File size: 9,748 Bytes
96ea080 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import argparse
import os
import re
import bleach
import cv2
import jsonlines
import numpy as np
import torch
from loguru import logger
from PIL import Image
from tqdm import tqdm
from transformers import AutoTokenizer, CLIPImageProcessor, PreTrainedTokenizer
from eval.utils import grounding_image_ecoder_preprocess
from model.Legion import LegionForCls
from model.llava import conversation as conversation_lib
from model.llava.mm_utils import tokenizer_image_token
from model.SAM.utils.transforms import ResizeLongestSide
from tools.utils import DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
def parse_args():
parser = argparse.ArgumentParser(description="LEGION Inference")
# model related
parser.add_argument("--model_path", required=True, help="The directory to your legion ckpt")
parser.add_argument("--image_size", default=1024, type=int, help="image size")
parser.add_argument("--model_max_length", default=512, type=int)
# data related
parser.add_argument("--image_root", required=True, help="The directory containing images to run inference.")
parser.add_argument("--save_root", required=True, help="The directory to store the inference result.")
args = parser.parse_args()
return args
class LEGION:
"""A simple wrapper for LEGION model loading and inference.
Args:
model_path (str): Path to the model checkpoint.
image_size (int): Size of the input images.
model_max_length (int): Maximum length of the model input sequence.
"""
INSTRUCTION = (
"Please provide a detailed analysis of artifacts in this photo, considering "
"physical artifacts (e.g., optical display issues, violations of physical laws, "
"and spatial/perspective errors), structural artifacts (e.g., deformed objects, asymmetry, or distorted text), "
"and distortion artifacts (e.g., color/texture distortion, noise/blur, artistic style errors, and material misrepresentation). "
"Output with interleaved segmentation masks for the corresponding parts of the answer."
)
def __init__(self, model_path: str, image_size: int = 1024, model_max_length: int = 512):
self.model_path = model_path
self.image_size = image_size
self.model_max_length = model_max_length
# load tokenizer
self.tokenizer: PreTrainedTokenizer = AutoTokenizer.from_pretrained(
self.model_path,
cache_dir=None,
model_max_length=self.model_max_length,
padding_side="right",
use_fast=False
)
self.tokenizer.pad_token = self.tokenizer.unk_token
seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
logger.info("Tokenizer loaded successfully.")
# load model
self.model: LegionForCls = LegionForCls.from_pretrained(
self.model_path,
low_cpu_mem_usage=True,
seg_token_idx=seg_token_idx,
torch_dtype=torch.bfloat16
)
# update model config
self.model.config.eos_token_id = self.tokenizer.eos_token_id
self.model.config.bos_token_id = self.tokenizer.bos_token_id
self.model.config.pad_token_id = self.tokenizer.pad_token_id
# init global image encoder (CLIP)
self.model.get_model().initialize_vision_modules(self.model.get_model().config)
vision_tower = self.model.get_model().get_vision_tower()
vision_tower.to(dtype=torch.bfloat16)
# transfer the model to GPU
self.model = self.model.bfloat16().cuda()
vision_tower.to(device="cuda")
self.model.eval()
logger.info("Model loaded successfully.")
# init image processor for global image encoder (CLIP)
self.image_processor = CLIPImageProcessor.from_pretrained(self.model.config.vision_tower)
self.transform = ResizeLongestSide(self.image_size)
logger.info("Image processor initialized successfully.")
@torch.inference_mode()
def _infer(self, raw_image: np.ndarray):
"""Run inference on a single image.
Args:
raw_image (np.ndarray): The input image in numpy array format.
Returns:
tuple: A tuple containing the explanation string, predicted masks, phrases, and classification result.
"""
# clean instructions
instructions = bleach.clean(LEGION.INSTRUCTION)
instructions = instructions.replace('<', '<').replace('>', '>')
# prepare prompt
conv = conversation_lib.conv_templates["llava_v1"].copy()
conv.messages = []
prompt = f"The {DEFAULT_IM_START_TOKEN}{DEFAULT_IMAGE_TOKEN}{DEFAULT_IM_END_TOKEN} provides an overview of the picture.\n" + instructions
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], "")
prompt = conv.get_prompt()
# preprocess image (CLIP)
image_np = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB)
original_size_list = [image_np.shape[:2]]
image_clip = (self.image_processor.preprocess(image_np, return_tensors="pt")["pixel_values"][0].unsqueeze(0).cuda())
image_clip = image_clip.bfloat16()
# preprocess image (Grounding image encoder)
image = self.transform.apply_image(image_np)
resize_list = [image.shape[:2]]
image = (grounding_image_ecoder_preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous()).unsqueeze(0).cuda())
image = image.bfloat16()
# prepare inputs for inference
input_ids = tokenizer_image_token(prompt, self.tokenizer, return_tensors="pt")
input_ids = input_ids.unsqueeze(0).cuda()
# generate output
output_ids, pred_masks = self.model.evaluate(
image_clip,
image,
input_ids,
resize_list,
original_size_list,
max_tokens_new=512,
bboxes=None # No box/region is input in GCG task
)
output_ids = output_ids[0][output_ids[0] != IMAGE_TOKEN_INDEX]
# post-processing
text_output = self.tokenizer.decode(output_ids, skip_special_tokens=False)
text_output = text_output.replace("\n", "").replace(" ", " ")
text_output = text_output.split("ASSISTANT: ")[-1]
cleaned_str = re.sub(r'<.*?>', '', text_output)
# remove [SEG] token and unnecessary spaces
cleaned_str = cleaned_str.replace('[SEG]', '')
# strip unnecessary spaces
cleaned_str = ' '.join(cleaned_str.split()).strip("'")
cleaned_str = cleaned_str.strip()
# infer detection head
logits = self.model(global_enc_images=image_clip, inference_cls=True)['logits'].cpu()
_, pred_cls = torch.max(logits, dim=1)
pred_cls = int(pred_cls)
return cleaned_str, pred_masks, pred_cls
@torch.inference_mode()
def infer(self, image_path: str):
"""Run inference on a single image.
Args:
image_path (str): Path to the input image.
Returns:
dict: A dictionary containing the explanation, localization mask path, and detection result.
"""
raw_image = cv2.imread(image_path)
explanation, localization, detection = self._infer(raw_image.astype(np.uint8))
# post-process localization mask
localization = localization[0].cpu()
binary_localization = localization > 0
binary_localization = torch.any(binary_localization, dim=0).int()
localization = (binary_localization.numpy() * 255).astype(np.uint8)
localization = Image.fromarray(localization, mode="L")
# post-process detection
detection = "real" if detection == 1 else "fake"
return {
"explanation": explanation,
"localization": localization,
"detection": detection
}
def main(args):
# get images
suffixes = [".jpg", ".jpeg", ".png"]
image_paths = sorted(os.listdir(args.image_root))
image_paths = [p for p in image_paths if os.path.splitext(p)[-1].lower() in suffixes]
logger.info(f"Found {len(image_paths)} images for inference.")
# init legion
legion = LEGION(args.model_path, args.image_size, args.model_max_length)
# check save root
os.makedirs(args.save_root, exist_ok=True)
localization_save_dir = os.path.join(args.save_root, "localization")
os.makedirs(localization_save_dir, exist_ok=True)
explanation_save_path = os.path.join(args.save_root, "explanations.jsonl")
# prepare resume
num_processed_images = 0
if os.path.exists(explanation_save_path):
num_processed_images = len(list(jsonlines.open(explanation_save_path)))
logger.info(f"Resuming from {num_processed_images} processed images.")
image_paths = image_paths[num_processed_images:]
# run inference
with jsonlines.open(explanation_save_path, mode="a", flush=True) as writer:
for image_path in tqdm(image_paths):
image_name = os.path.splitext(image_path)[0]
full_image_path = os.path.join(args.image_root, image_path)
result = legion.infer(full_image_path)
# save localization
this_localization_save_path = os.path.join(localization_save_dir, f"{image_name}_mask.png")
result["localization"].save(this_localization_save_path)
result["localization"] = this_localization_save_path
# add original image path
result["image_path"] = full_image_path
# write to jsonl
writer.write(result)
if __name__ == "__main__":
args = parse_args()
main(args)
|