File size: 25,854 Bytes
dec6b55 0ed75c0 dec6b55 0ed75c0 dec6b55 0ed75c0 dec6b55 0ed75c0 3ea23a6 0ed75c0 3ea23a6 0ed75c0 dec6b55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import time
from typing import List, Optional, Tuple
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
import torchvision.transforms.functional as f
from pydantic import BaseModel
import logging
logger = logging.getLogger(__name__)
class BoundingBox(BaseModel):
x1: int
y1: int
x2: int
y2: int
cls_id: int
conf: float
class TVFrameResult(BaseModel):
frame_id: int
boxes: list[BoundingBox]
keypoints: list[tuple[int, int]]
BatchNorm2d = nn.BatchNorm2d
BN_MOMENTUM = 0.1
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3,
stride=stride, padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
bias=False)
self.bn3 = BatchNorm2d(planes * self.expansion,
momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class HighResolutionModule(nn.Module):
def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
num_channels, fuse_method, multi_scale_output=True):
super(HighResolutionModule, self).__init__()
self._check_branches(
num_branches, blocks, num_blocks, num_inchannels, num_channels)
self.num_inchannels = num_inchannels
self.fuse_method = fuse_method
self.num_branches = num_branches
self.multi_scale_output = multi_scale_output
self.branches = self._make_branches(
num_branches, blocks, num_blocks, num_channels)
self.fuse_layers = self._make_fuse_layers()
self.relu = nn.ReLU(inplace=True)
def _check_branches(self, num_branches, blocks, num_blocks,
num_inchannels, num_channels):
if num_branches != len(num_blocks):
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
num_branches, len(num_blocks))
logger.error(error_msg)
raise ValueError(error_msg)
if num_branches != len(num_channels):
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
num_branches, len(num_channels))
logger.error(error_msg)
raise ValueError(error_msg)
if num_branches != len(num_inchannels):
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
num_branches, len(num_inchannels))
logger.error(error_msg)
raise ValueError(error_msg)
def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
stride=1):
downsample = None
if stride != 1 or \
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.num_inchannels[branch_index],
num_channels[branch_index] * block.expansion,
kernel_size=1, stride=stride, bias=False),
BatchNorm2d(num_channels[branch_index] * block.expansion,
momentum=BN_MOMENTUM),
)
layers = []
layers.append(block(self.num_inchannels[branch_index],
num_channels[branch_index], stride, downsample))
self.num_inchannels[branch_index] = \
num_channels[branch_index] * block.expansion
for i in range(1, num_blocks[branch_index]):
layers.append(block(self.num_inchannels[branch_index],
num_channels[branch_index]))
return nn.Sequential(*layers)
def _make_branches(self, num_branches, block, num_blocks, num_channels):
branches = []
for i in range(num_branches):
branches.append(
self._make_one_branch(i, block, num_blocks, num_channels))
return nn.ModuleList(branches)
def _make_fuse_layers(self):
if self.num_branches == 1:
return None
num_branches = self.num_branches
num_inchannels = self.num_inchannels
fuse_layers = []
for i in range(num_branches if self.multi_scale_output else 1):
fuse_layer = []
for j in range(num_branches):
if j > i:
fuse_layer.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_inchannels[i],
1,
1,
0,
bias=False),
BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM)))
# nn.Upsample(scale_factor=2**(j-i), mode='nearest')))
elif j == i:
fuse_layer.append(None)
else:
conv3x3s = []
for k in range(i - j):
if k == i - j - 1:
num_outchannels_conv3x3 = num_inchannels[i]
conv3x3s.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_outchannels_conv3x3,
3, 2, 1, bias=False),
BatchNorm2d(num_outchannels_conv3x3, momentum=BN_MOMENTUM)))
else:
num_outchannels_conv3x3 = num_inchannels[j]
conv3x3s.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_outchannels_conv3x3,
3, 2, 1, bias=False),
BatchNorm2d(num_outchannels_conv3x3,
momentum=BN_MOMENTUM),
nn.ReLU(inplace=True)))
fuse_layer.append(nn.Sequential(*conv3x3s))
fuse_layers.append(nn.ModuleList(fuse_layer))
return nn.ModuleList(fuse_layers)
def get_num_inchannels(self):
return self.num_inchannels
def forward(self, x):
if self.num_branches == 1:
return [self.branches[0](x[0])]
for i in range(self.num_branches):
x[i] = self.branches[i](x[i])
x_fuse = []
for i in range(len(self.fuse_layers)):
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
for j in range(1, self.num_branches):
if i == j:
y = y + x[j]
elif j > i:
y = y + F.interpolate(
self.fuse_layers[i][j](x[j]),
size=[x[i].shape[2], x[i].shape[3]],
mode='bilinear')
else:
y = y + self.fuse_layers[i][j](x[j])
x_fuse.append(self.relu(y))
return x_fuse
blocks_dict = {
'BASIC': BasicBlock,
'BOTTLENECK': Bottleneck
}
class HighResolutionNet(nn.Module):
def __init__(self, config, **kwargs):
self.inplanes = 64
extra = config['MODEL']['EXTRA']
super(HighResolutionNet, self).__init__()
# stem net
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=2, padding=1,
bias=False)
self.bn1 = BatchNorm2d(self.inplanes, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(self.inplanes, self.inplanes, kernel_size=3, stride=2, padding=1,
bias=False)
self.bn2 = BatchNorm2d(self.inplanes, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.sf = nn.Softmax(dim=1)
self.layer1 = self._make_layer(Bottleneck, 64, 64, 4)
self.stage2_cfg = extra['STAGE2']
num_channels = self.stage2_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage2_cfg['BLOCK']]
num_channels = [
num_channels[i] * block.expansion for i in range(len(num_channels))]
self.transition1 = self._make_transition_layer(
[256], num_channels)
self.stage2, pre_stage_channels = self._make_stage(
self.stage2_cfg, num_channels)
self.stage3_cfg = extra['STAGE3']
num_channels = self.stage3_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage3_cfg['BLOCK']]
num_channels = [
num_channels[i] * block.expansion for i in range(len(num_channels))]
self.transition2 = self._make_transition_layer(
pre_stage_channels, num_channels)
self.stage3, pre_stage_channels = self._make_stage(
self.stage3_cfg, num_channels)
self.stage4_cfg = extra['STAGE4']
num_channels = self.stage4_cfg['NUM_CHANNELS']
block = blocks_dict[self.stage4_cfg['BLOCK']]
num_channels = [
num_channels[i] * block.expansion for i in range(len(num_channels))]
self.transition3 = self._make_transition_layer(
pre_stage_channels, num_channels)
self.stage4, pre_stage_channels = self._make_stage(
self.stage4_cfg, num_channels, multi_scale_output=True)
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
final_inp_channels = sum(pre_stage_channels) + self.inplanes
self.head = nn.Sequential(nn.Sequential(
nn.Conv2d(
in_channels=final_inp_channels,
out_channels=final_inp_channels,
kernel_size=1),
BatchNorm2d(final_inp_channels, momentum=BN_MOMENTUM),
nn.ReLU(inplace=True),
nn.Conv2d(
in_channels=final_inp_channels,
out_channels=config['MODEL']['NUM_JOINTS'],
kernel_size=extra['FINAL_CONV_KERNEL']),
nn.Softmax(dim=1)))
def _make_head(self, x, x_skip):
x = self.upsample(x)
x = torch.cat([x, x_skip], dim=1)
x = self.head(x)
return x
def _make_transition_layer(
self, num_channels_pre_layer, num_channels_cur_layer):
num_branches_cur = len(num_channels_cur_layer)
num_branches_pre = len(num_channels_pre_layer)
transition_layers = []
for i in range(num_branches_cur):
if i < num_branches_pre:
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(nn.Sequential(
nn.Conv2d(num_channels_pre_layer[i],
num_channels_cur_layer[i],
3,
1,
1,
bias=False),
BatchNorm2d(
num_channels_cur_layer[i], momentum=BN_MOMENTUM),
nn.ReLU(inplace=True)))
else:
transition_layers.append(None)
else:
conv3x3s = []
for j in range(i + 1 - num_branches_pre):
inchannels = num_channels_pre_layer[-1]
outchannels = num_channels_cur_layer[i] \
if j == i - num_branches_pre else inchannels
conv3x3s.append(nn.Sequential(
nn.Conv2d(
inchannels, outchannels, 3, 2, 1, bias=False),
BatchNorm2d(outchannels, momentum=BN_MOMENTUM),
nn.ReLU(inplace=True)))
transition_layers.append(nn.Sequential(*conv3x3s))
return nn.ModuleList(transition_layers)
def _make_layer(self, block, inplanes, planes, blocks, stride=1):
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
)
layers = []
layers.append(block(inplanes, planes, stride, downsample))
inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(inplanes, planes))
return nn.Sequential(*layers)
def _make_stage(self, layer_config, num_inchannels,
multi_scale_output=True):
num_modules = layer_config['NUM_MODULES']
num_branches = layer_config['NUM_BRANCHES']
num_blocks = layer_config['NUM_BLOCKS']
num_channels = layer_config['NUM_CHANNELS']
block = blocks_dict[layer_config['BLOCK']]
fuse_method = layer_config['FUSE_METHOD']
modules = []
for i in range(num_modules):
# multi_scale_output is only used last module
if not multi_scale_output and i == num_modules - 1:
reset_multi_scale_output = False
else:
reset_multi_scale_output = True
modules.append(
HighResolutionModule(num_branches,
block,
num_blocks,
num_inchannels,
num_channels,
fuse_method,
reset_multi_scale_output)
)
num_inchannels = modules[-1].get_num_inchannels()
return nn.Sequential(*modules), num_inchannels
def forward(self, x):
# h, w = x.size(2), x.size(3)
x = self.conv1(x)
x_skip = x.clone()
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.layer1(x)
x_list = []
for i in range(self.stage2_cfg['NUM_BRANCHES']):
if self.transition1[i] is not None:
x_list.append(self.transition1[i](x))
else:
x_list.append(x)
y_list = self.stage2(x_list)
x_list = []
for i in range(self.stage3_cfg['NUM_BRANCHES']):
if self.transition2[i] is not None:
x_list.append(self.transition2[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage3(x_list)
x_list = []
for i in range(self.stage4_cfg['NUM_BRANCHES']):
if self.transition3[i] is not None:
x_list.append(self.transition3[i](y_list[-1]))
else:
x_list.append(y_list[i])
x = self.stage4(x_list)
# Head Part
height, width = x[0].size(2), x[0].size(3)
x1 = F.interpolate(x[1], size=(height, width), mode='bilinear', align_corners=False)
x2 = F.interpolate(x[2], size=(height, width), mode='bilinear', align_corners=False)
x3 = F.interpolate(x[3], size=(height, width), mode='bilinear', align_corners=False)
x = torch.cat([x[0], x1, x2, x3], 1)
x = self._make_head(x, x_skip)
return x
def init_weights(self, pretrained=''):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
#nn.init.normal_(m.weight, std=0.001)
#nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if pretrained != '':
if os.path.isfile(pretrained):
pretrained_dict = torch.load(pretrained)
model_dict = self.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items()
if k in model_dict.keys()}
model_dict.update(pretrained_dict)
self.load_state_dict(model_dict)
else:
sys.exit(f'Weights {pretrained} not found.')
def get_cls_net(config, pretrained='', **kwargs):
"""Create keypoint detection model with softmax activation"""
model = HighResolutionNet(config, **kwargs)
model.init_weights(pretrained)
return model
def get_cls_net_l(config, pretrained='', **kwargs):
"""Create line detection model with sigmoid activation"""
model = HighResolutionNet(config, **kwargs)
model.init_weights(pretrained)
# After loading weights, replace just the activation function
# The saved model expects the nested Sequential structure
inner_seq = model.head[0]
# Replace softmax (index 4) with sigmoid
model.head[0][4] = nn.Sigmoid()
return model
# Simplified utility functions - removed complex Gaussian generation functions
# These were mainly used for training data generation, not inference
# generate_gaussian_array_vectorized_dist_l function removed - not used in current implementation
@torch.inference_mode()
def run_inference(model, input_tensor: torch.Tensor, device):
input_tensor = input_tensor.to(device).to(memory_format=torch.channels_last)
output = model.module().forward(input_tensor)
return output
def preprocess_batch_fast(frames):
"""Ultra-fast batch preprocessing using optimized tensor operations"""
target_size = (540, 960) # H, W format for model input
batch = []
for i, frame in enumerate(frames):
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = cv2.resize(frame_rgb, (target_size[1], target_size[0]))
img = img.astype(np.float32) / 255.0
img = np.transpose(img, (2, 0, 1)) # HWC -> CHW
batch.append(img)
batch = torch.from_numpy(np.stack(batch)).float()
return batch
def extract_keypoints_from_heatmap(heatmap: torch.Tensor, scale: int = 2, max_keypoints: int = 1):
"""Optimized keypoint extraction from heatmaps"""
batch_size, n_channels, height, width = heatmap.shape
# Find local maxima using max pooling (keep on GPU)
kernel = 3
pad = 1
max_pooled = F.max_pool2d(heatmap, kernel, stride=1, padding=pad)
local_maxima = (max_pooled == heatmap)
heatmap = heatmap * local_maxima
# Get top keypoints (keep on GPU longer)
scores, indices = torch.topk(heatmap.view(batch_size, n_channels, -1), max_keypoints, sorted=False)
y_coords = torch.div(indices, width, rounding_mode="floor")
x_coords = indices % width
# Optimized tensor operations
x_coords = x_coords * scale
y_coords = y_coords * scale
# Create result tensor directly on GPU
results = torch.stack([x_coords.float(), y_coords.float(), scores], dim=-1)
return results
def extract_keypoints_from_heatmap_fast(heatmap: torch.Tensor, scale: int = 2, max_keypoints: int = 1):
"""Ultra-fast keypoint extraction optimized for speed"""
batch_size, n_channels, height, width = heatmap.shape
# Simplified local maxima detection (faster but slightly less accurate)
max_pooled = F.max_pool2d(heatmap, 3, stride=1, padding=1)
local_maxima = (max_pooled == heatmap)
# Apply mask and get top keypoints in one go
masked_heatmap = heatmap * local_maxima
flat_heatmap = masked_heatmap.view(batch_size, n_channels, -1)
scores, indices = torch.topk(flat_heatmap, max_keypoints, dim=-1, sorted=False)
# Vectorized coordinate calculation
y_coords = torch.div(indices, width, rounding_mode="floor") * scale
x_coords = (indices % width) * scale
# Stack results efficiently
results = torch.stack([x_coords.float(), y_coords.float(), scores], dim=-1)
return results
def process_keypoints_vectorized(kp_coords, kp_threshold, w, h, batch_size):
"""Ultra-fast vectorized keypoint processing"""
batch_results = []
# Convert to numpy once for faster CPU operations
kp_np = kp_coords.cpu().numpy()
for batch_idx in range(batch_size):
kp_dict = {}
# Vectorized threshold check
valid_kps = kp_np[batch_idx, :, 0, 2] > kp_threshold
valid_indices = np.where(valid_kps)[0]
for ch_idx in valid_indices:
x = float(kp_np[batch_idx, ch_idx, 0, 0]) / w
y = float(kp_np[batch_idx, ch_idx, 0, 1]) / h
p = float(kp_np[batch_idx, ch_idx, 0, 2])
kp_dict[ch_idx + 1] = {'x': x, 'y': y, 'p': p}
batch_results.append(kp_dict)
return batch_results
def inference_batch(frames, model, kp_threshold, device, batch_size=8):
"""Optimized batch inference for multiple frames"""
results = []
num_frames = len(frames)
# Get the device from the model itself
model_device = next(model.parameters()).device
# Process all frames in optimally-sized batches
for i in range(0, num_frames, batch_size):
current_batch_size = min(batch_size, num_frames - i)
batch_frames = frames[i:i + current_batch_size]
# Fast preprocessing - create on CPU first
batch = preprocess_batch_fast(batch_frames)
b, c, h, w = batch.size()
# Move batch to model device
batch = batch.to(model_device)
with torch.no_grad():
heatmaps = model(batch)
# Ultra-fast keypoint extraction
kp_coords = extract_keypoints_from_heatmap_fast(heatmaps[:,:-1,:,:], scale=2, max_keypoints=1)
# Vectorized batch processing - no loops
batch_results = process_keypoints_vectorized(kp_coords, kp_threshold, 960, 540, current_batch_size)
results.extend(batch_results)
# Minimal cleanup
del heatmaps, kp_coords, batch
return results
# Keypoint mapping from detection indices to standard football pitch keypoint IDs
map_keypoints = {
1: 1, 2: 14, 3: 25, 4: 2, 5: 10, 6: 18, 7: 26, 8: 3, 9: 7, 10: 23,
11: 27, 20: 4, 21: 8, 22: 24, 23: 28, 24: 5, 25: 13, 26: 21, 27: 29,
28: 6, 29: 17, 30: 30, 31: 11, 32: 15, 33: 19, 34: 12, 35: 16, 36: 20,
45: 9, 50: 31, 52: 32, 57: 22
}
def get_mapped_keypoints(kp_points):
"""Apply keypoint mapping to detection results"""
mapped_points = {}
for key, value in kp_points.items():
if key in map_keypoints:
mapped_key = map_keypoints[key]
mapped_points[mapped_key] = value
# else:
# Keep unmapped keypoints with original key
# mapped_points[key] = value
return mapped_points
def process_batch_input(frames, model, kp_threshold, device, batch_size=8):
"""Process multiple input images in batch"""
# Batch inference
kp_results = inference_batch(frames, model, kp_threshold, device, batch_size)
kp_results = [get_mapped_keypoints(kp) for kp in kp_results]
# Draw results and save
# for i, (frame, kp_points, input_path) in enumerate(zip(frames, kp_results, valid_paths)):
# height, width = frame.shape[:2]
# # Apply mapping to get standard keypoint IDs
# mapped_kp_points = get_mapped_keypoints(kp_points)
# for key, value in mapped_kp_points.items():
# x = int(value['x'] * width)
# y = int(value['y'] * height)
# cv2.circle(frame, (x, y), 5, (0, 255, 0), -1) # Green circles
# cv2.putText(frame, str(key), (x+10, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# # Save result
# output_path = input_path.replace('.png', '_result.png').replace('.jpg', '_result.jpg')
# cv2.imwrite(output_path, frame)
# print(f"Batch processing complete. Processed {len(frames)} images.")
return kp_results |