>
<td>96.71</td>
<td>78.06</td>
<td>53.70</td>
<td>-</td>
</tr>
</table>
## Acknowledgements
Thanks to [Gennadiyev](https://github.com/Gennadiyev) for providing computational resources and moral support, and for helping me complete the reproduction.
Thanks to [draw-your-dream/LEGION](https://github.com/draw-your-dream/LEGION/tree/main) for fixing bugs in the first-stage training.
|