File size: 25,854 Bytes
dec6b55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ed75c0
dec6b55
 
 
 
 
 
 
 
 
0ed75c0
dec6b55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ed75c0
 
 
dec6b55
 
 
 
 
0ed75c0
 
3ea23a6
0ed75c0
 
 
3ea23a6
0ed75c0
 
dec6b55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import time
from typing import List, Optional, Tuple

import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
import torchvision.transforms.functional as f
from pydantic import BaseModel

import logging
logger = logging.getLogger(__name__)


class BoundingBox(BaseModel):
    x1: int
    y1: int
    x2: int
    y2: int
    cls_id: int
    conf: float


class TVFrameResult(BaseModel):
    frame_id: int
    boxes: list[BoundingBox]
    keypoints: list[tuple[int, int]]

BatchNorm2d = nn.BatchNorm2d
BN_MOMENTUM = 0.1

def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3,
                     stride=stride, padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
                               bias=False)
        self.bn3 = BatchNorm2d(planes * self.expansion,
                               momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class HighResolutionModule(nn.Module):
    def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
                 num_channels, fuse_method, multi_scale_output=True):
        super(HighResolutionModule, self).__init__()
        self._check_branches(
            num_branches, blocks, num_blocks, num_inchannels, num_channels)

        self.num_inchannels = num_inchannels
        self.fuse_method = fuse_method
        self.num_branches = num_branches

        self.multi_scale_output = multi_scale_output

        self.branches = self._make_branches(
            num_branches, blocks, num_blocks, num_channels)
        self.fuse_layers = self._make_fuse_layers()
        self.relu = nn.ReLU(inplace=True)

    def _check_branches(self, num_branches, blocks, num_blocks,
                        num_inchannels, num_channels):
        if num_branches != len(num_blocks):
            error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
                num_branches, len(num_blocks))
            logger.error(error_msg)
            raise ValueError(error_msg)

        if num_branches != len(num_channels):
            error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
                num_branches, len(num_channels))
            logger.error(error_msg)
            raise ValueError(error_msg)

        if num_branches != len(num_inchannels):
            error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
                num_branches, len(num_inchannels))
            logger.error(error_msg)
            raise ValueError(error_msg)

    def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
                         stride=1):
        downsample = None
        if stride != 1 or \
                self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.num_inchannels[branch_index],
                          num_channels[branch_index] * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                BatchNorm2d(num_channels[branch_index] * block.expansion,
                            momentum=BN_MOMENTUM),
            )

        layers = []
        layers.append(block(self.num_inchannels[branch_index],
                            num_channels[branch_index], stride, downsample))
        self.num_inchannels[branch_index] = \
            num_channels[branch_index] * block.expansion
        for i in range(1, num_blocks[branch_index]):
            layers.append(block(self.num_inchannels[branch_index],
                                num_channels[branch_index]))

        return nn.Sequential(*layers)

    def _make_branches(self, num_branches, block, num_blocks, num_channels):
        branches = []

        for i in range(num_branches):
            branches.append(
                self._make_one_branch(i, block, num_blocks, num_channels))

        return nn.ModuleList(branches)

    def _make_fuse_layers(self):
        if self.num_branches == 1:
            return None

        num_branches = self.num_branches
        num_inchannels = self.num_inchannels
        fuse_layers = []
        for i in range(num_branches if self.multi_scale_output else 1):
            fuse_layer = []
            for j in range(num_branches):
                if j > i:
                    fuse_layer.append(nn.Sequential(
                        nn.Conv2d(num_inchannels[j],
                                  num_inchannels[i],
                                  1,
                                  1,
                                  0,
                                  bias=False),
                        BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM)))
                    # nn.Upsample(scale_factor=2**(j-i), mode='nearest')))
                elif j == i:
                    fuse_layer.append(None)
                else:
                    conv3x3s = []
                    for k in range(i - j):
                        if k == i - j - 1:
                            num_outchannels_conv3x3 = num_inchannels[i]
                            conv3x3s.append(nn.Sequential(
                                nn.Conv2d(num_inchannels[j],
                                          num_outchannels_conv3x3,
                                          3, 2, 1, bias=False),
                                BatchNorm2d(num_outchannels_conv3x3, momentum=BN_MOMENTUM)))
                        else:
                            num_outchannels_conv3x3 = num_inchannels[j]
                            conv3x3s.append(nn.Sequential(
                                nn.Conv2d(num_inchannels[j],
                                          num_outchannels_conv3x3,
                                          3, 2, 1, bias=False),
                                BatchNorm2d(num_outchannels_conv3x3,
                                            momentum=BN_MOMENTUM),
                                nn.ReLU(inplace=True)))
                    fuse_layer.append(nn.Sequential(*conv3x3s))
            fuse_layers.append(nn.ModuleList(fuse_layer))

        return nn.ModuleList(fuse_layers)

    def get_num_inchannels(self):
        return self.num_inchannels

    def forward(self, x):
        if self.num_branches == 1:
            return [self.branches[0](x[0])]

        for i in range(self.num_branches):
            x[i] = self.branches[i](x[i])

        x_fuse = []
        for i in range(len(self.fuse_layers)):
            y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
            for j in range(1, self.num_branches):
                if i == j:
                    y = y + x[j]
                elif j > i:
                    y = y + F.interpolate(
                        self.fuse_layers[i][j](x[j]),
                        size=[x[i].shape[2], x[i].shape[3]],
                        mode='bilinear')
                else:
                    y = y + self.fuse_layers[i][j](x[j])
            x_fuse.append(self.relu(y))

        return x_fuse


blocks_dict = {
    'BASIC': BasicBlock,
    'BOTTLENECK': Bottleneck
}


class HighResolutionNet(nn.Module):

    def __init__(self, config, **kwargs):
        self.inplanes = 64
        extra = config['MODEL']['EXTRA']
        super(HighResolutionNet, self).__init__()

        # stem net
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=2, padding=1,
                               bias=False)
        self.bn1 = BatchNorm2d(self.inplanes, momentum=BN_MOMENTUM)
        self.conv2 = nn.Conv2d(self.inplanes, self.inplanes, kernel_size=3, stride=2, padding=1,
                               bias=False)
        self.bn2 = BatchNorm2d(self.inplanes, momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.sf = nn.Softmax(dim=1)
        self.layer1 = self._make_layer(Bottleneck, 64, 64, 4)

        self.stage2_cfg = extra['STAGE2']
        num_channels = self.stage2_cfg['NUM_CHANNELS']
        block = blocks_dict[self.stage2_cfg['BLOCK']]
        num_channels = [
            num_channels[i] * block.expansion for i in range(len(num_channels))]
        self.transition1 = self._make_transition_layer(
            [256], num_channels)
        self.stage2, pre_stage_channels = self._make_stage(
            self.stage2_cfg, num_channels)

        self.stage3_cfg = extra['STAGE3']
        num_channels = self.stage3_cfg['NUM_CHANNELS']
        block = blocks_dict[self.stage3_cfg['BLOCK']]
        num_channels = [
            num_channels[i] * block.expansion for i in range(len(num_channels))]
        self.transition2 = self._make_transition_layer(
            pre_stage_channels, num_channels)
        self.stage3, pre_stage_channels = self._make_stage(
            self.stage3_cfg, num_channels)

        self.stage4_cfg = extra['STAGE4']
        num_channels = self.stage4_cfg['NUM_CHANNELS']
        block = blocks_dict[self.stage4_cfg['BLOCK']]
        num_channels = [
            num_channels[i] * block.expansion for i in range(len(num_channels))]
        self.transition3 = self._make_transition_layer(
            pre_stage_channels, num_channels)
        self.stage4, pre_stage_channels = self._make_stage(
            self.stage4_cfg, num_channels, multi_scale_output=True)

        self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
        final_inp_channels = sum(pre_stage_channels) + self.inplanes

        self.head = nn.Sequential(nn.Sequential(
            nn.Conv2d(
                in_channels=final_inp_channels,
                out_channels=final_inp_channels,
                kernel_size=1),
            BatchNorm2d(final_inp_channels, momentum=BN_MOMENTUM),
            nn.ReLU(inplace=True),
            nn.Conv2d(
                in_channels=final_inp_channels,
                out_channels=config['MODEL']['NUM_JOINTS'],
                kernel_size=extra['FINAL_CONV_KERNEL']),
            nn.Softmax(dim=1)))



    def _make_head(self, x, x_skip):
        x = self.upsample(x)
        x = torch.cat([x, x_skip], dim=1)
        x = self.head(x)

        return x

    def _make_transition_layer(
            self, num_channels_pre_layer, num_channels_cur_layer):
        num_branches_cur = len(num_channels_cur_layer)
        num_branches_pre = len(num_channels_pre_layer)

        transition_layers = []
        for i in range(num_branches_cur):
            if i < num_branches_pre:
                if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
                    transition_layers.append(nn.Sequential(
                        nn.Conv2d(num_channels_pre_layer[i],
                                  num_channels_cur_layer[i],
                                  3,
                                  1,
                                  1,
                                  bias=False),
                        BatchNorm2d(
                            num_channels_cur_layer[i], momentum=BN_MOMENTUM),
                        nn.ReLU(inplace=True)))
                else:
                    transition_layers.append(None)
            else:
                conv3x3s = []
                for j in range(i + 1 - num_branches_pre):
                    inchannels = num_channels_pre_layer[-1]
                    outchannels = num_channels_cur_layer[i] \
                        if j == i - num_branches_pre else inchannels
                    conv3x3s.append(nn.Sequential(
                        nn.Conv2d(
                            inchannels, outchannels, 3, 2, 1, bias=False),
                        BatchNorm2d(outchannels, momentum=BN_MOMENTUM),
                        nn.ReLU(inplace=True)))
                transition_layers.append(nn.Sequential(*conv3x3s))

        return nn.ModuleList(transition_layers)

    def _make_layer(self, block, inplanes, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
            )

        layers = []
        layers.append(block(inplanes, planes, stride, downsample))
        inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(inplanes, planes))

        return nn.Sequential(*layers)

    def _make_stage(self, layer_config, num_inchannels,
                    multi_scale_output=True):
        num_modules = layer_config['NUM_MODULES']
        num_branches = layer_config['NUM_BRANCHES']
        num_blocks = layer_config['NUM_BLOCKS']
        num_channels = layer_config['NUM_CHANNELS']
        block = blocks_dict[layer_config['BLOCK']]
        fuse_method = layer_config['FUSE_METHOD']

        modules = []
        for i in range(num_modules):
            # multi_scale_output is only used last module
            if not multi_scale_output and i == num_modules - 1:
                reset_multi_scale_output = False
            else:
                reset_multi_scale_output = True
            modules.append(
                HighResolutionModule(num_branches,
                                     block,
                                     num_blocks,
                                     num_inchannels,
                                     num_channels,
                                     fuse_method,
                                     reset_multi_scale_output)
            )
            num_inchannels = modules[-1].get_num_inchannels()

        return nn.Sequential(*modules), num_inchannels

    def forward(self, x):
        # h, w = x.size(2), x.size(3)
        x = self.conv1(x)
        x_skip = x.clone()
        x = self.bn1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)
        x = self.layer1(x)

        x_list = []
        for i in range(self.stage2_cfg['NUM_BRANCHES']):
            if self.transition1[i] is not None:
                x_list.append(self.transition1[i](x))
            else:
                x_list.append(x)
        y_list = self.stage2(x_list)

        x_list = []
        for i in range(self.stage3_cfg['NUM_BRANCHES']):
            if self.transition2[i] is not None:
                x_list.append(self.transition2[i](y_list[-1]))
            else:
                x_list.append(y_list[i])
        y_list = self.stage3(x_list)

        x_list = []
        for i in range(self.stage4_cfg['NUM_BRANCHES']):
            if self.transition3[i] is not None:
                x_list.append(self.transition3[i](y_list[-1]))
            else:
                x_list.append(y_list[i])
        x = self.stage4(x_list)

        # Head Part
        height, width = x[0].size(2), x[0].size(3)
        x1 = F.interpolate(x[1], size=(height, width), mode='bilinear', align_corners=False)
        x2 = F.interpolate(x[2], size=(height, width), mode='bilinear', align_corners=False)
        x3 = F.interpolate(x[3], size=(height, width), mode='bilinear', align_corners=False)
        x = torch.cat([x[0], x1, x2, x3], 1)
        x = self._make_head(x, x_skip)

        return x

    def init_weights(self, pretrained=''):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                #nn.init.normal_(m.weight, std=0.001)
                #nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
        if pretrained != '':
            if os.path.isfile(pretrained):
                pretrained_dict = torch.load(pretrained)
                model_dict = self.state_dict()
                pretrained_dict = {k: v for k, v in pretrained_dict.items()
                                   if k in model_dict.keys()}
                model_dict.update(pretrained_dict)
                self.load_state_dict(model_dict)
            else:
                sys.exit(f'Weights {pretrained} not found.')


def get_cls_net(config, pretrained='', **kwargs):
    """Create keypoint detection model with softmax activation"""
    model = HighResolutionNet(config, **kwargs)
    model.init_weights(pretrained)
    return model


def get_cls_net_l(config, pretrained='', **kwargs):
    """Create line detection model with sigmoid activation"""
    model = HighResolutionNet(config, **kwargs)
    model.init_weights(pretrained)
    
    # After loading weights, replace just the activation function
    # The saved model expects the nested Sequential structure
    inner_seq = model.head[0]
    # Replace softmax (index 4) with sigmoid
    model.head[0][4] = nn.Sigmoid()
    
    return model

# Simplified utility functions - removed complex Gaussian generation functions
# These were mainly used for training data generation, not inference



# generate_gaussian_array_vectorized_dist_l function removed - not used in current implementation
@torch.inference_mode()
def run_inference(model, input_tensor: torch.Tensor, device):
    input_tensor = input_tensor.to(device).to(memory_format=torch.channels_last)
    output = model.module().forward(input_tensor)
    return output

def preprocess_batch_fast(frames):
    """Ultra-fast batch preprocessing using optimized tensor operations"""
    target_size = (540, 960)  # H, W format for model input
    batch = []
    for i, frame in enumerate(frames):
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        img = cv2.resize(frame_rgb, (target_size[1], target_size[0]))
        img = img.astype(np.float32) / 255.0
        img = np.transpose(img, (2, 0, 1))  # HWC -> CHW
        batch.append(img)
    batch = torch.from_numpy(np.stack(batch)).float()

    return batch

def extract_keypoints_from_heatmap(heatmap: torch.Tensor, scale: int = 2, max_keypoints: int = 1):
    """Optimized keypoint extraction from heatmaps"""
    batch_size, n_channels, height, width = heatmap.shape
    
    # Find local maxima using max pooling (keep on GPU)
    kernel = 3
    pad = 1
    max_pooled = F.max_pool2d(heatmap, kernel, stride=1, padding=pad)
    local_maxima = (max_pooled == heatmap)
    heatmap = heatmap * local_maxima
    
    # Get top keypoints (keep on GPU longer)
    scores, indices = torch.topk(heatmap.view(batch_size, n_channels, -1), max_keypoints, sorted=False)
    y_coords = torch.div(indices, width, rounding_mode="floor")
    x_coords = indices % width
    
    # Optimized tensor operations
    x_coords = x_coords * scale
    y_coords = y_coords * scale
    
    # Create result tensor directly on GPU
    results = torch.stack([x_coords.float(), y_coords.float(), scores], dim=-1)
    
    return results


def extract_keypoints_from_heatmap_fast(heatmap: torch.Tensor, scale: int = 2, max_keypoints: int = 1):
    """Ultra-fast keypoint extraction optimized for speed"""
    batch_size, n_channels, height, width = heatmap.shape
    
    # Simplified local maxima detection (faster but slightly less accurate)
    max_pooled = F.max_pool2d(heatmap, 3, stride=1, padding=1)
    local_maxima = (max_pooled == heatmap)
    
    # Apply mask and get top keypoints in one go
    masked_heatmap = heatmap * local_maxima
    flat_heatmap = masked_heatmap.view(batch_size, n_channels, -1)
    scores, indices = torch.topk(flat_heatmap, max_keypoints, dim=-1, sorted=False)
    
    # Vectorized coordinate calculation
    y_coords = torch.div(indices, width, rounding_mode="floor") * scale
    x_coords = (indices % width) * scale
    
    # Stack results efficiently
    results = torch.stack([x_coords.float(), y_coords.float(), scores], dim=-1)
    return results


def process_keypoints_vectorized(kp_coords, kp_threshold, w, h, batch_size):
    """Ultra-fast vectorized keypoint processing"""
    batch_results = []
    
    # Convert to numpy once for faster CPU operations
    kp_np = kp_coords.cpu().numpy()
    
    for batch_idx in range(batch_size):
        kp_dict = {}
        # Vectorized threshold check
        valid_kps = kp_np[batch_idx, :, 0, 2] > kp_threshold
        valid_indices = np.where(valid_kps)[0]
        
        for ch_idx in valid_indices:
            x = float(kp_np[batch_idx, ch_idx, 0, 0]) / w
            y = float(kp_np[batch_idx, ch_idx, 0, 1]) / h
            p = float(kp_np[batch_idx, ch_idx, 0, 2])
            kp_dict[ch_idx + 1] = {'x': x, 'y': y, 'p': p}
        
        batch_results.append(kp_dict)
    
    return batch_results

def inference_batch(frames, model, kp_threshold, device, batch_size=8):
    """Optimized batch inference for multiple frames"""
    results = []
    num_frames = len(frames)
    
    # Get the device from the model itself
    model_device = next(model.parameters()).device
    
    # Process all frames in optimally-sized batches
    for i in range(0, num_frames, batch_size):
        current_batch_size = min(batch_size, num_frames - i)
        batch_frames = frames[i:i + current_batch_size]
        
        # Fast preprocessing - create on CPU first
        batch = preprocess_batch_fast(batch_frames)
        b, c, h, w = batch.size()
        
        # Move batch to model device
        batch = batch.to(model_device)

        with torch.no_grad():
            heatmaps = model(batch)

        # Ultra-fast keypoint extraction
        kp_coords = extract_keypoints_from_heatmap_fast(heatmaps[:,:-1,:,:], scale=2, max_keypoints=1)
        
        # Vectorized batch processing - no loops
        batch_results = process_keypoints_vectorized(kp_coords, kp_threshold, 960, 540, current_batch_size)
        results.extend(batch_results)
        
        # Minimal cleanup
        del heatmaps, kp_coords, batch
    
    return results

# Keypoint mapping from detection indices to standard football pitch keypoint IDs
map_keypoints = {
    1: 1, 2: 14, 3: 25, 4: 2, 5: 10, 6: 18, 7: 26, 8: 3, 9: 7, 10: 23, 
    11: 27, 20: 4, 21: 8, 22: 24, 23: 28, 24: 5, 25: 13, 26: 21, 27: 29, 
    28: 6, 29: 17, 30: 30, 31: 11, 32: 15, 33: 19, 34: 12, 35: 16, 36: 20, 
    45: 9, 50: 31, 52: 32, 57: 22
}

def get_mapped_keypoints(kp_points):
    """Apply keypoint mapping to detection results"""
    mapped_points = {}
    for key, value in kp_points.items():
        if key in map_keypoints:
            mapped_key = map_keypoints[key]
            mapped_points[mapped_key] = value
        # else:
            # Keep unmapped keypoints with original key
            # mapped_points[key] = value
    return mapped_points

def process_batch_input(frames, model, kp_threshold, device, batch_size=8):
    """Process multiple input images in batch"""
    # Batch inference
    kp_results = inference_batch(frames, model, kp_threshold, device, batch_size)
    kp_results = [get_mapped_keypoints(kp) for kp in kp_results]
    # Draw results and save
    # for i, (frame, kp_points, input_path) in enumerate(zip(frames, kp_results, valid_paths)):
    #     height, width = frame.shape[:2]
        
    #     # Apply mapping to get standard keypoint IDs
    #     mapped_kp_points = get_mapped_keypoints(kp_points)
        
    #     for key, value in mapped_kp_points.items():
    #         x = int(value['x'] * width)
    #         y = int(value['y'] * height)
    #         cv2.circle(frame, (x, y), 5, (0, 255, 0), -1)  # Green circles
    #         cv2.putText(frame, str(key), (x+10, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
        
    #     # Save result
    #     output_path = input_path.replace('.png', '_result.png').replace('.jpg', '_result.jpg')
    #     cv2.imwrite(output_path, frame)
        
    # print(f"Batch processing complete. Processed {len(frames)} images.")

    return kp_results