Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +355 -3
- added_tokens.json +9 -0
- config.json +59 -0
- examples/image.png +3 -0
- examples/image_mask.png +0 -0
- generation_config.json +9 -0
- infer.py +235 -0
- pytorch_model-00001-of-00002.bin +3 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +35 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
examples/image.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,355 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# LEGION-8B-replicate
|
| 6 |
+
|
| 7 |
+
## Overview
|
| 8 |
+
|
| 9 |
+
Since the project [LEGION: Learning to Ground and Explain for Synthetic Image Detection](https://arxiv.org/abs/2503.15264) open-sourced its code repository but did not provide pre-trained weights, we replicated the model by referring to the open-source code and the paper, and are now releasing our replicated weights.
|
| 10 |
+
|
| 11 |
+
> [!NOTE]
|
| 12 |
+
> Due to potential discrepancies in the replication process, the released weights may achieve lower scores than officially reported results on certain benchmarks.
|
| 13 |
+
|
| 14 |
+
### Training Details
|
| 15 |
+
|
| 16 |
+
We conducted training on 4x A100 40G GPUs.
|
| 17 |
+
|
| 18 |
+
For the first training stage, the official configuration uses 8 GPUs with a global batch size of 16 (batch size per device = 2). To maintain the same global batch size, we used 4 GPUs with a per-device batch size of 4.
|
| 19 |
+
|
| 20 |
+
For the second training stage, the official configuration uses 8 GPUs with a global batch size of 512 (batch size per device = 64). We used 4 GPUs with a per-device batch size of 8 and a gradient accumulation step of 16. This results in an effective per-device batch size of 128, maintaining an equivalent global batch size of 512.
|
| 21 |
+
|
| 22 |
+
### Inference Usage
|
| 23 |
+
|
| 24 |
+
A simple inference script is provided at [infer.py](./infer.py).
|
| 25 |
+
|
| 26 |
+
Usage instructions are as follows:
|
| 27 |
+
|
| 28 |
+
```bash
|
| 29 |
+
cp infer.py /path/to/LEGION
|
| 30 |
+
python infer.py --model_path /path/to/LEGION-8B-replicate --image_root /path/to/images --save_root /path/to/results
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
### Examples
|
| 34 |
+
|
| 35 |
+
<table>
|
| 36 |
+
<tr>
|
| 37 |
+
<td><img src="./examples/image.png" alt="Original Image" style="max-width:100%;"></td>
|
| 38 |
+
<td><img src="./examples/image_mask.png" alt="Mask generated by LEGION-8B-replicate" style="max-width:100%;"></td>
|
| 39 |
+
</tr>
|
| 40 |
+
</table>
|
| 41 |
+
|
| 42 |
+
Upon examining the image. I have found: A cat sits on a rooftop at sunset, with its right front paw missing and the left front paw appearing deformed. To elaborate, I have found the following artifacts. Cat's right front paw :The cat's right front paw is missing. Cat's left front paw :The cat's left front paw is deformed.
|
| 43 |
+
|
| 44 |
+
## Performance
|
| 45 |
+
|
| 46 |
+
> [!NOTE]
|
| 47 |
+
> Due to the evaluation and metric-related code not being open-sourced, the test results may be inaccurate.
|
| 48 |
+
> The IoU evaluation metric for masks may be affected by mask processing during inference, resulting in lower scores.
|
| 49 |
+
|
| 50 |
+
### Localization
|
| 51 |
+
|
| 52 |
+
<table>
|
| 53 |
+
<tr>
|
| 54 |
+
<th rowspan="2">Method</th>
|
| 55 |
+
<th colspan="2">SynthScars</th>
|
| 56 |
+
<th colspan="2">LOKI</th>
|
| 57 |
+
<th colspan="2">RichHF-18K</th>
|
| 58 |
+
</tr>
|
| 59 |
+
<tr>
|
| 60 |
+
<th>mIoU</th>
|
| 61 |
+
<th>F1</th>
|
| 62 |
+
<th>mIoU</th>
|
| 63 |
+
<th>F1</th>
|
| 64 |
+
<th>mIoU</th>
|
| 65 |
+
<th>F1</th>
|
| 66 |
+
</tr>
|
| 67 |
+
<tr>
|
| 68 |
+
<td>HiFi-Net</td>
|
| 69 |
+
<td>45.65</td>
|
| 70 |
+
<td>0.57</td>
|
| 71 |
+
<td>39.60</td>
|
| 72 |
+
<td>2.41</td>
|
| 73 |
+
<td>44.96</td>
|
| 74 |
+
<td>0.39</td>
|
| 75 |
+
</tr>
|
| 76 |
+
<tr>
|
| 77 |
+
<td>TruFor</td>
|
| 78 |
+
<td>48.60</td>
|
| 79 |
+
<td>15.29</td>
|
| 80 |
+
<td>46.55</td>
|
| 81 |
+
<td>16.70</td>
|
| 82 |
+
<td>48.41</td>
|
| 83 |
+
<td>18.03</td>
|
| 84 |
+
</tr>
|
| 85 |
+
<tr>
|
| 86 |
+
<td>PAL4VST</td>
|
| 87 |
+
<td>56.10</td>
|
| 88 |
+
<td>29.21</td>
|
| 89 |
+
<td>47.34</td>
|
| 90 |
+
<td>11.58</td>
|
| 91 |
+
<td>49.88</td>
|
| 92 |
+
<td>14.78</td>
|
| 93 |
+
</tr>
|
| 94 |
+
<tr>
|
| 95 |
+
<td>Ferret</td>
|
| 96 |
+
<td>27.09</td>
|
| 97 |
+
<td>15.24</td>
|
| 98 |
+
<td>24.50</td>
|
| 99 |
+
<td>18.88</td>
|
| 100 |
+
<td>26.52</td>
|
| 101 |
+
<td>16.22</td>
|
| 102 |
+
</tr>
|
| 103 |
+
<tr>
|
| 104 |
+
<td>Griffon</td>
|
| 105 |
+
<td>27.68</td>
|
| 106 |
+
<td>16.67</td>
|
| 107 |
+
<td>21.96</td>
|
| 108 |
+
<td>20.41</td>
|
| 109 |
+
<td>28.13</td>
|
| 110 |
+
<td>18.19</td>
|
| 111 |
+
</tr>
|
| 112 |
+
<tr>
|
| 113 |
+
<td>LISA-v1-7B</td>
|
| 114 |
+
<td>34.51</td>
|
| 115 |
+
<td>18.77</td>
|
| 116 |
+
<td>31.10</td>
|
| 117 |
+
<td>9.29</td>
|
| 118 |
+
<td>35.90</td>
|
| 119 |
+
<td>21.94</td>
|
| 120 |
+
</tr>
|
| 121 |
+
<tr>
|
| 122 |
+
<td>InternVL2-8B</td>
|
| 123 |
+
<td>41.25</td>
|
| 124 |
+
<td>6.39</td>
|
| 125 |
+
<td>42.03</td>
|
| 126 |
+
<td>10.06</td>
|
| 127 |
+
<td>39.90</td>
|
| 128 |
+
<td>9.58</td>
|
| 129 |
+
</tr>
|
| 130 |
+
<tr>
|
| 131 |
+
<td>Qwen2-VL-72B</td>
|
| 132 |
+
<td>30.20</td>
|
| 133 |
+
<td>17.50</td>
|
| 134 |
+
<td>26.62</td>
|
| 135 |
+
<td>20.99</td>
|
| 136 |
+
<td>27.58</td>
|
| 137 |
+
<td>19.02</td>
|
| 138 |
+
</tr>
|
| 139 |
+
<tr style="background-color: #e6ffe6;">
|
| 140 |
+
<td>LEGION (Official)</td>
|
| 141 |
+
<td>58.13</td>
|
| 142 |
+
<td>34.54</td>
|
| 143 |
+
<td>48.66</td>
|
| 144 |
+
<td>16.71</td>
|
| 145 |
+
<td>50.07</td>
|
| 146 |
+
<td>17.41</td>
|
| 147 |
+
</tr>
|
| 148 |
+
<tr style="background-color: #e6ffe6;">
|
| 149 |
+
<td>LEGION (Replicate)</td>
|
| 150 |
+
<td>23.92</td>
|
| 151 |
+
<td>33.47</td>
|
| 152 |
+
<td>-</td>
|
| 153 |
+
<td>-</td>
|
| 154 |
+
<td>-</td>
|
| 155 |
+
<td>-</td>
|
| 156 |
+
</tr>
|
| 157 |
+
</table>
|
| 158 |
+
|
| 159 |
+
### Explanation
|
| 160 |
+
|
| 161 |
+
<table>
|
| 162 |
+
<tr>
|
| 163 |
+
<th rowspan="2">Method</th>
|
| 164 |
+
<th rowspan="2">Params</th>
|
| 165 |
+
<th colspan="2">SynthScars</th>
|
| 166 |
+
<th colspan="2">LOKI</th>
|
| 167 |
+
</tr>
|
| 168 |
+
<tr>
|
| 169 |
+
<th>ROUGE-L ↑</th>
|
| 170 |
+
<th>CSS ↑</th>
|
| 171 |
+
<th>ROUGE-L ↑</th>
|
| 172 |
+
<th>CSS ↑</th>
|
| 173 |
+
</tr>
|
| 174 |
+
<tr>
|
| 175 |
+
<td>Qwen2-VL</td>
|
| 176 |
+
<td>72B</td>
|
| 177 |
+
<td>25.84</td>
|
| 178 |
+
<td>58.15</td>
|
| 179 |
+
<td>11.80</td>
|
| 180 |
+
<td>37.64</td>
|
| 181 |
+
</tr>
|
| 182 |
+
<tr>
|
| 183 |
+
<td>LLaVA-v1.6</td>
|
| 184 |
+
<td>7B</td>
|
| 185 |
+
<td>29.61</td>
|
| 186 |
+
<td>61.75</td>
|
| 187 |
+
<td>16.07</td>
|
| 188 |
+
<td>41.07</td>
|
| 189 |
+
</tr>
|
| 190 |
+
<tr>
|
| 191 |
+
<td>InternVL2</td>
|
| 192 |
+
<td>8B</td>
|
| 193 |
+
<td>25.93</td>
|
| 194 |
+
<td>56.89</td>
|
| 195 |
+
<td>10.10</td>
|
| 196 |
+
<td>39.62</td>
|
| 197 |
+
</tr>
|
| 198 |
+
<tr>
|
| 199 |
+
<td>Deepseek-VL2</td>
|
| 200 |
+
<td>27B</td>
|
| 201 |
+
<td>25.50</td>
|
| 202 |
+
<td>47.77</td>
|
| 203 |
+
<td>6.70</td>
|
| 204 |
+
<td>28.76</td>
|
| 205 |
+
</tr>
|
| 206 |
+
<tr>
|
| 207 |
+
<td>GPT-4o</td>
|
| 208 |
+
<td>-</td>
|
| 209 |
+
<td>22.43</td>
|
| 210 |
+
<td>53.55</td>
|
| 211 |
+
<td>9.61</td>
|
| 212 |
+
<td>38.98</td>
|
| 213 |
+
</tr>
|
| 214 |
+
<tr style="background-color: #e6ffe6;">
|
| 215 |
+
<td>LEGION (Official)</td>
|
| 216 |
+
<td>8B</td>
|
| 217 |
+
<td>39.50</td>
|
| 218 |
+
<td>72.60</td>
|
| 219 |
+
<td>18.55</td>
|
| 220 |
+
<td>45.96</td>
|
| 221 |
+
</tr>
|
| 222 |
+
<tr style="background-color: #e6ffe6;">
|
| 223 |
+
<td>LEGION (Replicate)</td>
|
| 224 |
+
<td>8B</td>
|
| 225 |
+
<td>50.57</td>
|
| 226 |
+
<td>-</td>
|
| 227 |
+
<td>-</td>
|
| 228 |
+
<td>-</td>
|
| 229 |
+
</tr>
|
| 230 |
+
</table>
|
| 231 |
+
|
| 232 |
+
### Detection
|
| 233 |
+
|
| 234 |
+
<table>
|
| 235 |
+
<tr>
|
| 236 |
+
<th rowspan="2">Method</th>
|
| 237 |
+
<th rowspan="2">GANs</th>
|
| 238 |
+
<th rowspan="2">Deepfakes</th>
|
| 239 |
+
<th colspan="2">Perceptual Loss</th>
|
| 240 |
+
<th colspan="2">Low Level Vision</th>
|
| 241 |
+
<th rowspan="2">Diffusion</th>
|
| 242 |
+
</tr>
|
| 243 |
+
<tr>
|
| 244 |
+
<th>CRN</th>
|
| 245 |
+
<th>IMLE</th>
|
| 246 |
+
<th>SITD</th>
|
| 247 |
+
<th>SAN</th>
|
| 248 |
+
</tr>
|
| 249 |
+
<tr>
|
| 250 |
+
<td>Co-occurence</td>
|
| 251 |
+
<td>75.17</td>
|
| 252 |
+
<td>59.14</td>
|
| 253 |
+
<td>73.06</td>
|
| 254 |
+
<td>87.21</td>
|
| 255 |
+
<td>68.98</td>
|
| 256 |
+
<td>60.42</td>
|
| 257 |
+
<td>85.53</td>
|
| 258 |
+
</tr>
|
| 259 |
+
<tr>
|
| 260 |
+
<td>Freq-spec</td>
|
| 261 |
+
<td>75.28</td>
|
| 262 |
+
<td>45.18</td>
|
| 263 |
+
<td>53.61</td>
|
| 264 |
+
<td>50.98</td>
|
| 265 |
+
<td>47.46</td>
|
| 266 |
+
<td>57.12</td>
|
| 267 |
+
<td>69.00</td>
|
| 268 |
+
</tr>
|
| 269 |
+
<tr>
|
| 270 |
+
<td>CNNSpot</td>
|
| 271 |
+
<td>85.29</td>
|
| 272 |
+
<td>53.47</td>
|
| 273 |
+
<td>86.31</td>
|
| 274 |
+
<td>86.26</td>
|
| 275 |
+
<td>66.67</td>
|
| 276 |
+
<td>48.69</td>
|
| 277 |
+
<td>58.63</td>
|
| 278 |
+
</tr>
|
| 279 |
+
<tr>
|
| 280 |
+
<td>Patchfor</td>
|
| 281 |
+
<td>69.97</td>
|
| 282 |
+
<td>75.54</td>
|
| 283 |
+
<td>72.33</td>
|
| 284 |
+
<td>55.30</td>
|
| 285 |
+
<td>75.14</td>
|
| 286 |
+
<td>75.28</td>
|
| 287 |
+
<td>72.54</td>
|
| 288 |
+
</tr>
|
| 289 |
+
<tr>
|
| 290 |
+
<td>UniFD</td>
|
| 291 |
+
<td>95.25</td>
|
| 292 |
+
<td>66.60</td>
|
| 293 |
+
<td>59.50</td>
|
| 294 |
+
<td>72.00</td>
|
| 295 |
+
<td>63.00</td>
|
| 296 |
+
<td>57.50</td>
|
| 297 |
+
<td>82.02</td>
|
| 298 |
+
</tr>
|
| 299 |
+
<tr>
|
| 300 |
+
<td>LDGard</td>
|
| 301 |
+
<td>89.17</td>
|
| 302 |
+
<td>58.00</td>
|
| 303 |
+
<td>50.74</td>
|
| 304 |
+
<td>50.78</td>
|
| 305 |
+
<td>62.50</td>
|
| 306 |
+
<td>50.00</td>
|
| 307 |
+
<td>89.79</td>
|
| 308 |
+
</tr>
|
| 309 |
+
<tr>
|
| 310 |
+
<td>FreqNet</td>
|
| 311 |
+
<td>94.23</td>
|
| 312 |
+
<td>97.40</td>
|
| 313 |
+
<td>71.92</td>
|
| 314 |
+
<td>67.35</td>
|
| 315 |
+
<td>88.92</td>
|
| 316 |
+
<td>59.04</td>
|
| 317 |
+
<td>83.34</td>
|
| 318 |
+
</tr>
|
| 319 |
+
<tr>
|
| 320 |
+
<td>NPR</td>
|
| 321 |
+
<td>94.16</td>
|
| 322 |
+
<td>76.89</td>
|
| 323 |
+
<td>50.00</td>
|
| 324 |
+
<td>50.00</td>
|
| 325 |
+
<td>66.94</td>
|
| 326 |
+
<td>98.63</td>
|
| 327 |
+
<td>94.54</td>
|
| 328 |
+
</tr>
|
| 329 |
+
<tr style="background-color: #e6ffe6;">
|
| 330 |
+
<td>LEGION (Official)</td>
|
| 331 |
+
<td>97.01</td>
|
| 332 |
+
<td>63.37</td>
|
| 333 |
+
<td>90.78</td>
|
| 334 |
+
<td>98.93</td>
|
| 335 |
+
<td>79.44</td>
|
| 336 |
+
<td>57.76</td>
|
| 337 |
+
<td>83.10</td>
|
| 338 |
+
</tr>
|
| 339 |
+
<tr style="background-color: #e6ffe6;">
|
| 340 |
+
<td>LEGION (Replicate)</td>
|
| 341 |
+
<td>91.48</td>
|
| 342 |
+
<td>79.16</td>
|
| 343 |
+
<td>84.73</td>
|
| 344 |
+
<td>96.71</td>
|
| 345 |
+
<td>78.06</td>
|
| 346 |
+
<td>53.70</td>
|
| 347 |
+
<td>-</td>
|
| 348 |
+
</tr>
|
| 349 |
+
</table>
|
| 350 |
+
|
| 351 |
+
## Acknowledgements
|
| 352 |
+
|
| 353 |
+
Thanks to [Gennadiyev](https://github.com/Gennadiyev) for providing computational resources and moral support, and for helping me complete the reproduction.
|
| 354 |
+
|
| 355 |
+
Thanks to [draw-your-dream/LEGION](https://github.com/draw-your-dream/LEGION/tree/main) for fixing bugs in the first-stage training.
|
added_tokens.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</p>": 32006,
|
| 3 |
+
"<bbox>": 32002,
|
| 4 |
+
"<im_end>": 32001,
|
| 5 |
+
"<im_start>": 32000,
|
| 6 |
+
"<p>": 32005,
|
| 7 |
+
"<point>": 32003,
|
| 8 |
+
"[SEG]": 32004
|
| 9 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LegionForCls"
|
| 4 |
+
],
|
| 5 |
+
"bbox_token_idx": 32002,
|
| 6 |
+
"bos_token_id": 1,
|
| 7 |
+
"eos_token_id": 2,
|
| 8 |
+
"freeze_mlp_adapter": true,
|
| 9 |
+
"freeze_mm_mlp_adapter": false,
|
| 10 |
+
"freeze_mm_vision_resampler": false,
|
| 11 |
+
"hidden_act": "silu",
|
| 12 |
+
"hidden_size": 4096,
|
| 13 |
+
"image_aspect": "square",
|
| 14 |
+
"image_aspect_ratio": "square",
|
| 15 |
+
"image_grid_pinpoints": null,
|
| 16 |
+
"image_grid_points": null,
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 11008,
|
| 19 |
+
"max_length": 4096,
|
| 20 |
+
"max_position_embeddings": 4096,
|
| 21 |
+
"mm_hidden_size": 1024,
|
| 22 |
+
"mm_projector_type": "mlp2x_gelu",
|
| 23 |
+
"mm_resampler_type": null,
|
| 24 |
+
"mm_use_im_patch_token": false,
|
| 25 |
+
"mm_use_im_start_end": true,
|
| 26 |
+
"mm_use_image_start_end": true,
|
| 27 |
+
"mm_vision_module": "openai/clip-vit-large-patch14-336",
|
| 28 |
+
"mm_vision_select_feature": "patch",
|
| 29 |
+
"mm_vision_select_layer": -2,
|
| 30 |
+
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
|
| 31 |
+
"model_type": "llava",
|
| 32 |
+
"num_attention_heads": 32,
|
| 33 |
+
"num_hidden_layers": 32,
|
| 34 |
+
"num_key_value_heads": 32,
|
| 35 |
+
"num_level_reg_features": 4,
|
| 36 |
+
"num_reg_features": 4,
|
| 37 |
+
"out_dim": 256,
|
| 38 |
+
"pad_token_id": 0,
|
| 39 |
+
"pretrain_mm_mlp_adapter": null,
|
| 40 |
+
"pretraining_tp": 1,
|
| 41 |
+
"rms_norm_eps": 1e-05,
|
| 42 |
+
"rope_scaling": null,
|
| 43 |
+
"select_feature_type": "patch",
|
| 44 |
+
"tie_word_embeddings": false,
|
| 45 |
+
"torch_dtype": "bfloat16",
|
| 46 |
+
"train_mask_decoder": true,
|
| 47 |
+
"transformers_version": "4.28.0",
|
| 48 |
+
"tune_mlp_adapter": false,
|
| 49 |
+
"tune_mm_mlp_adapter": false,
|
| 50 |
+
"tune_mm_vision_resampler": false,
|
| 51 |
+
"unfreeze_mm_vision_tower": false,
|
| 52 |
+
"use_cache": false,
|
| 53 |
+
"use_image_patch_token": false,
|
| 54 |
+
"use_mm_proj": true,
|
| 55 |
+
"vision_module": "openai/clip-vit-large-patch14-336",
|
| 56 |
+
"vision_tower": "openai/clip-vit-large-patch14-336",
|
| 57 |
+
"vocab_size": 32007,
|
| 58 |
+
"with_region": true
|
| 59 |
+
}
|
examples/image.png
ADDED
|
Git LFS Details
|
examples/image_mask.png
ADDED
|
generation_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"max_length": 4096,
|
| 6 |
+
"pad_token_id": 0,
|
| 7 |
+
"transformers_version": "4.28.0",
|
| 8 |
+
"use_cache": false
|
| 9 |
+
}
|
infer.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import re
|
| 4 |
+
|
| 5 |
+
import bleach
|
| 6 |
+
import cv2
|
| 7 |
+
import jsonlines
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
from loguru import logger
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
from transformers import AutoTokenizer, CLIPImageProcessor, PreTrainedTokenizer
|
| 14 |
+
|
| 15 |
+
from eval.utils import grounding_image_ecoder_preprocess
|
| 16 |
+
from model.Legion import LegionForCls
|
| 17 |
+
from model.llava import conversation as conversation_lib
|
| 18 |
+
from model.llava.mm_utils import tokenizer_image_token
|
| 19 |
+
from model.SAM.utils.transforms import ResizeLongestSide
|
| 20 |
+
from tools.utils import DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def parse_args():
|
| 24 |
+
parser = argparse.ArgumentParser(description="LEGION Inference")
|
| 25 |
+
# model related
|
| 26 |
+
parser.add_argument("--model_path", required=True, help="The directory to your legion ckpt")
|
| 27 |
+
parser.add_argument("--image_size", default=1024, type=int, help="image size")
|
| 28 |
+
parser.add_argument("--model_max_length", default=512, type=int)
|
| 29 |
+
# data related
|
| 30 |
+
parser.add_argument("--image_root", required=True, help="The directory containing images to run inference.")
|
| 31 |
+
parser.add_argument("--save_root", required=True, help="The directory to store the inference result.")
|
| 32 |
+
|
| 33 |
+
args = parser.parse_args()
|
| 34 |
+
return args
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class LEGION:
|
| 38 |
+
"""A simple wrapper for LEGION model loading and inference.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
model_path (str): Path to the model checkpoint.
|
| 42 |
+
image_size (int): Size of the input images.
|
| 43 |
+
model_max_length (int): Maximum length of the model input sequence.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
INSTRUCTION = (
|
| 47 |
+
"Please provide a detailed analysis of artifacts in this photo, considering "
|
| 48 |
+
"physical artifacts (e.g., optical display issues, violations of physical laws, "
|
| 49 |
+
"and spatial/perspective errors), structural artifacts (e.g., deformed objects, asymmetry, or distorted text), "
|
| 50 |
+
"and distortion artifacts (e.g., color/texture distortion, noise/blur, artistic style errors, and material misrepresentation). "
|
| 51 |
+
"Output with interleaved segmentation masks for the corresponding parts of the answer."
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
def __init__(self, model_path: str, image_size: int = 1024, model_max_length: int = 512):
|
| 55 |
+
self.model_path = model_path
|
| 56 |
+
self.image_size = image_size
|
| 57 |
+
self.model_max_length = model_max_length
|
| 58 |
+
|
| 59 |
+
# load tokenizer
|
| 60 |
+
self.tokenizer: PreTrainedTokenizer = AutoTokenizer.from_pretrained(
|
| 61 |
+
self.model_path,
|
| 62 |
+
cache_dir=None,
|
| 63 |
+
model_max_length=self.model_max_length,
|
| 64 |
+
padding_side="right",
|
| 65 |
+
use_fast=False
|
| 66 |
+
)
|
| 67 |
+
self.tokenizer.pad_token = self.tokenizer.unk_token
|
| 68 |
+
seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
|
| 69 |
+
logger.info("Tokenizer loaded successfully.")
|
| 70 |
+
|
| 71 |
+
# load model
|
| 72 |
+
self.model: LegionForCls = LegionForCls.from_pretrained(
|
| 73 |
+
self.model_path,
|
| 74 |
+
low_cpu_mem_usage=True,
|
| 75 |
+
seg_token_idx=seg_token_idx,
|
| 76 |
+
torch_dtype=torch.bfloat16
|
| 77 |
+
)
|
| 78 |
+
# update model config
|
| 79 |
+
self.model.config.eos_token_id = self.tokenizer.eos_token_id
|
| 80 |
+
self.model.config.bos_token_id = self.tokenizer.bos_token_id
|
| 81 |
+
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
| 82 |
+
# init global image encoder (CLIP)
|
| 83 |
+
self.model.get_model().initialize_vision_modules(self.model.get_model().config)
|
| 84 |
+
vision_tower = self.model.get_model().get_vision_tower()
|
| 85 |
+
vision_tower.to(dtype=torch.bfloat16)
|
| 86 |
+
# transfer the model to GPU
|
| 87 |
+
self.model = self.model.bfloat16().cuda()
|
| 88 |
+
vision_tower.to(device="cuda")
|
| 89 |
+
self.model.eval()
|
| 90 |
+
logger.info("Model loaded successfully.")
|
| 91 |
+
|
| 92 |
+
# init image processor for global image encoder (CLIP)
|
| 93 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(self.model.config.vision_tower)
|
| 94 |
+
self.transform = ResizeLongestSide(self.image_size)
|
| 95 |
+
logger.info("Image processor initialized successfully.")
|
| 96 |
+
|
| 97 |
+
@torch.inference_mode()
|
| 98 |
+
def _infer(self, raw_image: np.ndarray):
|
| 99 |
+
"""Run inference on a single image.
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
raw_image (np.ndarray): The input image in numpy array format.
|
| 103 |
+
|
| 104 |
+
Returns:
|
| 105 |
+
tuple: A tuple containing the explanation string, predicted masks, phrases, and classification result.
|
| 106 |
+
"""
|
| 107 |
+
# clean instructions
|
| 108 |
+
instructions = bleach.clean(LEGION.INSTRUCTION)
|
| 109 |
+
instructions = instructions.replace('<', '<').replace('>', '>')
|
| 110 |
+
|
| 111 |
+
# prepare prompt
|
| 112 |
+
conv = conversation_lib.conv_templates["llava_v1"].copy()
|
| 113 |
+
conv.messages = []
|
| 114 |
+
prompt = f"The {DEFAULT_IM_START_TOKEN}{DEFAULT_IMAGE_TOKEN}{DEFAULT_IM_END_TOKEN} provides an overview of the picture.\n" + instructions
|
| 115 |
+
conv.append_message(conv.roles[0], prompt)
|
| 116 |
+
conv.append_message(conv.roles[1], "")
|
| 117 |
+
prompt = conv.get_prompt()
|
| 118 |
+
|
| 119 |
+
# preprocess image (CLIP)
|
| 120 |
+
image_np = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB)
|
| 121 |
+
original_size_list = [image_np.shape[:2]]
|
| 122 |
+
image_clip = (self.image_processor.preprocess(image_np, return_tensors="pt")["pixel_values"][0].unsqueeze(0).cuda())
|
| 123 |
+
image_clip = image_clip.bfloat16()
|
| 124 |
+
|
| 125 |
+
# preprocess image (Grounding image encoder)
|
| 126 |
+
image = self.transform.apply_image(image_np)
|
| 127 |
+
resize_list = [image.shape[:2]]
|
| 128 |
+
image = (grounding_image_ecoder_preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous()).unsqueeze(0).cuda())
|
| 129 |
+
image = image.bfloat16()
|
| 130 |
+
|
| 131 |
+
# prepare inputs for inference
|
| 132 |
+
input_ids = tokenizer_image_token(prompt, self.tokenizer, return_tensors="pt")
|
| 133 |
+
input_ids = input_ids.unsqueeze(0).cuda()
|
| 134 |
+
|
| 135 |
+
# generate output
|
| 136 |
+
output_ids, pred_masks = self.model.evaluate(
|
| 137 |
+
image_clip,
|
| 138 |
+
image,
|
| 139 |
+
input_ids,
|
| 140 |
+
resize_list,
|
| 141 |
+
original_size_list,
|
| 142 |
+
max_tokens_new=512,
|
| 143 |
+
bboxes=None # No box/region is input in GCG task
|
| 144 |
+
)
|
| 145 |
+
output_ids = output_ids[0][output_ids[0] != IMAGE_TOKEN_INDEX]
|
| 146 |
+
|
| 147 |
+
# post-processing
|
| 148 |
+
text_output = self.tokenizer.decode(output_ids, skip_special_tokens=False)
|
| 149 |
+
text_output = text_output.replace("\n", "").replace(" ", " ")
|
| 150 |
+
text_output = text_output.split("ASSISTANT: ")[-1]
|
| 151 |
+
cleaned_str = re.sub(r'<.*?>', '', text_output)
|
| 152 |
+
# remove [SEG] token and unnecessary spaces
|
| 153 |
+
cleaned_str = cleaned_str.replace('[SEG]', '')
|
| 154 |
+
# strip unnecessary spaces
|
| 155 |
+
cleaned_str = ' '.join(cleaned_str.split()).strip("'")
|
| 156 |
+
cleaned_str = cleaned_str.strip()
|
| 157 |
+
|
| 158 |
+
# infer detection head
|
| 159 |
+
logits = self.model(global_enc_images=image_clip, inference_cls=True)['logits'].cpu()
|
| 160 |
+
_, pred_cls = torch.max(logits, dim=1)
|
| 161 |
+
pred_cls = int(pred_cls)
|
| 162 |
+
return cleaned_str, pred_masks, pred_cls
|
| 163 |
+
|
| 164 |
+
@torch.inference_mode()
|
| 165 |
+
def infer(self, image_path: str):
|
| 166 |
+
"""Run inference on a single image.
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
image_path (str): Path to the input image.
|
| 170 |
+
|
| 171 |
+
Returns:
|
| 172 |
+
dict: A dictionary containing the explanation, localization mask path, and detection result.
|
| 173 |
+
"""
|
| 174 |
+
raw_image = cv2.imread(image_path)
|
| 175 |
+
explanation, localization, detection = self._infer(raw_image.astype(np.uint8))
|
| 176 |
+
|
| 177 |
+
# post-process localization mask
|
| 178 |
+
localization = localization[0].cpu()
|
| 179 |
+
binary_localization = localization > 0
|
| 180 |
+
binary_localization = torch.any(binary_localization, dim=0).int()
|
| 181 |
+
localization = (binary_localization.numpy() * 255).astype(np.uint8)
|
| 182 |
+
localization = Image.fromarray(localization, mode="L")
|
| 183 |
+
|
| 184 |
+
# post-process detection
|
| 185 |
+
detection = "real" if detection == 1 else "fake"
|
| 186 |
+
|
| 187 |
+
return {
|
| 188 |
+
"explanation": explanation,
|
| 189 |
+
"localization": localization,
|
| 190 |
+
"detection": detection
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def main(args):
|
| 195 |
+
# get images
|
| 196 |
+
suffixes = [".jpg", ".jpeg", ".png"]
|
| 197 |
+
image_paths = sorted(os.listdir(args.image_root))
|
| 198 |
+
image_paths = [p for p in image_paths if os.path.splitext(p)[-1].lower() in suffixes]
|
| 199 |
+
logger.info(f"Found {len(image_paths)} images for inference.")
|
| 200 |
+
|
| 201 |
+
# init legion
|
| 202 |
+
legion = LEGION(args.model_path, args.image_size, args.model_max_length)
|
| 203 |
+
|
| 204 |
+
# check save root
|
| 205 |
+
os.makedirs(args.save_root, exist_ok=True)
|
| 206 |
+
localization_save_dir = os.path.join(args.save_root, "localization")
|
| 207 |
+
os.makedirs(localization_save_dir, exist_ok=True)
|
| 208 |
+
explanation_save_path = os.path.join(args.save_root, "explanations.jsonl")
|
| 209 |
+
|
| 210 |
+
# prepare resume
|
| 211 |
+
num_processed_images = 0
|
| 212 |
+
if os.path.exists(explanation_save_path):
|
| 213 |
+
num_processed_images = len(list(jsonlines.open(explanation_save_path)))
|
| 214 |
+
logger.info(f"Resuming from {num_processed_images} processed images.")
|
| 215 |
+
image_paths = image_paths[num_processed_images:]
|
| 216 |
+
|
| 217 |
+
# run inference
|
| 218 |
+
with jsonlines.open(explanation_save_path, mode="a", flush=True) as writer:
|
| 219 |
+
for image_path in tqdm(image_paths):
|
| 220 |
+
image_name = os.path.splitext(image_path)[0]
|
| 221 |
+
full_image_path = os.path.join(args.image_root, image_path)
|
| 222 |
+
result = legion.infer(full_image_path)
|
| 223 |
+
# save localization
|
| 224 |
+
this_localization_save_path = os.path.join(localization_save_dir, f"{image_name}_mask.png")
|
| 225 |
+
result["localization"].save(this_localization_save_path)
|
| 226 |
+
result["localization"] = this_localization_save_path
|
| 227 |
+
# add original image path
|
| 228 |
+
result["image_path"] = full_image_path
|
| 229 |
+
# write to jsonl
|
| 230 |
+
writer.write(result)
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
if __name__ == "__main__":
|
| 234 |
+
args = parse_args()
|
| 235 |
+
main(args)
|
pytorch_model-00001-of-00002.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:52bedf3c0f9c51c46511a732449dc08dfa36241639bd21e261fee7030a108be4
|
| 3 |
+
size 9976695294
|
pytorch_model-00002-of-00002.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8aa2a634e2e0667569d2f607b9038eda50fb970c2388932c4a9975941094220c
|
| 3 |
+
size 6070091263
|
pytorch_model.bin.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"bos_token": {
|
| 5 |
+
"__type": "AddedToken",
|
| 6 |
+
"content": "<s>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"clean_up_tokenization_spaces": false,
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"__type": "AddedToken",
|
| 15 |
+
"content": "</s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false
|
| 20 |
+
},
|
| 21 |
+
"legacy": false,
|
| 22 |
+
"model_max_length": 1536,
|
| 23 |
+
"pad_token": null,
|
| 24 |
+
"padding_side": "right",
|
| 25 |
+
"sp_model_kwargs": {},
|
| 26 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 27 |
+
"unk_token": {
|
| 28 |
+
"__type": "AddedToken",
|
| 29 |
+
"content": "<unk>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false
|
| 34 |
+
}
|
| 35 |
+
}
|