Version_concise_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold0
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6169
- Qwk: 0.5381
- Mse: 0.6169
- Rmse: 0.7854
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|---|---|---|---|---|---|---|
| No log | 1.0 | 5 | 7.0689 | 0.0 | 7.0689 | 2.6587 |
| No log | 2.0 | 10 | 4.9016 | 0.0115 | 4.9016 | 2.2140 |
| No log | 3.0 | 15 | 2.8927 | 0.0 | 2.8927 | 1.7008 |
| No log | 4.0 | 20 | 1.5074 | 0.0316 | 1.5074 | 1.2278 |
| No log | 5.0 | 25 | 1.0464 | 0.0316 | 1.0464 | 1.0229 |
| No log | 6.0 | 30 | 1.3228 | 0.0675 | 1.3228 | 1.1501 |
| No log | 7.0 | 35 | 1.1538 | 0.1546 | 1.1538 | 1.0741 |
| No log | 8.0 | 40 | 0.7206 | 0.4426 | 0.7206 | 0.8489 |
| No log | 9.0 | 45 | 0.6296 | 0.4904 | 0.6296 | 0.7935 |
| No log | 10.0 | 50 | 0.7322 | 0.4464 | 0.7322 | 0.8557 |
| No log | 11.0 | 55 | 0.6800 | 0.4356 | 0.6800 | 0.8246 |
| No log | 12.0 | 60 | 0.6277 | 0.3744 | 0.6277 | 0.7923 |
| No log | 13.0 | 65 | 0.6225 | 0.5098 | 0.6225 | 0.7890 |
| No log | 14.0 | 70 | 0.6623 | 0.5184 | 0.6623 | 0.8138 |
| No log | 15.0 | 75 | 0.6594 | 0.5071 | 0.6594 | 0.8120 |
| No log | 16.0 | 80 | 0.6936 | 0.4945 | 0.6936 | 0.8328 |
| No log | 17.0 | 85 | 0.7398 | 0.5111 | 0.7398 | 0.8601 |
| No log | 18.0 | 90 | 0.7472 | 0.5039 | 0.7472 | 0.8644 |
| No log | 19.0 | 95 | 0.7819 | 0.5012 | 0.7819 | 0.8842 |
| No log | 20.0 | 100 | 0.7144 | 0.4763 | 0.7144 | 0.8452 |
| No log | 21.0 | 105 | 0.6969 | 0.5092 | 0.6969 | 0.8348 |
| No log | 22.0 | 110 | 0.6896 | 0.5343 | 0.6896 | 0.8304 |
| No log | 23.0 | 115 | 0.6530 | 0.5288 | 0.6530 | 0.8081 |
| No log | 24.0 | 120 | 0.6753 | 0.5294 | 0.6753 | 0.8217 |
| No log | 25.0 | 125 | 0.7361 | 0.5046 | 0.7361 | 0.8579 |
| No log | 26.0 | 130 | 0.6318 | 0.5083 | 0.6318 | 0.7949 |
| No log | 27.0 | 135 | 0.6690 | 0.5301 | 0.6690 | 0.8179 |
| No log | 28.0 | 140 | 0.7393 | 0.5132 | 0.7393 | 0.8598 |
| No log | 29.0 | 145 | 0.6392 | 0.5346 | 0.6392 | 0.7995 |
| No log | 30.0 | 150 | 0.7088 | 0.5300 | 0.7088 | 0.8419 |
| No log | 31.0 | 155 | 0.6546 | 0.5406 | 0.6546 | 0.8091 |
| No log | 32.0 | 160 | 0.8006 | 0.5092 | 0.8006 | 0.8948 |
| No log | 33.0 | 165 | 0.8333 | 0.4604 | 0.8333 | 0.9128 |
| No log | 34.0 | 170 | 0.6704 | 0.5021 | 0.6704 | 0.8188 |
| No log | 35.0 | 175 | 0.6613 | 0.5267 | 0.6613 | 0.8132 |
| No log | 36.0 | 180 | 0.6717 | 0.5359 | 0.6717 | 0.8196 |
| No log | 37.0 | 185 | 0.6712 | 0.4896 | 0.6712 | 0.8193 |
| No log | 38.0 | 190 | 0.8100 | 0.4679 | 0.8100 | 0.9000 |
| No log | 39.0 | 195 | 0.6176 | 0.5379 | 0.6176 | 0.7859 |
| No log | 40.0 | 200 | 0.6463 | 0.5061 | 0.6463 | 0.8039 |
| No log | 41.0 | 205 | 0.6693 | 0.5321 | 0.6693 | 0.8181 |
| No log | 42.0 | 210 | 0.6689 | 0.5236 | 0.6689 | 0.8179 |
| No log | 43.0 | 215 | 0.6338 | 0.5252 | 0.6338 | 0.7961 |
| No log | 44.0 | 220 | 0.7406 | 0.5237 | 0.7406 | 0.8606 |
| No log | 45.0 | 225 | 0.5935 | 0.5121 | 0.5935 | 0.7704 |
| No log | 46.0 | 230 | 0.6783 | 0.5252 | 0.6783 | 0.8236 |
| No log | 47.0 | 235 | 0.6043 | 0.5096 | 0.6043 | 0.7774 |
| No log | 48.0 | 240 | 0.6243 | 0.5496 | 0.6243 | 0.7901 |
| No log | 49.0 | 245 | 0.7634 | 0.5060 | 0.7634 | 0.8737 |
| No log | 50.0 | 250 | 0.6076 | 0.5324 | 0.6076 | 0.7795 |
| No log | 51.0 | 255 | 0.7197 | 0.5196 | 0.7197 | 0.8483 |
| No log | 52.0 | 260 | 0.6960 | 0.5214 | 0.6960 | 0.8343 |
| No log | 53.0 | 265 | 0.6090 | 0.5434 | 0.6090 | 0.7804 |
| No log | 54.0 | 270 | 0.6279 | 0.5343 | 0.6279 | 0.7924 |
| No log | 55.0 | 275 | 0.6618 | 0.5277 | 0.6618 | 0.8135 |
| No log | 56.0 | 280 | 0.6316 | 0.5271 | 0.6316 | 0.7947 |
| No log | 57.0 | 285 | 0.6353 | 0.5463 | 0.6353 | 0.7971 |
| No log | 58.0 | 290 | 0.6733 | 0.5251 | 0.6733 | 0.8206 |
| No log | 59.0 | 295 | 0.6261 | 0.5425 | 0.6261 | 0.7912 |
| No log | 60.0 | 300 | 0.7170 | 0.5219 | 0.7170 | 0.8467 |
| No log | 61.0 | 305 | 0.6152 | 0.5364 | 0.6152 | 0.7844 |
| No log | 62.0 | 310 | 0.5982 | 0.5410 | 0.5982 | 0.7734 |
| No log | 63.0 | 315 | 0.6448 | 0.5292 | 0.6448 | 0.8030 |
| No log | 64.0 | 320 | 0.6152 | 0.5622 | 0.6152 | 0.7843 |
| No log | 65.0 | 325 | 0.6329 | 0.5325 | 0.6329 | 0.7955 |
| No log | 66.0 | 330 | 0.6132 | 0.5286 | 0.6132 | 0.7831 |
| No log | 67.0 | 335 | 0.6760 | 0.5254 | 0.6760 | 0.8222 |
| No log | 68.0 | 340 | 0.6107 | 0.5510 | 0.6107 | 0.7815 |
| No log | 69.0 | 345 | 0.6247 | 0.5379 | 0.6247 | 0.7904 |
| No log | 70.0 | 350 | 0.6375 | 0.5292 | 0.6375 | 0.7984 |
| No log | 71.0 | 355 | 0.6433 | 0.5269 | 0.6433 | 0.8020 |
| No log | 72.0 | 360 | 0.6793 | 0.5156 | 0.6793 | 0.8242 |
| No log | 73.0 | 365 | 0.6227 | 0.5353 | 0.6227 | 0.7891 |
| No log | 74.0 | 370 | 0.6099 | 0.5383 | 0.6099 | 0.7810 |
| No log | 75.0 | 375 | 0.6483 | 0.5372 | 0.6483 | 0.8052 |
| No log | 76.0 | 380 | 0.6201 | 0.5341 | 0.6201 | 0.7875 |
| No log | 77.0 | 385 | 0.6398 | 0.5359 | 0.6398 | 0.7999 |
| No log | 78.0 | 390 | 0.6274 | 0.5340 | 0.6274 | 0.7921 |
| No log | 79.0 | 395 | 0.6400 | 0.5378 | 0.6400 | 0.8000 |
| No log | 80.0 | 400 | 0.6308 | 0.5274 | 0.6308 | 0.7942 |
| No log | 81.0 | 405 | 0.6584 | 0.5259 | 0.6584 | 0.8114 |
| No log | 82.0 | 410 | 0.6142 | 0.5321 | 0.6142 | 0.7837 |
| No log | 83.0 | 415 | 0.6236 | 0.5295 | 0.6236 | 0.7897 |
| No log | 84.0 | 420 | 0.6169 | 0.5381 | 0.6169 | 0.7854 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- -
Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold0
Base model
google-bert/bert-base-uncased