Version_concise_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6169
  • Qwk: 0.5381
  • Mse: 0.6169
  • Rmse: 0.7854

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 5 7.0689 0.0 7.0689 2.6587
No log 2.0 10 4.9016 0.0115 4.9016 2.2140
No log 3.0 15 2.8927 0.0 2.8927 1.7008
No log 4.0 20 1.5074 0.0316 1.5074 1.2278
No log 5.0 25 1.0464 0.0316 1.0464 1.0229
No log 6.0 30 1.3228 0.0675 1.3228 1.1501
No log 7.0 35 1.1538 0.1546 1.1538 1.0741
No log 8.0 40 0.7206 0.4426 0.7206 0.8489
No log 9.0 45 0.6296 0.4904 0.6296 0.7935
No log 10.0 50 0.7322 0.4464 0.7322 0.8557
No log 11.0 55 0.6800 0.4356 0.6800 0.8246
No log 12.0 60 0.6277 0.3744 0.6277 0.7923
No log 13.0 65 0.6225 0.5098 0.6225 0.7890
No log 14.0 70 0.6623 0.5184 0.6623 0.8138
No log 15.0 75 0.6594 0.5071 0.6594 0.8120
No log 16.0 80 0.6936 0.4945 0.6936 0.8328
No log 17.0 85 0.7398 0.5111 0.7398 0.8601
No log 18.0 90 0.7472 0.5039 0.7472 0.8644
No log 19.0 95 0.7819 0.5012 0.7819 0.8842
No log 20.0 100 0.7144 0.4763 0.7144 0.8452
No log 21.0 105 0.6969 0.5092 0.6969 0.8348
No log 22.0 110 0.6896 0.5343 0.6896 0.8304
No log 23.0 115 0.6530 0.5288 0.6530 0.8081
No log 24.0 120 0.6753 0.5294 0.6753 0.8217
No log 25.0 125 0.7361 0.5046 0.7361 0.8579
No log 26.0 130 0.6318 0.5083 0.6318 0.7949
No log 27.0 135 0.6690 0.5301 0.6690 0.8179
No log 28.0 140 0.7393 0.5132 0.7393 0.8598
No log 29.0 145 0.6392 0.5346 0.6392 0.7995
No log 30.0 150 0.7088 0.5300 0.7088 0.8419
No log 31.0 155 0.6546 0.5406 0.6546 0.8091
No log 32.0 160 0.8006 0.5092 0.8006 0.8948
No log 33.0 165 0.8333 0.4604 0.8333 0.9128
No log 34.0 170 0.6704 0.5021 0.6704 0.8188
No log 35.0 175 0.6613 0.5267 0.6613 0.8132
No log 36.0 180 0.6717 0.5359 0.6717 0.8196
No log 37.0 185 0.6712 0.4896 0.6712 0.8193
No log 38.0 190 0.8100 0.4679 0.8100 0.9000
No log 39.0 195 0.6176 0.5379 0.6176 0.7859
No log 40.0 200 0.6463 0.5061 0.6463 0.8039
No log 41.0 205 0.6693 0.5321 0.6693 0.8181
No log 42.0 210 0.6689 0.5236 0.6689 0.8179
No log 43.0 215 0.6338 0.5252 0.6338 0.7961
No log 44.0 220 0.7406 0.5237 0.7406 0.8606
No log 45.0 225 0.5935 0.5121 0.5935 0.7704
No log 46.0 230 0.6783 0.5252 0.6783 0.8236
No log 47.0 235 0.6043 0.5096 0.6043 0.7774
No log 48.0 240 0.6243 0.5496 0.6243 0.7901
No log 49.0 245 0.7634 0.5060 0.7634 0.8737
No log 50.0 250 0.6076 0.5324 0.6076 0.7795
No log 51.0 255 0.7197 0.5196 0.7197 0.8483
No log 52.0 260 0.6960 0.5214 0.6960 0.8343
No log 53.0 265 0.6090 0.5434 0.6090 0.7804
No log 54.0 270 0.6279 0.5343 0.6279 0.7924
No log 55.0 275 0.6618 0.5277 0.6618 0.8135
No log 56.0 280 0.6316 0.5271 0.6316 0.7947
No log 57.0 285 0.6353 0.5463 0.6353 0.7971
No log 58.0 290 0.6733 0.5251 0.6733 0.8206
No log 59.0 295 0.6261 0.5425 0.6261 0.7912
No log 60.0 300 0.7170 0.5219 0.7170 0.8467
No log 61.0 305 0.6152 0.5364 0.6152 0.7844
No log 62.0 310 0.5982 0.5410 0.5982 0.7734
No log 63.0 315 0.6448 0.5292 0.6448 0.8030
No log 64.0 320 0.6152 0.5622 0.6152 0.7843
No log 65.0 325 0.6329 0.5325 0.6329 0.7955
No log 66.0 330 0.6132 0.5286 0.6132 0.7831
No log 67.0 335 0.6760 0.5254 0.6760 0.8222
No log 68.0 340 0.6107 0.5510 0.6107 0.7815
No log 69.0 345 0.6247 0.5379 0.6247 0.7904
No log 70.0 350 0.6375 0.5292 0.6375 0.7984
No log 71.0 355 0.6433 0.5269 0.6433 0.8020
No log 72.0 360 0.6793 0.5156 0.6793 0.8242
No log 73.0 365 0.6227 0.5353 0.6227 0.7891
No log 74.0 370 0.6099 0.5383 0.6099 0.7810
No log 75.0 375 0.6483 0.5372 0.6483 0.8052
No log 76.0 380 0.6201 0.5341 0.6201 0.7875
No log 77.0 385 0.6398 0.5359 0.6398 0.7999
No log 78.0 390 0.6274 0.5340 0.6274 0.7921
No log 79.0 395 0.6400 0.5378 0.6400 0.8000
No log 80.0 400 0.6308 0.5274 0.6308 0.7942
No log 81.0 405 0.6584 0.5259 0.6584 0.8114
No log 82.0 410 0.6142 0.5321 0.6142 0.7837
No log 83.0 415 0.6236 0.5295 0.6236 0.7897
No log 84.0 420 0.6169 0.5381 0.6169 0.7854

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold0

Finetuned
(6024)
this model