---
language:
- en
license: mit
datasets:
- fdyrd/MATH
base_model:
- Qwen/Qwen2.5-1.5B
library_name: transformers
tags:
- text-generation-inference
metrics:
- accuracy
---
# Traning Configuration
```yaml
epoch: 2.976
batch_size: 2
learning_rate: 0.00001
train_time: "0:10:11.05"
train_samples_per_second: 2.455
train_steps_per_second: 0.304
train_loss: 0.551
total_flos: "4998063GF"
dataset_size: 500
```
# Validation Set Statistics
$(a:n)$ means accuracy and total number of problems.
| Level |
Algebra |
Intermediate Algebra |
Prealgebra |
Precalculus |
Number Theory |
Geometry |
Counting & Probability |
Average |
| Level 1 |
0.681 : 135 |
0.404 : 52 |
0.535 : 86 |
0.263 : 57 |
0.7 : 30 |
0.368 : 38 |
0.538 : 39 |
0.499 |
| Level 2 |
0.532 : 201 |
0.188 : 128 |
0.446 : 177 |
0.062 : 113 |
0.489 : 92 |
0.232 : 82 |
0.366 : 101 |
0.331 |
| Level 3 |
0.41 : 261 |
0.072 : 195 |
0.455 : 224 |
0.0 : 127 |
0.41 : 122 |
0.127 : 102 |
0.34 : 100 |
0.259 |
| Level 4 |
0.329 : 283 |
0.036 : 248 |
0.366 : 191 |
0.018 : 114 |
0.303 : 142 |
0.088 : 125 |
0.216 : 111 |
0.194 |
| Level 5 |
0.156 : 307 |
0.007 : 280 |
0.202 : 193 |
0.0 : 135 |
0.188 : 154 |
0.008 : 132 |
0.065 : 123 |
0.089 |
| Average |
0.422 |
0.141 |
0.401 |
0.069 |
0.418 |
0.165 |
0.305 |
0.249 |
# Test Set Statistics
```json
[
{
"dataset": "MATH500",
"url": "https://huggingface.co/datasets/qq8933/MATH500",
"accuracy": 0.410
},
{
"dataset": "GSM8K",
"url": "https://huggingface.co/datasets/openai/gsm8k",
"accuracy": 0.649
}
]
```
# Inference Examples
## Basic Arithmetic
Q: Evaluate $1+2\times 3$.
A: The expression $1+2\times 3$ means $1$ added to $2\times 3$. So, we have
$ 1+2\times 3=1+2\cdot 3 =1+6=\boxed{7}$剌猬
## Calculus
Q: compute $\int_{0}^{\pi}\sin{x}\cos{x}dx$.
A: We use the double angle formula $\sin{2x} = 2\sin{x}\cos{x}$ to get $\int_{0}^{\pi}\sin{x}\cos{x}dx = \frac{1}{2}\int_{0}^{\pi}\sin{2x}dx$. We use the substitution $u = 2x$ to get $\frac{1}{2}\int_{0}^{\pi}\sin{2x}dx = \frac{1}{2}\int_{0}^{2\pi}\sin{u}du = \frac{1}{2}\left[-\cos{u}\right]_{0}^{2\pi} = \frac{1}{2}\left(-\cos{2\pi} + \cos{0}\right) = \boxed{0}$. We can also use the identity $\sin{2x} = 2\sin{x}\cos{x}$ to get $\int_{0}^{\pi}\sin{x}\cos{x}dx = \frac{1}{2}\int_{0}^{\pi}\sin{2x}dx = \frac{1}{2}\left[-\cos{2x}\right]_{0}^{\pi} = \frac{1}{2}\left(-\cos{2\pi} + \cos{0}\right) = \boxed{0}$.
## Linear Algebra
Q: Find the determinant of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.
A: The determinant of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is $1\cdot 4 - 2\cdot 3 = \boxed{-2}$.