File size: 9,748 Bytes
96ea080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import os
import re

import bleach
import cv2
import jsonlines
import numpy as np
import torch
from loguru import logger
from PIL import Image
from tqdm import tqdm
from transformers import AutoTokenizer, CLIPImageProcessor, PreTrainedTokenizer

from eval.utils import grounding_image_ecoder_preprocess
from model.Legion import LegionForCls
from model.llava import conversation as conversation_lib
from model.llava.mm_utils import tokenizer_image_token
from model.SAM.utils.transforms import ResizeLongestSide
from tools.utils import DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX


def parse_args():
    parser = argparse.ArgumentParser(description="LEGION Inference")
    # model related
    parser.add_argument("--model_path", required=True, help="The directory to your legion ckpt")
    parser.add_argument("--image_size", default=1024, type=int, help="image size")
    parser.add_argument("--model_max_length", default=512, type=int)
    # data related
    parser.add_argument("--image_root", required=True, help="The directory containing images to run inference.")
    parser.add_argument("--save_root", required=True, help="The directory to store the inference result.")
    
    args = parser.parse_args()
    return args


class LEGION:
    """A simple wrapper for LEGION model loading and inference.
    
    Args:
        model_path (str): Path to the model checkpoint.
        image_size (int): Size of the input images.
        model_max_length (int): Maximum length of the model input sequence.
    """

    INSTRUCTION = (
        "Please provide a detailed analysis of artifacts in this photo, considering "
        "physical artifacts (e.g., optical display issues, violations of physical laws, "
        "and spatial/perspective errors), structural artifacts (e.g., deformed objects, asymmetry, or distorted text), "
        "and distortion artifacts (e.g., color/texture distortion, noise/blur, artistic style errors, and material misrepresentation). "
        "Output with interleaved segmentation masks for the corresponding parts of the answer."
    )

    def __init__(self, model_path: str, image_size: int = 1024, model_max_length: int = 512):
        self.model_path = model_path
        self.image_size = image_size
        self.model_max_length = model_max_length

        # load tokenizer
        self.tokenizer: PreTrainedTokenizer = AutoTokenizer.from_pretrained(
            self.model_path,
            cache_dir=None,
            model_max_length=self.model_max_length,
            padding_side="right",
            use_fast=False
        )
        self.tokenizer.pad_token = self.tokenizer.unk_token
        seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
        logger.info("Tokenizer loaded successfully.")

        # load model
        self.model: LegionForCls = LegionForCls.from_pretrained(
            self.model_path, 
            low_cpu_mem_usage=True, 
            seg_token_idx=seg_token_idx,
            torch_dtype=torch.bfloat16
        )
        # update model config
        self.model.config.eos_token_id = self.tokenizer.eos_token_id
        self.model.config.bos_token_id = self.tokenizer.bos_token_id
        self.model.config.pad_token_id = self.tokenizer.pad_token_id
        # init global image encoder (CLIP)
        self.model.get_model().initialize_vision_modules(self.model.get_model().config)
        vision_tower = self.model.get_model().get_vision_tower()
        vision_tower.to(dtype=torch.bfloat16)
        # transfer the model to GPU
        self.model = self.model.bfloat16().cuda()
        vision_tower.to(device="cuda")
        self.model.eval()
        logger.info("Model loaded successfully.")

        # init image processor for global image encoder (CLIP)
        self.image_processor = CLIPImageProcessor.from_pretrained(self.model.config.vision_tower)
        self.transform = ResizeLongestSide(self.image_size)
        logger.info("Image processor initialized successfully.")
    
    @torch.inference_mode()
    def _infer(self, raw_image: np.ndarray):
        """Run inference on a single image.

        Args:
            raw_image (np.ndarray): The input image in numpy array format.

        Returns:
            tuple: A tuple containing the explanation string, predicted masks, phrases, and classification result.
        """
        # clean instructions
        instructions = bleach.clean(LEGION.INSTRUCTION)
        instructions = instructions.replace('&lt;', '<').replace('&gt;', '>')

        # prepare prompt
        conv = conversation_lib.conv_templates["llava_v1"].copy()
        conv.messages = []
        prompt = f"The {DEFAULT_IM_START_TOKEN}{DEFAULT_IMAGE_TOKEN}{DEFAULT_IM_END_TOKEN} provides an overview of the picture.\n" + instructions
        conv.append_message(conv.roles[0], prompt)
        conv.append_message(conv.roles[1], "")
        prompt = conv.get_prompt()

        # preprocess image (CLIP)
        image_np = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB)
        original_size_list = [image_np.shape[:2]]
        image_clip = (self.image_processor.preprocess(image_np, return_tensors="pt")["pixel_values"][0].unsqueeze(0).cuda())
        image_clip = image_clip.bfloat16()

        # preprocess image (Grounding image encoder)
        image = self.transform.apply_image(image_np)
        resize_list = [image.shape[:2]]
        image = (grounding_image_ecoder_preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous()).unsqueeze(0).cuda())
        image = image.bfloat16()

        # prepare inputs for inference
        input_ids = tokenizer_image_token(prompt, self.tokenizer, return_tensors="pt")
        input_ids = input_ids.unsqueeze(0).cuda()

        # generate output
        output_ids, pred_masks = self.model.evaluate(
            image_clip,
            image,
            input_ids,
            resize_list,
            original_size_list,
            max_tokens_new=512, 
            bboxes=None  # No box/region is input in GCG task
        )
        output_ids = output_ids[0][output_ids[0] != IMAGE_TOKEN_INDEX]

        # post-processing
        text_output = self.tokenizer.decode(output_ids, skip_special_tokens=False)
        text_output = text_output.replace("\n", "").replace("  ", " ")
        text_output = text_output.split("ASSISTANT: ")[-1]
        cleaned_str = re.sub(r'<.*?>', '', text_output)
        # remove [SEG] token and unnecessary spaces
        cleaned_str = cleaned_str.replace('[SEG]', '')
        # strip unnecessary spaces
        cleaned_str = ' '.join(cleaned_str.split()).strip("'")
        cleaned_str = cleaned_str.strip()

        # infer detection head
        logits = self.model(global_enc_images=image_clip, inference_cls=True)['logits'].cpu()
        _, pred_cls = torch.max(logits, dim=1)
        pred_cls = int(pred_cls)
        return cleaned_str, pred_masks, pred_cls

    @torch.inference_mode()
    def infer(self, image_path: str):
        """Run inference on a single image.

        Args:
            image_path (str): Path to the input image.

        Returns:
            dict: A dictionary containing the explanation, localization mask path, and detection result.
        """
        raw_image = cv2.imread(image_path)
        explanation, localization, detection = self._infer(raw_image.astype(np.uint8))

        # post-process localization mask
        localization = localization[0].cpu()
        binary_localization = localization > 0
        binary_localization = torch.any(binary_localization, dim=0).int()
        localization = (binary_localization.numpy() * 255).astype(np.uint8)
        localization = Image.fromarray(localization, mode="L")

        # post-process detection
        detection = "real" if detection == 1 else "fake"

        return {
            "explanation": explanation,
            "localization": localization,
            "detection": detection
        }


def main(args):
    # get images
    suffixes = [".jpg", ".jpeg", ".png"]
    image_paths = sorted(os.listdir(args.image_root))
    image_paths = [p for p in image_paths if os.path.splitext(p)[-1].lower() in suffixes]
    logger.info(f"Found {len(image_paths)} images for inference.")

    # init legion
    legion = LEGION(args.model_path, args.image_size, args.model_max_length)

    # check save root
    os.makedirs(args.save_root, exist_ok=True)
    localization_save_dir = os.path.join(args.save_root, "localization")
    os.makedirs(localization_save_dir, exist_ok=True)
    explanation_save_path = os.path.join(args.save_root, "explanations.jsonl")

    # prepare resume
    num_processed_images = 0
    if os.path.exists(explanation_save_path):
        num_processed_images = len(list(jsonlines.open(explanation_save_path)))
        logger.info(f"Resuming from {num_processed_images} processed images.")
    image_paths = image_paths[num_processed_images:]

    # run inference
    with jsonlines.open(explanation_save_path, mode="a", flush=True) as writer:
        for image_path in tqdm(image_paths):
            image_name = os.path.splitext(image_path)[0]
            full_image_path = os.path.join(args.image_root, image_path)
            result = legion.infer(full_image_path)
            # save localization
            this_localization_save_path = os.path.join(localization_save_dir, f"{image_name}_mask.png")
            result["localization"].save(this_localization_save_path)
            result["localization"] = this_localization_save_path
            # add original image path
            result["image_path"] = full_image_path
            # write to jsonl
            writer.write(result)


if __name__ == "__main__":
    args = parse_args()
    main(args)