Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- masked-image-modeling
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
datasets:
|
| 6 |
+
- hindawi
|
| 7 |
+
model-index:
|
| 8 |
+
- name: swinv2_arocr_tiny_encoder
|
| 9 |
+
results: []
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
+
|
| 15 |
+
# swinv2_arocr_tiny_encoder
|
| 16 |
+
|
| 17 |
+
This model is a fine-tuned version of [/lustre07/scratch/gagan30/arocr/models/swinv2_arocr_tiny/config.json](https://huggingface.co//lustre07/scratch/gagan30/arocr/models/swinv2_arocr_tiny/config.json) on the /lustre07/scratch/gagan30/arocr/Hindawi dataset.
|
| 18 |
+
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 0.0519
|
| 20 |
+
|
| 21 |
+
## Model description
|
| 22 |
+
|
| 23 |
+
More information needed
|
| 24 |
+
|
| 25 |
+
## Intended uses & limitations
|
| 26 |
+
|
| 27 |
+
More information needed
|
| 28 |
+
|
| 29 |
+
## Training and evaluation data
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Training procedure
|
| 34 |
+
|
| 35 |
+
### Training hyperparameters
|
| 36 |
+
|
| 37 |
+
The following hyperparameters were used during training:
|
| 38 |
+
- learning_rate: 5e-05
|
| 39 |
+
- train_batch_size: 8
|
| 40 |
+
- eval_batch_size: 8
|
| 41 |
+
- seed: 1337
|
| 42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 43 |
+
- lr_scheduler_type: linear
|
| 44 |
+
- num_epochs: 10.0
|
| 45 |
+
|
| 46 |
+
### Training results
|
| 47 |
+
|
| 48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
| 49 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
| 50 |
+
| 0.0891 | 1.0 | 8078 | 0.0628 |
|
| 51 |
+
| 0.0465 | 2.0 | 16156 | 0.0595 |
|
| 52 |
+
| 0.0639 | 3.0 | 24234 | 0.0570 |
|
| 53 |
+
| 0.0608 | 4.0 | 32312 | 0.0548 |
|
| 54 |
+
| 0.0487 | 5.0 | 40390 | 0.0554 |
|
| 55 |
+
| 0.059 | 6.0 | 48468 | 0.0533 |
|
| 56 |
+
| 0.0677 | 7.0 | 56546 | 0.0525 |
|
| 57 |
+
| 0.0555 | 8.0 | 64624 | 0.0521 |
|
| 58 |
+
| 0.0502 | 9.0 | 72702 | 0.0520 |
|
| 59 |
+
| 0.0496 | 10.0 | 80780 | 0.0519 |
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
### Framework versions
|
| 63 |
+
|
| 64 |
+
- Transformers 4.26.0.dev0
|
| 65 |
+
- Pytorch 1.12.0
|
| 66 |
+
- Datasets 2.7.1
|
| 67 |
+
- Tokenizers 0.11.6
|