Update models/qa_model.py
Browse files- models/qa_model.py +55 -19
models/qa_model.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
-
from transformers import AutoModelForQuestionAnswering, pipeline
|
| 5 |
from features.text_utils import post_process_answer
|
| 6 |
from features.graph_utils import find_best_cluster
|
| 7 |
from optimum.onnxruntime import ORTModelForQuestionAnswering
|
|
@@ -11,13 +11,18 @@ class QAEnsembleModel(nn.Module):
|
|
| 11 |
def __init__(self, model_name, model_checkpoints, entity_dict,
|
| 12 |
thr=0.1, device="cpu"):
|
| 13 |
super(QAEnsembleModel, self).__init__()
|
| 14 |
-
self.nlps = []
|
|
|
|
|
|
|
| 15 |
for model_checkpoint in model_checkpoints:
|
| 16 |
model = ORTModelForQuestionAnswering.from_pretrained(model_name, from_transformers=True)#.half()
|
| 17 |
model.load_state_dict(torch.load(model_checkpoint, map_location=torch.device('cpu')), strict=False)
|
| 18 |
-
nlp = pipeline('question-answering', model=model,
|
| 19 |
-
|
| 20 |
-
self.nlps.append(nlp)
|
|
|
|
|
|
|
|
|
|
| 21 |
self.entity_dict = entity_dict
|
| 22 |
self.thr = thr
|
| 23 |
|
|
@@ -28,22 +33,53 @@ class QAEnsembleModel(nn.Module):
|
|
| 28 |
curr_answers = []
|
| 29 |
curr_scores = []
|
| 30 |
best_score = 0
|
| 31 |
-
for i, nlp in enumerate(self.nlps):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
for text, score in zip(texts, ranking_scores):
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
if i == 0:
|
| 44 |
-
if
|
| 45 |
-
answer =
|
| 46 |
-
best_score =
|
| 47 |
if len(curr_answers) == 0:
|
| 48 |
return None
|
| 49 |
curr_answers = [post_process_answer(x, self.entity_dict) for x in curr_answers]
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
+
# from transformers import AutoModelForQuestionAnswering, pipeline
|
| 5 |
from features.text_utils import post_process_answer
|
| 6 |
from features.graph_utils import find_best_cluster
|
| 7 |
from optimum.onnxruntime import ORTModelForQuestionAnswering
|
|
|
|
| 11 |
def __init__(self, model_name, model_checkpoints, entity_dict,
|
| 12 |
thr=0.1, device="cpu"):
|
| 13 |
super(QAEnsembleModel, self).__init__()
|
| 14 |
+
# self.nlps = []
|
| 15 |
+
self.models = []
|
| 16 |
+
self.tokenizers = []
|
| 17 |
for model_checkpoint in model_checkpoints:
|
| 18 |
model = ORTModelForQuestionAnswering.from_pretrained(model_name, from_transformers=True)#.half()
|
| 19 |
model.load_state_dict(torch.load(model_checkpoint, map_location=torch.device('cpu')), strict=False)
|
| 20 |
+
# nlp = pipeline('question-answering', model=model,
|
| 21 |
+
# tokenizer=model_name, device=device)
|
| 22 |
+
# self.nlps.append(nlp)
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 24 |
+
self.models.append(model)
|
| 25 |
+
self.tokenizers.append(tokenizer)
|
| 26 |
self.entity_dict = entity_dict
|
| 27 |
self.thr = thr
|
| 28 |
|
|
|
|
| 33 |
curr_answers = []
|
| 34 |
curr_scores = []
|
| 35 |
best_score = 0
|
| 36 |
+
# for i, nlp in enumerate(self.nlps):
|
| 37 |
+
# for text, score in zip(texts, ranking_scores):
|
| 38 |
+
# QA_input = {
|
| 39 |
+
# 'question': question,
|
| 40 |
+
# 'context': text
|
| 41 |
+
# }
|
| 42 |
+
# res = nlp(QA_input)
|
| 43 |
+
# # print(res)
|
| 44 |
+
# if res["score"] > self.thr:
|
| 45 |
+
# curr_answers.append(res["answer"])
|
| 46 |
+
# curr_scores.append(res["score"])
|
| 47 |
+
# res["score"] = res["score"] * score
|
| 48 |
+
# if i == 0:
|
| 49 |
+
# if res["score"] > best_score:
|
| 50 |
+
# answer = res["answer"]
|
| 51 |
+
# best_score = res["score"]
|
| 52 |
+
|
| 53 |
+
for i, (model, tokenizer) in enumerate(zip(self.models, self.tokenizers)):
|
| 54 |
for text, score in zip(texts, ranking_scores):
|
| 55 |
+
# Encode the question and context as input ids and attention mask
|
| 56 |
+
inputs = tokenizer(question, text, return_tensors="pt")
|
| 57 |
+
input_ids = inputs["input_ids"]
|
| 58 |
+
attention_mask = inputs["attention_mask"]
|
| 59 |
+
# Get the start and end logits from the model
|
| 60 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
| 61 |
+
start_logits = outputs.start_logits
|
| 62 |
+
end_logits = outputs.end_logits
|
| 63 |
+
# Get the most likely start and end indices
|
| 64 |
+
start_idx = torch.argmax(start_logits)
|
| 65 |
+
end_idx = torch.argmax(end_logits)
|
| 66 |
+
# Get the answer span from the input ids
|
| 67 |
+
answer_ids = input_ids[0][start_idx:end_idx+1]
|
| 68 |
+
# Decode the answer ids to get the answer text
|
| 69 |
+
answer_text = tokenizer.decode(answer_ids)
|
| 70 |
+
# Get the answer score from the start and end logits
|
| 71 |
+
answer_score = torch.max(start_logits) + torch.max(end_logits)
|
| 72 |
+
# Convert to numpy values
|
| 73 |
+
answer_text = answer_text.numpy()
|
| 74 |
+
answer_score = answer_score.numpy()
|
| 75 |
+
if answer_score > self.thr:
|
| 76 |
+
curr_answers.append(answer_text)
|
| 77 |
+
curr_scores.append(answer_score)
|
| 78 |
+
answer_score = answer_score * score
|
| 79 |
if i == 0:
|
| 80 |
+
if answer_score > best_score:
|
| 81 |
+
answer = answer_text
|
| 82 |
+
best_score = answer_score
|
| 83 |
if len(curr_answers) == 0:
|
| 84 |
return None
|
| 85 |
curr_answers = [post_process_answer(x, self.entity_dict) for x in curr_answers]
|