File size: 1,363 Bytes
d92fb4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
language:
- en
library_name: transformers
tags:
- glm
- MOE
- pruning
- compression
- mlx
- mlx-my-repo
license: mit
name: cerebras/GLM-4.5-Air-REAP-82B-A12B
description: 'This model was obtained by uniformly pruning 25% of experts in GLM-4.5-Air
  using the REAP method.

  '
readme: 'https://huggingface.co/cerebras/GLM-4.5-Air-REAP-82B-A12B/main/README.md

  '
license_link: https://huggingface.co/zai-org/GLM-4.5-Air/blob/main/LICENSE
pipeline_tag: text-generation
base_model: cerebras/GLM-4.5-Air-REAP-82B-A12B
---

# garrison/GLM-4.5-Air-REAP-82B-A12B-mlx-8Bit

The Model [garrison/GLM-4.5-Air-REAP-82B-A12B-mlx-8Bit](https://huggingface.co/garrison/GLM-4.5-Air-REAP-82B-A12B-mlx-8Bit) was converted to MLX format from [cerebras/GLM-4.5-Air-REAP-82B-A12B](https://huggingface.co/cerebras/GLM-4.5-Air-REAP-82B-A12B) using mlx-lm version **0.28.3**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("garrison/GLM-4.5-Air-REAP-82B-A12B-mlx-8Bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```