--- language: - en license: mit datasets: - fdyrd/MATH base_model: - Qwen/Qwen2.5-1.5B library_name: transformers tags: - text-generation-inference metrics: - accuracy --- # Traning Configuration ```yaml epoch: 2.976 batch_size: 2 learning_rate: 0.00001 train_time: "0:10:11.05" train_samples_per_second: 2.455 train_steps_per_second: 0.304 train_loss: 0.551 total_flos: "4998063GF" dataset_size: 500 ``` # Validation Set Statistics $(a:n)$ means accuracy and total number of problems.
Level Algebra Intermediate Algebra Prealgebra Precalculus Number Theory Geometry Counting & Probability Average
Level 1 0.681 : 135 0.404 : 52 0.535 : 86 0.263 : 57 0.7 : 30 0.368 : 38 0.538 : 39 0.499
Level 2 0.532 : 201 0.188 : 128 0.446 : 177 0.062 : 113 0.489 : 92 0.232 : 82 0.366 : 101 0.331
Level 3 0.41 : 261 0.072 : 195 0.455 : 224 0.0 : 127 0.41 : 122 0.127 : 102 0.34 : 100 0.259
Level 4 0.329 : 283 0.036 : 248 0.366 : 191 0.018 : 114 0.303 : 142 0.088 : 125 0.216 : 111 0.194
Level 5 0.156 : 307 0.007 : 280 0.202 : 193 0.0 : 135 0.188 : 154 0.008 : 132 0.065 : 123 0.089
Average 0.422 0.141 0.401 0.069 0.418 0.165 0.305 0.249
# Test Set Statistics ```json [ { "dataset": "MATH500", "url": "https://huggingface.co/datasets/qq8933/MATH500", "accuracy": 0.410 }, { "dataset": "GSM8K", "url": "https://huggingface.co/datasets/openai/gsm8k", "accuracy": 0.649 } ] ``` # Inference Examples ## Basic Arithmetic Q: Evaluate $1+2\times 3$. A: The expression $1+2\times 3$ means $1$ added to $2\times 3$. So, we have $ 1+2\times 3=1+2\cdot 3 =1+6=\boxed{7}$剌猬 ## Calculus Q: compute $\int_{0}^{\pi}\sin{x}\cos{x}dx$. A: We use the double angle formula $\sin{2x} = 2\sin{x}\cos{x}$ to get $\int_{0}^{\pi}\sin{x}\cos{x}dx = \frac{1}{2}\int_{0}^{\pi}\sin{2x}dx$. We use the substitution $u = 2x$ to get $\frac{1}{2}\int_{0}^{\pi}\sin{2x}dx = \frac{1}{2}\int_{0}^{2\pi}\sin{u}du = \frac{1}{2}\left[-\cos{u}\right]_{0}^{2\pi} = \frac{1}{2}\left(-\cos{2\pi} + \cos{0}\right) = \boxed{0}$. We can also use the identity $\sin{2x} = 2\sin{x}\cos{x}$ to get $\int_{0}^{\pi}\sin{x}\cos{x}dx = \frac{1}{2}\int_{0}^{\pi}\sin{2x}dx = \frac{1}{2}\left[-\cos{2x}\right]_{0}^{\pi} = \frac{1}{2}\left(-\cos{2\pi} + \cos{0}\right) = \boxed{0}$. ## Linear Algebra Q: Find the determinant of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. A: The determinant of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is $1\cdot 4 - 2\cdot 3 = \boxed{-2}$.